JPH03293801A - Waveguide airtight window - Google Patents

Waveguide airtight window

Info

Publication number
JPH03293801A
JPH03293801A JP2094135A JP9413590A JPH03293801A JP H03293801 A JPH03293801 A JP H03293801A JP 2094135 A JP2094135 A JP 2094135A JP 9413590 A JP9413590 A JP 9413590A JP H03293801 A JPH03293801 A JP H03293801A
Authority
JP
Japan
Prior art keywords
waveguide
airtight window
airtight
window
vacuum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2094135A
Other languages
Japanese (ja)
Inventor
Tatsuhisa Masuda
増田 建壽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2094135A priority Critical patent/JPH03293801A/en
Publication of JPH03293801A publication Critical patent/JPH03293801A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/10Nuclear fusion reactors

Landscapes

  • Particle Accelerators (AREA)
  • Waveguide Connection Structure (AREA)
  • Plasma Technology (AREA)

Abstract

PURPOSE:To obtain a compact waveguide superior in airtightness by using ceramics as the material of an airtight window and using copper as the material of the waveguide and using stainless steel as the material of an extended waveguide joined to this waveguide. CONSTITUTION:An airtight window main body 15 is made of ceramics, and copper is used as the material of an airtight window waveguide 16. Though it is rectangle, the joinability to the airtight window main body 15 and the productivity are good. Nonmagnetic stainless steel is used as the material of am airtight window extended waveguide 17. Consequently, the joinability to a vacuum-side waveguide 12 and an air or gaseous atmosphere-side waveguide 13 is improved. Thus, compact arrangement is possible, and the reliability of the airtight window is improved.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、核融合炉用加熱装置等においてマイクロ波電
力を伝送する導波管の気密窓に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to an airtight window of a waveguide for transmitting microwave power in a heating device for a nuclear fusion reactor or the like.

(従来の技術) 一般にマイクロ波はタライストロンのような発振管によ
り発振され、導波管により必要とする場所へ伝送される
(Prior Art) Generally, microwaves are oscillated by an oscillation tube such as a talistron, and transmitted to a required location by a waveguide.

通常大出力のマイクロ波を取り扱う場合には、クライス
トロン管内は、高真空、導波管内は絶縁ガス充填、マイ
クロ波アンテナ部は必要とする雰囲気、たとえば大気中
または真空中と伝送回路中の各セクション毎に異なった
雰囲気に保たれる。
Normally, when handling high-output microwaves, the inside of the klystron tube is in a high vacuum, the inside of the waveguide is filled with insulating gas, the microwave antenna section is in the required atmosphere, for example, in the atmosphere or vacuum, and each section in the transmission circuit is placed in a high vacuum. A different atmosphere is maintained each time.

その為、各々のセクションの境界部分には気密を保ちな
がらマイクロ波の透過を可能とする導波管気密窓を設け
、異なる雰囲気間をしゃ断するようにしている。このよ
うな導波管気密窓を使用する例として、加速器や、核融
合炉用加熱装置がある。
For this reason, a waveguide airtight window is provided at the boundary between each section to allow microwaves to pass through while maintaining airtightness to isolate different atmospheres. Examples of the use of such waveguide airtight windows include accelerators and heating devices for nuclear fusion reactors.

以下、核融合炉用加熱装置を例にとり、第3図ないし第
5図により従来の導波管気密窓の概略を説明する。
Hereinafter, an outline of a conventional waveguide airtight window will be explained with reference to FIGS. 3 to 5, taking a heating device for a nuclear fusion reactor as an example.

核融合炉用加熱装置としては、いくつかの種類があるが
、低減混成波帯加熱装置(以下LHRF加熱装置という
)と呼ばれる加熱装置のアンテナは多数の導波管が束に
なって直接プラズマ側に開口したグリルアンテナとされ
ている。
There are several types of heating devices for fusion reactors, but the antenna of the heating device called a reduced hybrid waveband heating device (hereinafter referred to as LHRF heating device) is a bundle of many waveguides that connect directly to the plasma side. It is said to be a grill antenna with an opening.

第3図は、そのうちの1本の導波管についての系統図で
ある1発振管であるクライストロン■において発振され
たマイクロ波■は発振管ω側の導波管気密窓■、制御部
(イ)を通り、アンテナ側の導波管気密窓■に導かれ、
グリルアンテナの1部を形成する導波管開口部■から、
プラズマ■へ入射する。
Figure 3 is a system diagram for one of the waveguides. The microwave ■ oscillated in the klystron ■, which is one oscillation tube, is transmitted through the waveguide airtight window ■ on the ω side of the oscillation tube, and the control unit (I). ) and is guided to the waveguide airtight window ■ on the antenna side.
From the waveguide opening ■ that forms part of the grill antenna,
Injects into plasma ■.

このプラズマ■は、真空容器(30)内において、磁力
により、トーラス状に保持されている。なお。
This plasma (1) is held in a toroidal shape within the vacuum container (30) by magnetic force. In addition.

図中■は中間導波管であり、■は導波管気密窓■。In the figure, ■ is the intermediate waveguide, and ■ is the waveguide airtight window.

0間の導波管内に絶縁ガスを供給する絶縁ガスボンベで
ある。更に、(10)は真空に保たれる領域を示しく1
1)は絶縁ガスが充填される領域を示す。
This is an insulating gas cylinder that supplies insulating gas into the waveguide between 0 and 0. Furthermore, (10) indicates the area kept in vacuum.
1) indicates a region filled with insulating gas.

一般にプラズマ等の加熱に使用されるマイクロ波は、大
出力となる場合が多いので、中間導波管■内において、
マイクロ波の伝送ロス、発熱等の原因となる放電現象が
生じないようにするため、中間導波管(ハ)内に絶縁ガ
スボンベ■から絶縁ガスを供給しているが、特にその必
要がない場合は(11)の領域は大気でも良い、導波管
気密窓■、■は前記絶縁ガス又は大気とクライストロン
■内又はプラズマ■の周囲の真空雰囲気とをしゃ断して
いる。
Generally, microwaves used for heating plasma etc. often have high output, so in the intermediate waveguide ■,
Insulating gas is supplied from an insulating gas cylinder ■ into the intermediate waveguide (c) in order to prevent discharge phenomena that cause microwave transmission loss and heat generation, etc., but when this is not particularly necessary. The region (11) may be in the atmosphere, and the waveguide airtight windows (1) and (2) cut off the insulating gas or the atmosphere from the vacuum atmosphere inside the klystron (1) or around the plasma (2).

第4図に示すように、矩形断面の気密窓の製作性が困難
な為に気密窓(ハ)は円板形状となり、気密窓本体(1
5)と直接、接合する気密窓導波管(22)は当然円筒
となる。導波管としては矩形断面を要求される為、円形
を矩形に変換する為に矩形穴を有するフランジ(19)
 、真空フランジ(20)を両側に配しなければならな
い、この構成は本来の導波管占有域に対し、非常に広い
余分なスペースを必要とする。
As shown in Figure 4, since it is difficult to manufacture an airtight window with a rectangular cross section, the airtight window (C) is shaped like a disk, and the airtight window body (1
5), the airtight window waveguide (22) that is directly joined to the waveguide (22) is naturally cylindrical. Since a rectangular cross section is required for the waveguide, a flange (19) with a rectangular hole is used to convert the circular shape into a rectangular shape.
, vacuum flanges (20) must be placed on both sides; this configuration requires a significant amount of extra space relative to the original waveguide footprint.

又、第5図の気密窓(ハ)は矩形断面に合致したもので
あるが、気密窓導波管(22)は気密窓本体(15)と
の製作性よりコバール材が使用されている。コバール材
は磁性体の為に1周囲の磁場の影響を受けると共に、又
、磁場に影響を与える結果となる。
Further, although the airtight window (C) in FIG. 5 has a rectangular cross section, the airtight window waveguide (22) is made of Kovar material for ease of manufacture with the airtight window body (15). Since the Kovar material is a magnetic material, it is affected by the surrounding magnetic field and also has the effect of influencing the magnetic field.

又、気密窓本体(15)と気密窓導波管(22)との接
合。
Also, the airtight window main body (15) and the airtight window waveguide (22) are joined.

気密窓導波管(22)と真空側導波管(12)、ガス雰
囲気又は大気側導波管(13)の接合時に欠陥を生じや
すい材料である。
This material is likely to cause defects when joining the hermetic window waveguide (22), vacuum side waveguide (12), gas atmosphere or atmosphere side waveguide (13).

(発明が解決しようとする課題) さて、気密窓■、■はその両側の雰囲気をしゃ断すると
いう点において、重要な役割を果していることは云うま
でもない、気密窓■はクライストロンωの機能、構成上
スペース的にも、又、磁場の影響を受けるという観点か
らも余裕のある配置が出来るが、気密窓(ハ)において
は、導波管を束ねた領域に存在し、且つ、プラズマに近
い(磁場の影響を非常に受ける)領域に存在するため、
余分なスペースを必要としないで且つ、非磁性材による
構成を要求される。又、気密窓の名の如く。
(Problem to be solved by the invention) Now, it goes without saying that the airtight windows ■ and ■ play an important role in blocking the atmosphere on both sides. Although there is ample space in the configuration and from the perspective of being affected by the magnetic field, the airtight window (c) is located in the area where the waveguides are bundled and is close to the plasma. Because it exists in a region (highly affected by magnetic fields),
It requires no extra space and is required to be constructed of non-magnetic material. Also, as the name suggests, it is an airtight window.

気密性に優れている必要から、その信頼のおける製作性
が問われる。
Due to the need for excellent airtightness, reliable manufacture is required.

本発明は上記の問題点に鑑みてなされたものであり、磁
場の影響を受けずコンパクトで気密性にすぐれた導波管
気密窓を提供することを目的とする。
The present invention has been made in view of the above problems, and an object of the present invention is to provide a waveguide airtight window that is compact and has excellent airtightness without being affected by magnetic fields.

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) 上記目的を達成するために、本発明の導波管気密窓は気
密窓材はセラミックとし、気密窓に直接、接合して気密
を保持する導波管材は銅とし、この導波管と接合取合と
なる延長導波管材はステンレス鋼とした構成とする。
(Means for Solving the Problems) In order to achieve the above object, in the waveguide airtight window of the present invention, the airtight window material is ceramic, and the waveguide material directly bonded to the airtight window to maintain airtightness is copper. The extended waveguide material that is connected to this waveguide is made of stainless steel.

(作用) このような気密窓とすることで、構成部材の非磁性化、
矩形断面導波管形状に合致した導波管気密窓を製作、且
つ信頼性の高い製作性が図れる。
(Function) By creating such an airtight window, the constituent members can be made non-magnetic,
It is possible to manufacture a waveguide airtight window that matches the shape of a rectangular cross-sectional waveguide, and to achieve highly reliable manufacturing.

(実施例) 第1図は本発明の気密窓■の一実施例を示す。(Example) FIG. 1 shows an embodiment of the airtight window (1) of the present invention.

気密窓■は真空側導波管(12)と大気又はガス雰囲気
側導波管(13)の間に位置し、気密窓本体(15) 
The airtight window ■ is located between the vacuum side waveguide (12) and the air or gas atmosphere side waveguide (13), and the airtight window body (15)
.

気密窓導波管(16) 、気密窓延長導波管(17)と
から成る。気密窓本体(15)はセラミックが使用され
It consists of an airtight window waveguide (16) and an airtight window extension waveguide (17). The airtight window body (15) is made of ceramic.

気密窓導波管(16)に銅を使用する。気密窓本体(1
5)との接合性、製作性が矩形状であっても良い。
Copper is used for the hermetic window waveguide (16). Airtight window body (1
5) The shape may be rectangular in terms of bondability and manufacturability.

又、気密窓延長導波管(17)に非磁性のステンレス鋼
を使用することにより、真空側導波管(12)、大気又
はガス雰囲気側導波管(13)との接合性が良くなる。
In addition, by using non-magnetic stainless steel for the airtight window extension waveguide (17), the bondability with the vacuum side waveguide (12) and the air or gas atmosphere side waveguide (13) is improved. .

第2図も本発明の実施例を示すものである。気密窓■は
第1図同様に真空側導波管(12)と大気又はガス雰囲
気側導波管(13)の間に位置し、気密窓本体(15)
 、気密窓導波管(16) 、気密窓延長導波管(17
)とから成る気密窓本体(15)はセラミックであリ、
気密窓導波管(16)は銅を使用する。第1図と興なる
点は、気密窓導波管(16)を気密窓本体(15)の両
端に二分割状に配置することであり、本実の特徴である
。気密窓導波管(16)の二分割化により気密窓本体(
15)との整合性、製作性が導波管形状が、円形、矩形
を問わず確実、容易な点である。
FIG. 2 also shows an embodiment of the present invention. As in Fig. 1, the airtight window ■ is located between the vacuum side waveguide (12) and the air or gas atmosphere side waveguide (13), and the airtight window body (15)
, hermetic window waveguide (16), hermetic window extension waveguide (17)
), the airtight window body (15) is made of ceramic;
The hermetic window waveguide (16) uses copper. The difference from FIG. 1 is that the airtight window waveguide (16) is arranged in two halves at both ends of the airtight window body (15), which is a real feature. By dividing the airtight window waveguide (16) into two, the airtight window body (
15), the waveguide shape is reliable and easy regardless of whether it is circular or rectangular.

又、マイクロ波が、気密窓本体(15)の外部へ漏れ出
るのを防ぐ為に必要なメタル被覆(18)及びその被膜
の必要厚さについても気密窓本体(15)の外周に施す
メタライズ層を加え気密窓■形成時に施工する銀ロー付
による銀ロー材の被膜で十分対応できる構造である。あ
と第1図の説明と同様に気密延長導波管(17)に非磁
性のステンレス鋼を使用することにより真空側導波管(
12) 、大気又はガス雰囲気側導波管(13)との接
合性が良くなる。
In addition, regarding the metal coating (18) necessary to prevent microwaves from leaking to the outside of the airtight window body (15) and the required thickness of the coating, the metallized layer applied to the outer periphery of the airtight window body (15) is also considered. In addition, it is a structure that can be adequately covered with a silver brazing material coated with silver brazing that is applied when forming an airtight window. Also, as explained in Fig. 1, by using non-magnetic stainless steel for the airtight extension waveguide (17), the vacuum side waveguide (
12) The bondability with the waveguide (13) on the air or gas atmosphere side is improved.

〔発明の効果〕〔Effect of the invention〕

以上の様に本発明によれば、矩形断面導波管に合致した
形状の導波管気密窓が得られる、これは導波管自体を配
置出来るスペース内で十分配置することができ、非磁性
材料を使用することで磁場の影響を受けないし、磁場に
影響を与えない、又、材料の特性上から気密窓製作の信
頼性も高い。
As described above, according to the present invention, it is possible to obtain a waveguide airtight window having a shape that matches a rectangular cross-section waveguide. By using this material, it is not affected by the magnetic field and has no effect on the magnetic field, and due to the characteristics of the material, the reliability of producing airtight windows is high.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の導波管気密窓の断面図、第
2図は他の実施例を示す図、第3図は核融合炉用加熱装
置の導波管の系統図、第4図と第5図は従来の導波管気
密窓の断面図である。 1・・・タライストロン 2・・・マイクロ波3.5・
・・気密窓   4・・・制御部6・・・導波管開口部
  7・・・プラズマ8・・・中間部導波管  9・・
・ガスボンベ10・・・真空領域   11・・・ガス
雰囲気又は大気12・・・真空側導波管 13・・・ガス雰囲気又は大気側導波管15・・・気密
窓本体   16.22・・・気密窓導波管17・・・
延長導波管   18・・・メタル被膜19・・・フラ
ンジ    20・・・真空フランジ21・・・パツキ
FIG. 1 is a sectional view of a waveguide airtight window according to one embodiment of the present invention, FIG. 2 is a diagram showing another embodiment, and FIG. 3 is a system diagram of a waveguide of a heating device for a fusion reactor. 4 and 5 are cross-sectional views of conventional waveguide airtight windows. 1... Talaistron 2... Microwave 3.5.
... Airtight window 4 ... Control section 6 ... Waveguide opening 7 ... Plasma 8 ... Intermediate waveguide 9 ...
・Gas cylinder 10...Vacuum region 11...Gas atmosphere or atmosphere 12...Vacuum side waveguide 13...Gas atmosphere or atmosphere side waveguide 15...Airtight window body 16.22... Airtight window waveguide 17...
Extension waveguide 18...Metal coating 19...Flange 20...Vacuum flange 21...Packing

Claims (1)

【特許請求の範囲】[Claims] 銅製の管の内側にセラミックスの板を接合し、前記銅管
の端にステンレス鋼の延長管を接合したことを特徴とす
る導波管気密窓。
A waveguide airtight window characterized in that a ceramic plate is bonded to the inside of a copper tube, and a stainless steel extension tube is bonded to the end of the copper tube.
JP2094135A 1990-04-11 1990-04-11 Waveguide airtight window Pending JPH03293801A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2094135A JPH03293801A (en) 1990-04-11 1990-04-11 Waveguide airtight window

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2094135A JPH03293801A (en) 1990-04-11 1990-04-11 Waveguide airtight window

Publications (1)

Publication Number Publication Date
JPH03293801A true JPH03293801A (en) 1991-12-25

Family

ID=14101958

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2094135A Pending JPH03293801A (en) 1990-04-11 1990-04-11 Waveguide airtight window

Country Status (1)

Country Link
JP (1) JPH03293801A (en)

Similar Documents

Publication Publication Date Title
USRE25329E (en) Periodically focused traveling wave tube
JPS62246229A (en) Coaxial waveguide structure and its manufacture
JPS6398938A (en) Magnetron
US8237366B2 (en) Output window with venting means for use with a vacuum electron device
JPH03293801A (en) Waveguide airtight window
US4833367A (en) Magnetron with resonant choke structure for supressing unwanted harmonics
US4019087A (en) Coupled-cavity type traveling-wave tube with sever termination attenuators
US2698421A (en) Wave guide seal and filter structure
JPH03145201A (en) Microwave window
JP2018113503A (en) High frequency transmission window body structure and high frequency input coupler
US3293478A (en) Traveling wave tube with longitudinal recess
CA2155251C (en) Electron beam tubes
JPH0745210A (en) Output circuit for helix type traveling wave tube
US2939996A (en) High frequency energy interchange device
JP2597386B2 (en) Gyrotron
JPH02295023A (en) Waveguide airtight window body structure
JPH01274340A (en) Magnetron
JPH0517792Y2 (en)
JPH08154001A (en) Pillbox type vacuum window
JPH05129802A (en) Airtight high frequency window
JPS63261651A (en) Magnetron
JPH0447644A (en) High frequency transmitting window structure
JPH05325792A (en) Manufacture of microwave vacuum-tight window
JPH01115035A (en) Ecr ion source
JP2602297B2 (en) Gyrotron