JPH03293827A - Optical space transmitter - Google Patents

Optical space transmitter

Info

Publication number
JPH03293827A
JPH03293827A JP2093845A JP9384590A JPH03293827A JP H03293827 A JPH03293827 A JP H03293827A JP 2093845 A JP2093845 A JP 2093845A JP 9384590 A JP9384590 A JP 9384590A JP H03293827 A JPH03293827 A JP H03293827A
Authority
JP
Japan
Prior art keywords
signal
circuit
data signal
fsk
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2093845A
Other languages
Japanese (ja)
Inventor
Tadashi Kurayasu
藏保 正
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koito Industries Ltd
Original Assignee
Koito Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koito Industries Ltd filed Critical Koito Industries Ltd
Priority to JP2093845A priority Critical patent/JPH03293827A/en
Publication of JPH03293827A publication Critical patent/JPH03293827A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To eliminate noise components and jitter components by converting a transmission data signal subjected to CMI coding and FSK modulation to the luminance of light to transmit it and subjecting the electric signal, which has the frequency band limited and is subjected to FSK demodulation, to equalizing amplification, timing extraction, and identification and regenerating it to obtain a reception data signal. CONSTITUTION:An FSK modulating circuit 14 takes CMI encoded data as the input and subjects it to FSK modulation and sends it to an LED driving circuit 15, and this circuit 15 drives an LED part 16 to convert the data to the luminance of light and transmits it as an optical transmission signal (h). This signal is received by a light reception circuit 17 and is photo-electrically converted to an electric signal and has the frequency limited by a resonance circuit 17' and is demodulated by an FSK demodulating circuit 18 and is converted to a CMI encoded data signal, and the CMI encoded data signal removing jitter components is generated by an equalizing amplification circuit 19, a timing extracting circuit 20, and an identifying and reproducing circuit 21. Thus, the reception data signal which has no noise components and no jitter components is obtained to accurately transmit the data.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、空間において送受される光信号により情報の
伝送を行う光空間伝送装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an optical space transmission device that transmits information using optical signals transmitted and received in space.

[従来の技術] 一般に、山間地に深い谷等があって通信線の敷設が困難
となる地域および美観上の理由で通信線の敷設が規制さ
れている地域では、送受信点間の空間に光路を形成し、
この間を光信号によって情報の伝送を行う方法が適して
いる。しかしながら、光信号を伝送する光路に霧、雨滴
、雪および煙等の障害物が存在すると、光路を進行する
光信号のエネルギーが減衰し、外来光と本来の光信号と
の区別がつかず、通信品質が劣化する。
[Prior Art] In general, in areas where it is difficult to install communication lines due to deep valleys in mountainous areas, or areas where the installation of communication lines is regulated for aesthetic reasons, optical paths are generally installed in the space between transmitting and receiving points. form,
A method of transmitting information using optical signals during this period is suitable. However, when obstacles such as fog, raindrops, snow, and smoke exist in the optical path that transmits the optical signal, the energy of the optical signal traveling along the optical path is attenuated, making it impossible to distinguish between external light and the original optical signal. Communication quality deteriorates.

このため、従来の光空間伝送装置は、外来光かの明るさ
が数ヘルツから数百ヘルツの周波数の範囲でランダムに
変動していることに着目し、以下の第1の方法および第
2の方法により送信信号の周波数の帯域を狭めて交流信
号に変換しこの間の情報の伝送を行っている。
For this reason, conventional optical space transmission devices focus on the fact that the brightness of external light fluctuates randomly in the frequency range from several hertz to several hundred hertz, and use the following first method and second method. This method narrows the frequency band of the transmitted signal and converts it into an alternating current signal, during which information is transmitted.

すなわち、第1の方法は、送信側において電気信号であ
る送信データ信号に外来光の変動周期より高い周波数で
変調を施すことにより光の輝度に変換して受信側に送信
し、受信側においては受信した光信号を電気信号に変換
し共振回路により外来光による信号と情報伝送用の信号
との区別を行い、復調して受信データ信号を得るように
している。
That is, in the first method, the transmission data signal, which is an electrical signal, is modulated at a frequency higher than the fluctuating period of the external light on the transmission side, thereby converting it into light brightness and transmitting it to the reception side. The received optical signal is converted into an electrical signal, and a resonant circuit distinguishes between a signal due to external light and a signal for information transmission, and demodulation is performed to obtain a received data signal.

また、第2の方法は、送信側において電気信号である送
信データ信号をCMI符号に変換(Coded Mar
k Inversion)することにより光の輝度に変
換して受信側に送信し、受信側においては受信した光信
号を電気信号に変換し、共振回路により外来光による信
号と情報伝送用の信号との区別を行い、さらに等化増幅
、クロック抽出および識別再生を行って受信データ信号
を得るようにしている。
The second method is to convert the transmission data signal, which is an electrical signal, into a CMI code (coded mark) on the transmission side.
k Inversion) to convert it into light brightness and send it to the receiving side, and on the receiving side, the received optical signal is converted to an electrical signal, and a resonant circuit is used to distinguish the external light signal from the signal for information transmission. Then, equalization amplification, clock extraction, and identification regeneration are performed to obtain a received data signal.

[発明が解決しようとする課題] 上述した従来の光空間伝送装置の第1の方法によって光
信号を伝送する場合は、得られた受信信号からジッタ成
分を低減することが困難であるという問題があった。ま
た、第2の方法によって光信号を伝送する場合は、第1
の方法と比較して共振回路の帯域制限の幅を広くとらな
ければならず、受信信号から外来光雑音成分を充分に除
去できないという問題があった。
[Problems to be Solved by the Invention] When transmitting an optical signal using the first method of the conventional optical space transmission device described above, there is a problem that it is difficult to reduce jitter components from the obtained received signal. there were. In addition, when transmitting an optical signal by the second method, the first method
Compared to the above method, the width of the band limit of the resonant circuit must be set wider, and there is a problem that external optical noise components cannot be sufficiently removed from the received signal.

[課題を解決するための手段] このような課題を解決するために本発明に係る光空間伝
送装置は、送信データ信号をCMI符号化する符号化手
段と、この符号化された送信データ信号にFSK変調を
行う変調手段と、この変調された送信データ信号を光の
輝度に変換して送信する送信手段と、受光器により受信
された光信号が電気信号に変換されたのち周波数帯域を
制限してこの電気信号にFSK復調を行う復調手段と、
この復調された電気信号に等化増幅、タイミング抽出お
よび識別再生を行って受信データ信号を得る受信信号再
生手段とを備えたものである。
[Means for Solving the Problems] In order to solve such problems, an optical space transmission device according to the present invention includes an encoding means for CMI encoding a transmission data signal, and a coder for CMI encoding a transmission data signal. A modulating means for performing FSK modulation, a transmitting means for converting the modulated transmission data signal into optical brightness and transmitting it, and a transmitting means for converting the optical signal received by the optical receiver into an electrical signal and then limiting the frequency band. demodulation means for performing FSK demodulation on the electric signal of the lever;
The apparatus is equipped with a received signal reproducing means for performing equalization amplification, timing extraction, and identification reproduction on the demodulated electrical signal to obtain a received data signal.

[作用] 送信データ信号は、CMI符号データに変換されたのち
FSK変調が施され光の輝度に変換されて送信される。
[Operation] The transmission data signal is converted into CMI code data, subjected to FSK modulation, converted into light luminance, and transmitted.

また、受信した光信号は、電気信号に変換されて周波数
が制限されたのちFSK復調され、さらに等化増幅、ク
ロック抽出および識別再生が行われる。この結果、雑音
成分およびジッタ成分が除去された受信データ信号が得
られる。
Further, the received optical signal is converted into an electrical signal, frequency-limited, and then FSK demodulated, and further subjected to equalization amplification, clock extraction, and discrimination/regeneration. As a result, a received data signal from which noise components and jitter components have been removed is obtained.

[実施例] 次に、本発明について図面を参照して説明する。[Example] Next, the present invention will be explained with reference to the drawings.

第1図、第2図は、本発明の光空間伝送装置の一実施例
を示すブロック図である。そして、第1図は、送信側の
ブロック図を示し、第2図は受信側のブロック図を示す
、この第1図、第2図で示される光空間伝送装置は、C
MI符号以外のデータ信号の送受を行うものである。
FIGS. 1 and 2 are block diagrams showing an embodiment of the optical space transmission device of the present invention. FIG. 1 shows a block diagram of the transmitting side, and FIG. 2 shows a block diagram of the receiving side. The optical space transmission apparatus shown in FIGS.
It is used to transmit and receive data signals other than MI codes.

第1図において、1はCMI符号化回路、2は外来光に
よる雑音成分を除去する目的で使用されるF S K 
(Freqency 5hift Keying )変
調回路、3はLED駆動回路、4は発光器であるLED
部である。また、aは送信データ信号、bは送信クロッ
ク信号、Cは送信される光送信信号である。
In FIG. 1, 1 is a CMI encoding circuit, and 2 is an FSK used for the purpose of removing noise components caused by external light.
(Frequency 5hift Keying) Modulation circuit, 3 is an LED drive circuit, 4 is an LED that is a light emitter
Department. Further, a is a transmission data signal, b is a transmission clock signal, and C is an optical transmission signal to be transmitted.

次に、第2図において、5は受光回路、5′は共振回路
、6はFSK復調回路、7は等化増幅回路、8はタイミ
ング抽出回路、9は識別再生回路、10はCMI復号化
回路である。また、dは光受信信号、eは受信データ信
号、fは受信クロック信号である。
Next, in FIG. 2, 5 is a light receiving circuit, 5' is a resonant circuit, 6 is an FSK demodulation circuit, 7 is an equalization amplifier circuit, 8 is a timing extraction circuit, 9 is an identification regeneration circuit, and 10 is a CMI decoding circuit. It is. Further, d is an optical reception signal, e is a reception data signal, and f is a reception clock signal.

以上のように構成された光空間伝送装置の動作を説明す
る。まず、第1図の送信側の動作について説明する。上
記したように、ここでは、CMI符号以外のデータ信号
を送信する場合について説明する。
The operation of the optical space transmission device configured as above will be explained. First, the operation on the transmitting side shown in FIG. 1 will be explained. As described above, a case will be described here in which a data signal other than a CMI code is transmitted.

CMI符号化回路1では、この光空間伝送装置外から送
出された送信データ信号aと送信クロック信号すとを入
力して、CMI符号に変換し、FSK変調回路2に送出
する。このFSK変調回路2は、このCMI符号化され
たデータを入力し外来光による雑音成分を除去するため
にこのデータにFSK変調を施し、このデータをLED
駆動回路3に送出する。すなわち、FSK変調回路2は
、CMI符号化されたデータ信号の中のrH」レベル部
分を高い周波数に、また「L」レベル部分を低い周波数
でそれぞれ変調を行ってLED駆動回路3に送出するも
のとなっている。こうして、このLED駆動回路3は、
このFSK変調された送信データを入力し、これに基づ
いてLED部4を駆動して光の輝度に変換させ、LED
部4からFSK変調された送信データを光送信信号Cと
して送信させる。
The CMI encoding circuit 1 receives the transmission data signal a and the transmission clock signal S sent from outside the optical space transmission apparatus, converts them into CMI codes, and sends them to the FSK modulation circuit 2. This FSK modulation circuit 2 inputs this CMI encoded data, performs FSK modulation on this data in order to remove noise components caused by external light, and transmits this data to an LED.
The signal is sent to the drive circuit 3. That is, the FSK modulation circuit 2 modulates the "rH" level part of the CMI encoded data signal at a high frequency and the "L" level part at a low frequency, and sends the modulated signals to the LED drive circuit 3. It becomes. In this way, this LED drive circuit 3
This FSK modulated transmission data is input, and based on this, the LED section 4 is driven to convert it into light brightness, and the LED
The FSK-modulated transmission data is transmitted from the unit 4 as an optical transmission signal C.

次に、第2図の受信側の動作について説明する0発光器
から送信された光送信信号Cは受信側に光受信信号dと
して到来し、受光回路5においては、このFSK変調さ
れた光受信信号dを受信して、光電変換を行い電気信号
に変換して共振回路5′により周波数帯域を制限し、F
SK復調回路6に送出する。FSK復調回路6では、こ
のFSK変調された電気信号の復調を行い、CMI符号
化されたデータ信号に変換して等化増幅回路7に送出す
る。こうして、このCMI符号化されたデータ信号は、
この等化増幅回路7.タイミング抽出回路8および識別
再生回路9により、ジッタ成分が除去されたCMI符号
化データ信号に生成され、CMI復号化回路10に送出
される。
Next, the optical transmission signal C transmitted from the light emitter 0 to explain the operation of the receiving side in FIG. The signal d is received, photoelectrically converted into an electrical signal, and the frequency band is limited by the resonant circuit 5'.
The signal is sent to the SK demodulation circuit 6. The FSK demodulation circuit 6 demodulates this FSK modulated electrical signal, converts it into a CMI encoded data signal, and sends it to the equalization amplifier circuit 7. Thus, this CMI encoded data signal is
This equalization amplifier circuit 7. The timing extraction circuit 8 and the identification and reproduction circuit 9 generate a CMI encoded data signal from which jitter components have been removed, and send it to the CMI decoding circuit 10.

第5図は、この間の各信号のタイミングを示すタイミン
グチャートである。同図の(a)図は、受光回路5の出
力信号cto”を、また(b)図は共振回路5′の出力
信号ctoを、また(C)図は等化増幅回路7の出力信
号d1を、また(d)図はタイミング抽出回路8のクロ
ック出力信号d2を、さらに(e)図は識別再生回路9
の出力信号d、のタイミングを示している。
FIG. 5 is a timing chart showing the timing of each signal during this period. In the figure, (a) shows the output signal cto'' of the light receiving circuit 5, (b) shows the output signal cto of the resonant circuit 5', and (C) shows the output signal d1 of the equalization amplifier circuit 7. (d) shows the clock output signal d2 of the timing extraction circuit 8, and (e) shows the clock output signal d2 of the timing extraction circuit 8.
The timing of the output signal d of is shown.

そして上記したように、受光回路5により光電変換され
た電気信号do′は、例えばショット性のノイズ31や
ゆらぎ等、外来光による影響を受けているが、これを共
振回路5”により取り除き信号doとしてFSK復調回
路6に送出され復調される。そして、このとき信号ci
oの高い周波数部分は、rHJレベルの信号として、ま
た低い周波数部分は「L」レベルの信号として復調され
る。
As described above, the electric signal do' photoelectrically converted by the light receiving circuit 5 is affected by external light, such as shot noise 31 and fluctuation, but this is removed by the resonant circuit 5'' and the signal do' is The signal ci is sent to the FSK demodulation circuit 6 and demodulated.
The high frequency part of o is demodulated as an rHJ level signal, and the low frequency part is demodulated as an "L" level signal.

すなわち、このFSK復調回路6により、CMI符号化
されたデータ信号に変換されて等化増幅回路7に送出さ
れる0等化基幅回路7ではこのデータ信号を入力して等
化増幅を行い、第5図の(C)図に示すような出力信号
d4をタイミング抽出回路8と識別再生回路9とに送出
するが、この出力信号d工には、まだジッタ成分30が
含まれている。
That is, this data signal is converted into a CMI encoded data signal by the FSK demodulation circuit 6 and sent to the equalization amplification circuit 7.The zero equalization base width circuit 7 inputs this data signal and performs equalization amplification. An output signal d4 as shown in FIG. 5C is sent to the timing extraction circuit 8 and the discrimination/reproduction circuit 9, but this output signal d4 still contains a jitter component 30.

また、タイミング抽出回路8では、この出力信号d1か
ら第5図の(d)図に示されるクロック出力信号d2を
抽出して識別再生回路9に出力する。そして、識別再生
回路9では、このクロック出力信号d2に基づいて等化
増幅回路7の出力信号d工を入力して識別再生し、第5
図の(e)図に示すように、ジッタ成分30を除去し、
かつCMI符号化された出力信号dSを生成して、CM
■復号化回路10に送出する。
Further, the timing extraction circuit 8 extracts a clock output signal d2 shown in FIG. Then, the identification and reproduction circuit 9 inputs the output signal d of the equalization amplifier circuit 7 based on this clock output signal d2, identifies and reproduces it, and
As shown in figure (e), the jitter component 30 is removed,
and generates a CMI encoded output signal dS,
(2) Send it to the decoding circuit 10.

そして、このCMI復号化回路10でCMI復号処理が
行われてTTLレベルの受信データ信号eおよび受信ク
ロック信号でか再生され、この光空間伝送装置外に送出
される。
Then, CMI decoding processing is performed in this CMI decoding circuit 10, and the received data signal e and the received clock signal of TTL level are regenerated and sent out to the outside of this optical space transmission apparatus.

次に、第3図、第4図は、本発明の光空間伝送装置の他
の実施例を示すブロック図である。そして、第3図は、
送信側のブロック図を示し、第4図は受信側のブロック
図を示す、この第3図、第4図で示される光空間伝送装
置は、CMI符号のデータ信号の送受を行うものである
Next, FIGS. 3 and 4 are block diagrams showing other embodiments of the optical space transmission apparatus of the present invention. And Figure 3 is
A block diagram of the transmitting side is shown, and FIG. 4 is a block diagram of the receiving side. The optical space transmission apparatus shown in FIGS. 3 and 4 transmits and receives data signals of CMI codes.

第3図において、11は等化増幅回路、12はタイミン
グ抽出回路、13は識別再生回路、144、tFsK変
調回路、15(iLED[111回路、16はLED部
である。なお、gは送信データ信号、hは送信される光
送信信号である。
In FIG. 3, 11 is an equalization amplifier circuit, 12 is a timing extraction circuit, 13 is an identification regeneration circuit, 144 is a tFsK modulation circuit, 15 is an iLED [111 circuit, and 16 is an LED section. The signal h is the optical transmission signal to be transmitted.

次に、第4図において、17は受光回路、17′は共振
回路、18はFSK復調回路、19は等化増幅回路、2
0はタイミング抽出回路、21は識別再生回路である。
Next, in FIG. 4, 17 is a light receiving circuit, 17' is a resonant circuit, 18 is an FSK demodulation circuit, 19 is an equalization amplifier circuit, 2
0 is a timing extraction circuit, and 21 is an identification reproduction circuit.

また、jは光受信信号、kは受信データ信号である。Further, j is an optical reception signal, and k is a reception data signal.

以上のように構成された光空間伝送装置の動作を説明す
る。まず、第3図の送信側の動作について説明する。上
記したように、ここでは、CMI符号のデータ信号を直
接送信する場合について説明する。
The operation of the optical space transmission device configured as above will be explained. First, the operation on the transmitting side shown in FIG. 3 will be explained. As described above, a case will be described here in which a CMI code data signal is directly transmitted.

この光空間伝送装置外から送出されたCMI符号化デー
タである送信データ信号gは、等化増幅回路11により
入力され、この等化増幅回路11、タイミング抽出回路
12および識別再生回路13によりジッタ成分のないC
MI符号化データとして生成され、FSK変調回路14
に送出される。このFSK変調回路14は、このCMI
符号化されたデータを入力してこのデータにFSK変調
を施し、このデータをLP、D駆動回路15に送出する
。LEDM*回路15は、このFSK変調された送信デ
ータを入力し、これに基づいてLED部15を駆動して
光の輝度に変換させ、この結果LED部15からFSK
変調された送信データが光送信信号りとして送信される
The transmission data signal g, which is CMI encoded data sent from outside the optical space transmission device, is input to the equalization amplifier circuit 11, and the jitter component is C without
Generated as MI encoded data, FSK modulation circuit 14
will be sent to. This FSK modulation circuit 14
Encoded data is input, FSK modulation is applied to this data, and this data is sent to the LP and D drive circuit 15. The LEDM* circuit 15 inputs this FSK modulated transmission data, drives the LED section 15 based on it and converts it into light brightness, and as a result, the LED section 15 outputs the FSK modulated data.
The modulated transmission data is transmitted as an optical transmission signal.

次に、第4図の受信側の動作について説明する0発光器
から送信された光送信信号りは、受信側に光受信信号j
として到来し、受光口#117においては、このFSK
変調された光受信信号りを受信して光電変換を行い、電
気信号に変換して共振回路17′により周波数帯域を制
限しFSK復調回路18に送出する。そして、F S 
Kaj、@回路18では、このFSK変調された電気信
号を復調して、CMI符号化されたデータ信号に変換し
て等化増幅回路19に送出する。
Next, to explain the operation of the receiving side in FIG.
This FSK signal arrives at the light receiving port #117.
The modulated optical reception signal is received, photoelectrically converted, converted into an electrical signal, the frequency band of which is limited by the resonant circuit 17', and sent to the FSK demodulation circuit 18. And F.S.
The Kaj,@ circuit 18 demodulates this FSK modulated electrical signal, converts it into a CMI encoded data signal, and sends it to the equalization amplifier circuit 19.

こうして、このCMI符号化されたデータ信号は、この
等化増幅回路19.タイミング抽出回路20および識別
再生回路21により、ジッタ成分が除去されたCMI符
号化データ信号に生成され、受信データ信号にとしてこ
の光空間伝送装置外に送出される。
In this way, this CMI encoded data signal is transmitted to the equalization amplifier circuit 19. A timing extraction circuit 20 and an identification/reproduction circuit 21 generate a CMI encoded data signal from which jitter components have been removed, and send it out of the optical space transmission apparatus as a received data signal.

以上説明したように、この光空間伝送装置は、送信側に
おいては、送信データ信号をCMI符号データに変換し
たのち、外来光による雑音成分を除去するためにFSK
変調を施して光の輝度に変換して送信し、また受信側に
おいては、受信した光信号を電気信号に変換して周波数
帯域を制限したのちFSK復調を行い、等化増幅、クロ
ック抽出および8M再生を行ってジγり成分が除去され
た受信データ信号を得るようにしなので、雑音成分の除
去と、受信したデータ信号のジッタ成分の低減とを同時
に行うことができる。
As explained above, in this optical space transmission device, on the transmitting side, after converting the transmission data signal into CMI code data, FSK is used to remove noise components caused by external light.
It is modulated and converted into light brightness and transmitted. On the receiving side, the received optical signal is converted into an electrical signal and the frequency band is limited, followed by FSK demodulation, equalization amplification, clock extraction and 8M Since the received data signal from which the jitter component has been removed is obtained by performing the reproduction, it is possible to simultaneously remove the noise component and reduce the jitter component of the received data signal.

なお、この光空間伝送装置の上り信号と下り信号との間
のFSK信号の周波数を互いに異なるように設定すれば
、上り信号と下り信号との混信が避けられ、確実な双方
向の光空間伝送が行える。
Furthermore, if the frequencies of the FSK signals between the upstream and downstream signals of this optical space transmission device are set to be different from each other, interference between the upstream and downstream signals can be avoided and reliable bidirectional optical space transmission can be achieved. can be done.

[発明の効果コ 以上説明したように本発明に係る光空間伝送装置は、送
信データ信号をCMT符号データに変換したのちFSK
変調を施し光の輝度に変換して送信し、また受信した光
信号を電気信号に変換したのち周波数帯域を制限してF
SK復調し、さらに等化増幅、クロック抽出および識別
再生を行って受信データ信号を得るようにしたので、外
来光による雑音成分およびジッタ成分が除去された受信
データ信号が得られ、従って正確なデータ伝送が行える
という効果がある。
[Effects of the Invention] As explained above, the optical space transmission device according to the present invention converts a transmission data signal into CMT code data and then converts it into FSK code data.
It modulates and converts it into light brightness and transmits it, and also converts the received optical signal into an electrical signal, limits the frequency band, and transmits it.
Since the received data signal is obtained by performing SK demodulation, equalization amplification, clock extraction, and identification regeneration, the received data signal is obtained from which noise components and jitter components caused by external light are removed, and therefore accurate data can be obtained. This has the effect of enabling transmission.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図は本発明の光空間伝送装置の一実施例を
示すブロック図、第3図、第4図はこの装置の他の実施
例を示すブロック図、第5図はこの装置の各部のタイミ
ングを示すタイミングチャートである。 1・・・・CMI符号化回路、2,14・−・・FSK
変真回路、3,15・・・・LED駆動回路、4.16
・−・・LED部、5.17・・・・受光回路、5’ 
、17’  ・・・・共振回路、6,18・・−・FS
K復調回路、7,11.19・・−・等化増幅回路、8
,12.20・・・・タイミング抽出回路、9.13.
21・・・・識別再生回路、10・・・・CMI復号化
回路、a、g・・・・送信データ信号、b−−・・送信
クロック信号、c、h・・・・光送信信号、d、j・・
・・光受信信号、e、k・・・・受信データ信号、f・
・・・受信クロック信号。
1 and 2 are block diagrams showing one embodiment of the optical space transmission device of the present invention, FIGS. 3 and 4 are block diagrams showing other embodiments of this device, and FIG. 5 is a block diagram showing this device. 3 is a timing chart showing the timing of each part of FIG. 1...CMI encoding circuit, 2,14...FSK
Transformer circuit, 3,15...LED drive circuit, 4.16
...LED section, 5.17... Light receiving circuit, 5'
, 17'...resonant circuit, 6,18...FS
K demodulation circuit, 7, 11.19... Equalization amplifier circuit, 8
, 12.20...timing extraction circuit, 9.13.
21...Identification and regeneration circuit, 10...CMI decoding circuit, a, g...Transmission data signal, b--...Transmission clock signal, c, h... Optical transmission signal, d, j...
... Optical reception signal, e, k... Reception data signal, f.
...Receive clock signal.

Claims (1)

【特許請求の範囲】 光信号の送受信を行う発光器および受光器を備え、空間
において送受される光信号により情報を伝送する光空間
伝送装置において、 送信データ信号をCMI符号化する符号化手段と、 この符号化された送信データ信号にFSK変調を行う変
調手段と、 この変調された送信データ信号を光の輝度に変換して送
信する送信手段と、 前記受光器により受信された光信号が電気信号に変換さ
れたのちこの電気信号にFSK復調を行う復調手段と、 この復調された電気信号に等化増幅、タイミング抽出お
よび識別再生を行って受信データ信号を得る受信信号再
生手段と を備えてなる光空間伝送装置。
[Scope of Claims] An optical space transmission device that includes a light emitter and a light receiver that transmit and receive optical signals, and that transmits information using optical signals that are transmitted and received in space, comprising: an encoding unit that encodes a transmitted data signal by CMI encoding; , a modulation means that performs FSK modulation on the encoded transmission data signal; a transmission means that converts the modulated transmission data signal into optical luminance and transmits it; A demodulating means performs FSK demodulation on the electrical signal after it has been converted into a signal, and a received signal reproducing means performs equalization amplification, timing extraction, and identification regeneration on the demodulated electrical signal to obtain a received data signal. An optical space transmission device.
JP2093845A 1990-04-11 1990-04-11 Optical space transmitter Pending JPH03293827A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2093845A JPH03293827A (en) 1990-04-11 1990-04-11 Optical space transmitter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2093845A JPH03293827A (en) 1990-04-11 1990-04-11 Optical space transmitter

Publications (1)

Publication Number Publication Date
JPH03293827A true JPH03293827A (en) 1991-12-25

Family

ID=14093742

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2093845A Pending JPH03293827A (en) 1990-04-11 1990-04-11 Optical space transmitter

Country Status (1)

Country Link
JP (1) JPH03293827A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5701333A (en) * 1994-12-05 1997-12-23 Nec Corporation Diversity receiver in which reception characteristics can be improved
CN106534699A (en) * 2016-12-16 2017-03-22 北京旷视科技有限公司 Method for outputting configuration information of IP camera through indication lamp, and IP camera
JP2020178334A (en) * 2019-04-17 2020-10-29 方可成 Multibit optical computing system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5701333A (en) * 1994-12-05 1997-12-23 Nec Corporation Diversity receiver in which reception characteristics can be improved
CN106534699A (en) * 2016-12-16 2017-03-22 北京旷视科技有限公司 Method for outputting configuration information of IP camera through indication lamp, and IP camera
JP2020178334A (en) * 2019-04-17 2020-10-29 方可成 Multibit optical computing system

Similar Documents

Publication Publication Date Title
JP3657983B2 (en) Optical transmission method with low dispersion sensitivity, and transmission apparatus and transmission system for implementing the method
US7689132B2 (en) Interference-rejection coding method for an optical wireless communication system and the optical wireless communication system thereof
ATE348469T1 (en) METHOD FOR DIGITAL SPREAD SPECTRUM COMMUNICATION THROUGH MODULATION WITH GOLAY COMPLEMENTARY SEQUENCES
US4881245A (en) Improved signalling method and apparatus
JPH03293827A (en) Optical space transmitter
US4581750A (en) Transmission system for the transmission of binary data symbols
EP0111968B1 (en) Transmission system for the transmission of binary data symbols
US4184056A (en) Fault locating system for optical telecommunications
JPS6034859B2 (en) Signal transmission method
US20020035505A1 (en) Mobile communication method and apparatus using backscattering of carrier
JP2000134269A5 (en)
JP4195759B2 (en) Intercom transmission system
JP4503496B2 (en) Optical transmission / reception system and optical reception circuit
JP3838087B2 (en) Optical communication system and optical communication apparatus
JP3532099B2 (en) Optical transmission method and optical transmission apparatus for frequency multiplexed signal
JP2002044166A (en) Data transmitter-receiver
JPS59186452A (en) Demodulator for continuous phase fsk signal
JPS6162256A (en) Digital communication device
JP2005504485A (en) Infrared communication system having an encoding function for reducing the maximum number of continuous spaces in a transmission signal
JPS5975727A (en) Data transmission system
JPH08191269A (en) Optical communication system
JPH04180438A (en) Data transmission system
JPH02246526A (en) Detection system for signal interruption of bidirectional transmission
JPH0481151A (en) Transmission system for digital signal
JPH0846649A (en) Digital signal transmission system