JPH01115035A - Ecr ion source - Google Patents

Ecr ion source

Info

Publication number
JPH01115035A
JPH01115035A JP27174687A JP27174687A JPH01115035A JP H01115035 A JPH01115035 A JP H01115035A JP 27174687 A JP27174687 A JP 27174687A JP 27174687 A JP27174687 A JP 27174687A JP H01115035 A JPH01115035 A JP H01115035A
Authority
JP
Japan
Prior art keywords
window
high frequency
magnetic field
plasma
ion source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27174687A
Other languages
Japanese (ja)
Inventor
Hitoshi Odagiri
小田桐 均
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP27174687A priority Critical patent/JPH01115035A/en
Publication of JPH01115035A publication Critical patent/JPH01115035A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electron Sources, Ion Sources (AREA)

Abstract

PURPOSE:To reduce the fracture of a window for introducing a high frequency and enhance vacuum exhaust efficiency by providing the window at a position perpendicular to the axis of a magnetic field and off a resonance point by length corresponding to or over a unit wave length. CONSTITUTION:A high frequency introduction part 1 comprises a coaxial waveguide 2 and an internal lead body 3 extended into a vacuum vessel 8 via a window 4. The installation position of the high frequency introduction part 1 is off a resonance point 7 by a distance corresponding to or over a unit wave length in the basic mode of a high frequency within the vacuum vessel 8, and perpendicular to the axis of a magnetic field. According to the aforesaid construction, the window 4 does not view a plasma directly and, therefore, a thermal load or particle flux from the plasma 6 is alleviated and the possibility of window fracture is lowered. Also, as vacuum exhaust can be effectuated from a direction parallel to the axis of the magnetic field, the area of an exhaust port can be enlarged, thereby raising the efficiency of vacuum exhaust.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、核融合装置、加速器、半導体製造装置等に用
いられるECRイオン源(電子サイクロトロン共鳴型イ
オン源)に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to an ECR ion source (electron cyclotron resonance ion source) used in nuclear fusion devices, accelerators, semiconductor manufacturing equipment, etc.

(従来の技術) ECRイオン源では、磁場中における電子の旋回運動を
利用して放電を発生させ、放電によって生成されたイオ
ンを静電界によって引き出し、イオンビームとして用い
る。以下に図面を参照しなからECRイオン源について
説明する。第5図および第6図は従来のECRイオン源
を示す断面図である。イオン源は、ECR共鳴磁場をつ
くる磁石9.プラズマ6(イオン)を生成する真空容器
8、ガスを真空容器内に導入するガス導入管10゜高周
波を導入するための導入部1と窓4およびイオンを引き
出して目的の場所まで輸送するイオン引き出し電極と輸
送用真空容器(図示せず)および真空容器を冷却する冷
却路(図示せず)と真空排気ポンプ(図示せず)より構
成される。
(Prior Art) In an ECR ion source, a discharge is generated using the swirling motion of electrons in a magnetic field, and ions generated by the discharge are extracted by an electrostatic field and used as an ion beam. The ECR ion source will be described below with reference to the drawings. 5 and 6 are cross-sectional views showing a conventional ECR ion source. The ion source includes a magnet 9 that creates an ECR resonance magnetic field. A vacuum vessel 8 that generates plasma 6 (ions), a gas introduction pipe 10 that introduces gas into the vacuum vessel, an introduction section 1 and window 4 that introduce high frequency waves, and an ion extractor that extracts ions and transports them to the target location. It consists of an electrode, a vacuum container for transportation (not shown), a cooling path (not shown) for cooling the vacuum container, and a vacuum pump (not shown).

磁場が存在すると電子は磁場に垂直な方向に力を受け、
旋回運動を行う、この旋回運動の角周波数をω(ラジア
ン7秒)とし、磁場の強さ(磁束密度)をB(テスラ)
、電子の質量をm(kg)、電子の電荷をe (クーロ
ン)とすると1次式が成り立つ。
When a magnetic field exists, electrons experience a force perpendicular to the magnetic field,
The angular frequency of this rotating motion is ω (7 radians), and the strength of the magnetic field (magnetic flux density) is B (Tesla).
, the mass of the electron is m (kg), and the charge of the electron is e (coulomb), then a linear equation holds true.

=見見 ω   m 一方、外部から、 ω=2πfを満たす周波数f(Hz
)を持つ高周波電磁波を入射すると、電子は共鳴的に高
周波のエネルギーを吸収し、放電が増殖される。このよ
うにしてできた高エネルギーの電子は気体原子と衝突し
、プラズマ6が生成される。
= Appearance ω m On the other hand, from the outside, the frequency f (Hz
), the electrons resonantly absorb the high-frequency energy and the discharge is multiplied. The high-energy electrons thus generated collide with gas atoms, and plasma 6 is generated.

真空容器8内に高周波を導入するには、真空を。To introduce high frequency into the vacuum container 8, apply a vacuum.

封止しかつ、高周波の損失の少い窓4を介する。It is passed through a window 4 which is sealed and has low high frequency loss.

窓4は前記理由によりアルミナ、窒化ホウ素等のセラミ
ックスや石英ガラスを導波管内にロー付けや拡散接合等
により封着して製作する。また、冷却路を設けることも
ある。そして、従来のECRイオン源では、窓4はEC
R共鳴点7の近くに、磁場の軸に垂直となるように設置
するか(第511)。
For the reason mentioned above, the window 4 is manufactured by sealing ceramics such as alumina, boron nitride, or quartz glass inside the waveguide by brazing, diffusion bonding, or the like. A cooling path may also be provided. And in a conventional ECR ion source, window 4 is
Is it installed near the R resonance point 7 so as to be perpendicular to the axis of the magnetic field (No. 511)?

または、磁場の軸上に、磁場と平行となるように設置さ
れていた(第6図)。
Alternatively, it was installed on the axis of the magnetic field so as to be parallel to the magnetic field (Figure 6).

(発明が解決しようとする問題点) このようなECRイオン源では、窓4がプラズマ6を直
接見込んでいるためプラズマからの粒子束や熱負荷によ
り、窓4が破損する問題があった。
(Problems to be Solved by the Invention) In such an ECR ion source, since the window 4 directly looks into the plasma 6, there is a problem in that the window 4 is damaged by particle flux and heat load from the plasma.

また、窓4を磁場の軸に平行となるように設置すれば負
荷は多少緩和されるが、真空排気の排気管11の径を大
きくできないため真空排気効率が低下し到達圧力を低く
できない問題があった。
In addition, if the window 4 is installed parallel to the axis of the magnetic field, the load can be alleviated to some extent, but since the diameter of the evacuation pipe 11 cannot be increased, the evacuation efficiency decreases and the ultimate pressure cannot be lowered. there were.

本発明は、上記問題点を克服し、窓の破損が少ないので
寿命が長くかつ真空排気効率が高いので到達圧力が低い
ECRイオン源を提供することを目的とする。
It is an object of the present invention to overcome the above-mentioned problems and provide an ECR ion source that has a long life due to less damage to the window and has a low ultimate pressure due to high evacuation efficiency.

〔発明の構成〕[Structure of the invention]

(問題点を解決するための手段) 上記目的を達成するため、本発明では窓を磁場の軸に垂
直で、かつ、共鳴点から1波長以上離した位置に設置す
る。
(Means for Solving the Problems) In order to achieve the above object, in the present invention, the window is installed at a position perpendicular to the axis of the magnetic field and at least one wavelength away from the resonance point.

(作用) 上記のように窓を設置したECRイオン源では、窓がプ
ラズマを直接見込まないため、プラズマからの粒子束や
熱負荷が大幅に減少する他、真空排気の引き口を大きく
できるので効率を大きくすることができる。また、共鳴
点から1波長以上離すことにより、共鳴点で磁場の方向
と高周波電磁波の伝播ベクトルが平行となるので、一般
にプラズマの遮断周波数条件として知られている次式で
示されるプラズマ密度より大きな値のプラズマを得るこ
とができる。
(Function) In an ECR ion source equipped with a window as described above, since the window does not directly look into the plasma, the particle flux and heat load from the plasma are significantly reduced, and the evacuation opening can be made larger, making it more efficient. can be made larger. In addition, by separating one wavelength or more from the resonance point, the direction of the magnetic field and the propagation vector of high-frequency electromagnetic waves become parallel at the resonance point, so the plasma density is greater than the plasma density shown by the following equation, which is generally known as the plasma cut-off frequency condition. Value plasma can be obtained.

ωp =(−) εam ここで、ωP:プラズマ角周波数(f=−”:遮断周波
数)(ラジアン7秒) nl、:プラズマ密度(m’″3) e :素電荷(クーロン) ε。:真空の誘電率 m :電子の質量(kg) (実施例) 以下に本発明の実施例について図面を参照しながら説明
する。第1図は、高周波を真空容器8内に導入するため
に同軸導波管2を用いたものである。高周波導入部1は
、同軸導波管2と、窓4を貫通して真空容器8内にまで
挿入可能となるように伸ばした内導体3により構成する
ωp = (-) εam Here, ωP: Plasma angular frequency (f=-": Cutoff frequency) (7 radians) nl,: Plasma density (m'"3) e: Elementary charge (coulombs) ε. : Dielectric constant m of vacuum : Mass of electron (kg) (Example) Examples of the present invention will be described below with reference to the drawings. In FIG. 1, a coaxial waveguide 2 is used to introduce high frequency waves into a vacuum vessel 8. In FIG. The high frequency introduction section 1 is composed of a coaxial waveguide 2 and an inner conductor 3 extending so as to be inserted into the vacuum container 8 through a window 4.

内導体3は1体ものとする必要はなく、任意の位置で分
割し、電気的2機械的に結合すればよい。
The inner conductor 3 does not need to be a single piece, but may be divided at any position and electrically and mechanically coupled.

また、内部を空洞とし、冷却材を通して高周波損失によ
る発熱を冷却する構造としてもよい、高周波導入部1の
形状は、使用する高周波の周波数や。
Further, the shape of the high frequency introduction section 1 may be a structure in which the interior is hollow and heat generated by high frequency loss is cooled through a coolant.The shape of the high frequency introduction section 1 depends on the frequency of the high frequency to be used.

インピーダンスの整合性等を考慮して決める。窓4はフ
ランジ5の内側に、アルミナ、窒化ホウ素等のセラミッ
クスを封着したもので、内導体3が貫通する部分も封着
する。高周波導入部1の設置位置は共鳴点7から真空容
器8内の高周波の基本モードにおける1波長に相当する
長さ以上離し。
Determine by considering impedance consistency, etc. The window 4 is made by sealing ceramics such as alumina or boron nitride on the inside of the flange 5, and the portion through which the inner conductor 3 passes is also sealed. The high frequency introduction section 1 is installed at a distance from the resonance point 7 by at least a length corresponding to one wavelength in the fundamental mode of the high frequency within the vacuum vessel 8 .

磁場の軸に垂直とする。Perpendicular to the axis of the magnetic field.

以上のように構成した本実施例のイオン源によると、窓
4はプラズマ6を直接見込むことがないため、プラズマ
6からの熱負荷や粒子束が軽減され、破損する可能性が
少なくなる。また、真空排気を磁場の軸に平行な方向か
ら行なえるため、排気孔の面積を大きくすることができ
、真空排気の効率を大きくすることができる。さらに、
高周波の導入を共鳴点から1波長以上離れた点がら行な
っているので、共鳴点において磁場の方向と高周波の伝
播ベクトルが平行となり、遮断条件を越支たプラズマ密
度を得ることができる。
According to the ion source of this embodiment configured as described above, since the window 4 does not directly look into the plasma 6, the heat load and particle flux from the plasma 6 are reduced, and the possibility of breakage is reduced. Furthermore, since evacuation can be performed in a direction parallel to the axis of the magnetic field, the area of the evacuation hole can be increased, and the efficiency of evacuation can be increased. moreover,
Since the high frequency is introduced from a point at least one wavelength away from the resonance point, the direction of the magnetic field and the propagation vector of the high frequency become parallel at the resonance point, making it possible to obtain a plasma density that exceeds the cutoff condition.

(他の実施例) 第1図では真空容器8内に挿入される部分が同軸導波管
2の内導体3そのものであったが、第2図に示す実施例
のように、この部分をラセン導体3aとしてもよい、こ
うすることにより、整合性がよくなる他、プラズマから
の熱負荷を軽減することができる。また、第3図に示す
ように、波(山)形溝体3b、あるいは第4図に示すよ
うに閉回路型導体3cとしても同様の効果を得ることが
できる。
(Other Embodiments) In FIG. 1, the part inserted into the vacuum vessel 8 is the inner conductor 3 of the coaxial waveguide 2, but as in the embodiment shown in FIG. The conductor 3a may also be used, which not only improves the matching but also reduces the heat load from the plasma. Further, the same effect can be obtained by using a wave (mountain) shaped groove body 3b as shown in FIG. 3, or a closed circuit type conductor 3c as shown in FIG.

〔発明の効果〕〔Effect of the invention〕

以上述べた如く本発明によれば、高周波の導入に用いる
窓がプラズマを直接見込むことがないのでプラズマから
の熱負荷や粒子束が軽減され、窓が破損する可能性が少
なくなる。そのため、イオン源としての寿命を長くする
ことができる。また。
As described above, according to the present invention, the window used for introducing high frequency waves does not directly look into the plasma, so the heat load and particle flux from the plasma are reduced, and the possibility of the window being damaged is reduced. Therefore, the life of the ion source can be extended. Also.

真空排気用の排気孔を大きくできるため、排気効率が大
きくなり、到達圧力を下げることが容易となる。さらに
、遮断条件を越えたプラズマ密度を得ることができるた
め、低い周波数でも大きなイオンビーム電流を得ること
ができる。
Since the exhaust hole for evacuation can be made larger, the exhaust efficiency increases and the ultimate pressure can be easily lowered. Furthermore, since it is possible to obtain a plasma density that exceeds the cutoff condition, a large ion beam current can be obtained even at a low frequency.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1の実施例のECRイオン源の要部
を示す断面図、第2図はラセン導体を用いた本発明の実
施例のECRイオン源の高周波導入部を示す断面図、第
3図は波(山)形溝体を用いた本発明の実施例のECR
イオン源の高周波導入部を示す断面図、第4図は閉回路
型導体を用いた本発明の実施例のECRイオン源の高周
波導入部を示す断面図、第5図および第6図は従来のE
CRイオン源の要部を示す断面図である。 1・・・高周波導入部  2・・・同軸導波管3・・・
内導体     3a・・・ラセン導体3b・・・波(
山)形溝体  3c・・・閉回路型導体4・・・窓  
     5・・・フランジ6・・・プラズマ    
7・・・共鳴点8・・・真空容器    9・・・磁石
10・・・ガス導入管   11・・・真空排気管代理
人 弁理士 則 近 憲 佑 同  第子丸 健 第 1 図 第2図 第3図 第4図
FIG. 1 is a cross-sectional view showing the main parts of an ECR ion source according to a first embodiment of the present invention, and FIG. 2 is a cross-sectional view showing a high-frequency introduction part of an ECR ion source according to an embodiment of the present invention using a helical conductor. , FIG. 3 shows an ECR of an embodiment of the present invention using a wave (mountain) groove body.
4 is a sectional view showing the high frequency introduction part of the ECR ion source according to the embodiment of the present invention using a closed circuit type conductor, and FIGS. 5 and 6 are sectional views showing the high frequency introduction part of the ion source. E
FIG. 2 is a cross-sectional view showing the main parts of a CR ion source. 1... High frequency introduction part 2... Coaxial waveguide 3...
Inner conductor 3a... Spiral conductor 3b... Wave (
Mountain) type groove body 3c...Closed circuit type conductor 4...Window
5...Flange 6...Plasma
7...Resonance point 8...Vacuum vessel 9...Magnet 10...Gas introduction pipe 11...Vacuum exhaust pipe Agent Patent attorney Nori Chika Ken Yudo Daishimaru Kendai 1 Figure 2 Figure 3 Figure 4

Claims (1)

【特許請求の範囲】[Claims] ECR共鳴点から高周波の管内1波長以上離れた点に、
かつECR共鳴用磁場の軸に垂直に高周波導入部を設置
したことを特徴とするECRイオン源。
At a point more than one wavelength away from the ECR resonance point in the high frequency tube,
An ECR ion source characterized in that a high frequency introduction section is installed perpendicular to the axis of the magnetic field for ECR resonance.
JP27174687A 1987-10-29 1987-10-29 Ecr ion source Pending JPH01115035A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27174687A JPH01115035A (en) 1987-10-29 1987-10-29 Ecr ion source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27174687A JPH01115035A (en) 1987-10-29 1987-10-29 Ecr ion source

Publications (1)

Publication Number Publication Date
JPH01115035A true JPH01115035A (en) 1989-05-08

Family

ID=17504256

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27174687A Pending JPH01115035A (en) 1987-10-29 1987-10-29 Ecr ion source

Country Status (1)

Country Link
JP (1) JPH01115035A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10031139A1 (en) * 2000-06-27 2002-01-17 Wacker Siltronic Halbleitermat Method for mounting and demounting semiconductor plates, e.g. for polishing, involves forming easily breakable joint using filler-containing resin-based cement with temperature-dependent adhesive-brittle properties

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10031139A1 (en) * 2000-06-27 2002-01-17 Wacker Siltronic Halbleitermat Method for mounting and demounting semiconductor plates, e.g. for polishing, involves forming easily breakable joint using filler-containing resin-based cement with temperature-dependent adhesive-brittle properties
DE10031139C2 (en) * 2000-06-27 2003-04-17 Wacker Siltronic Halbleitermat Process and mixture of materials for assembly and disassembly of semiconductor wafers

Similar Documents

Publication Publication Date Title
US3346766A (en) Microwave cold cathode magnetron with internal magnet
US6184624B1 (en) Ion source
JPS6398938A (en) Magnetron
JP2000040475A (en) Self-electron emitting ecr ion plasma source
JPH01115035A (en) Ecr ion source
KR970008650B1 (en) Excitation atomic beam source
JPS63119198A (en) Plasma generator
JP2546357B2 (en) Plasma generator and ion source using the same
KR0166875B1 (en) Antenna feeder and exhaust cap structure of magnetron for microwave oven
JPH09270234A (en) Chamber inserted ecr low energy ion gun
JP3015450B2 (en) Magnetron for microwave oven
JP2868807B2 (en) Magnetron for microwave oven
JPH0757897A (en) High frequency type charged particle accelerating device
JP2868805B2 (en) Magnetron for microwave oven
JP3080471B2 (en) Microwave plasma generator
JPS63257166A (en) Microwave ion source
JP2868806B2 (en) Magnetron for microwave oven
JPH0495397A (en) High frequency accelerator
JP2773157B2 (en) Semiconductor manufacturing equipment
JPH0785993A (en) Microwave plamsa generating device
JPS63126197A (en) Plasma source employing microwave excitation
RU2286615C1 (en) X-ray emitter
JPH0738035B2 (en) High frequency heating device
JPH02148539A (en) Ion source
JPS61284031A (en) Klystron