JPH03293516A - Correcting method for output of azimuth detecting apparatus - Google Patents

Correcting method for output of azimuth detecting apparatus

Info

Publication number
JPH03293516A
JPH03293516A JP9710790A JP9710790A JPH03293516A JP H03293516 A JPH03293516 A JP H03293516A JP 9710790 A JP9710790 A JP 9710790A JP 9710790 A JP9710790 A JP 9710790A JP H03293516 A JPH03293516 A JP H03293516A
Authority
JP
Japan
Prior art keywords
ellipse
output
sensor
axial direction
azimuth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9710790A
Other languages
Japanese (ja)
Inventor
Yasuhiro Ihara
康博 井原
Mitsuhiro Yamashita
山下 光洋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP9710790A priority Critical patent/JPH03293516A/en
Publication of JPH03293516A publication Critical patent/JPH03293516A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Magnetic Variables (AREA)
  • Navigation (AREA)

Abstract

PURPOSE:To improve the detecting accuracy of azimuth by a method wherein the central coordinates, ellipticity, axial direction of an ellipse output by the terrestrial magnetism which is necessary to calculate the azimuth with use of a terrestrial magnetism sensor are obtained from coordinates of a plurality of representative points on the ellipse obtained from the data during a one turn. CONSTITUTION:A host detector is constituted of a terrestrial magnetism sensor 1 which decomposes the intensity of the terrestrial magnetism into components in two directions orthogonal to each other, a turning angle sensor 2, A/D converters 31, 32, a microcomputer 4, an output means 5 and a memory. The geomagnetic azimuth data collected during one turn is averaged in an averaging process based on outputs from the sensor 2 for every turn of predetermined angles, so that a representative point is calculated. Moreover, the central coordinates of the ellipse are obtained from the representative points. It is detected whether the ellipse is linearly symmetric to a linear component connecting the central coordinates with each representative point on the circumference of the ellipse. The direction of the linear component assuming the linear symmetric relation is calculated as an axial direction of the ellipse, whereby the axial direction can be obtained correctly. Accordingly, outputs can be corrected correctly.

Description

【発明の詳細な説明】 産業上の利用分野 本発明1よ 自動車等の移動体の現在位置を検出する位
置検出装置に用いる方位検出装置の出力補正法に関する
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention 1 relates to a method for correcting the output of a direction detecting device used in a position detecting device for detecting the current position of a moving body such as an automobile.

従来の技術 従来の方位検出装置の出力補正方法としては例えば特開
昭58−190711号公報に示されている。
2. Description of the Related Art A conventional method for correcting the output of an azimuth detecting device is disclosed in, for example, Japanese Patent Laid-Open No. 190711/1983.

この例で示されるよう!ミ 従来の方位検出装置の方位
センサとしては地磁気の強さを互いに直交する二方向の
成分に分けて検出する地磁気センサが用いられていた 
このセンサを主に鉄で構成される移動体に搭載すると二
方向の検出感度に差異を生じることがあも この感度補
正を行なうために移動体の旋回時の二出力の最大直 最
小値をそれぞれについて末成 その差分から二出力の検
出感度を求めて感度補正を行なってい1゜ 発明が解決しようとする課題 しかしなが収 上記のような構成では 移動体を構成す
る鉄板などの影響で地磁気方位センサの出力円が軸の傾
いた楕円になった場合を考慮していないた八 算出され
る方位の精度が低くなるという課題を有してい九 本発明は上記の課題を解決して、出力楕円の軸の方向を
算出し 地磁気方位センサによる高精度な進行方位の算
出を行うことを目的とす4課題を解決するための手段 本発明3表  地磁気の強さを互いに直交する2方向の
成分に分解して検出する地磁気センサと旋回角センサを
備えた移動体の進行方位を検出する方位検出装置におい
て、所定の角度回転する間の地磁気センサ出力を平均化
して代表点を算出する平均化することにより、移動体の
旋回時の地磁気センサ出力から出力楕円上に複数の代表
点を末成各代表点と前記中心座標を結ぶ直線に対して出
力楕円の線対称性を判定し 出力楕円がその直線に対し
て線対称となる直線の方向を出力楕円の軸方向と決定す
る軸方向算出することを特徴とする方位検出装置の出力
補正方法であも 作用 本発明は 上記構成により、平均化工程で一周旋回で収
集した地磁気方位データを旋回角センサからの出力をも
とに所定の角度回転する毎に平均化し 代表点を算出す
も またこの代表点がら楕円の中心座標を末成 中心座
標と楕円円周上の各代表点を結ぶ線分に対して楕円が線
対称となるがどうかを判定し 線対称となる線分の方向
を楕円の軸方向として算出することにより、軸方向が正
確に求まるた八 出力の正確な補正が可能になり検出方
位の精度が向上すム 実施例 以下へ 本発明の実施例について図面を参照しなから説
明すも 第1図は本発明の実施例に適用する方位検出装置の構成
図を示すものであも 第1図において1は地磁気センサ
であり、地磁気の強さを互いに直交する2方向の成分に
分解して検出すム 2は旋回角センサで、例えば両車輪
センサ、角速度センサ等が用いられ4 31.32はA
/D変換器4はマイクロコンピユー久 5はCRT等の
出力手段、 6はメモリであも 以上のように構成された本実施例の方位検出装置の出力
補正方法について、以下にその動作を説明する。本実施
例では地磁気センサの互いに直交する二出力をそれぞれ
x、  yとし 出力をxy平面上の点として表わすこ
とを前提とすも 第2図(よ この方位検出装置の出力
補正方法の手順を示すフローチャートであム ステップ201とステップ202は方位変化量算出工程
に相当し まずステップ201で車両の旋回時の地磁気
センサの互いに直交する二出力をマイクロコンピュータ
で扱えるように一定の時間間隔で出力を検出し 離散的
な値として逐次記憶す4 次のステップ202では旋回
角センサの出力から移動体の旋回角度を算出すも そし
てステップ203では 移動体が所定の角度を回転した
かどうかを判定すも 所定の角度を回転していないとき
にはステップ201、202の処理を繰り返す。回転し
たときにはステップ204に移行する。ステップ204
はステップ201で記憶されたデータを平均化して代表
点を算出すム 次にステップ205でステップ202で
算出した旋回角度から移動体が一周したかどうかを判定
すム周していないときにはステップ201からステップ
204までの処理を移動体が一回転する間繰り返し 地
磁気出力楕円円周上にn個の代表点DI〜D、を求めム
 nは整数で360゛を前述した所定の角度で割った値
であa −周したときにはステップ206に移行すム 
な抵 ステップ203とステップ204が平均化工程に
相当すa 次にステップ206は中心座標算出工程に相
当し 本実施例ではD1〜D、の代表点のx、  y座
標の平均を取ることにより楕円の中心座標0(Cx、C
y)を算出する。次にステップ207で楕円の対称性を
判定するための定数pを決定すa この定数pの値はn
の10%から40%程度の整数とすム また繰り返しの
回数のカウンタであるCに1を代入し 初期化を行なう
。ステップ208ではベクトルOD、とベクトルDo−
eDo+−との内積Eを以下の様に計算すE= (X@
−Cx)*  (Xs、*−−Xs−s)+ (Y*−
Cy)*  (Y・◆−−Y・−)   ・・・(1)
ただしD・の座標を(X、、Y、)とすもこのように内
積を取ることによって、第3図に示すようにある代表値
と中心座標を結ぶ線分と、その代表値のp個前とp個後
の代表値を結ぶ線分との交わる角度を算出し その角度
が90”に近いほど(内積が0に近いほど)楕円の対称
性が大きいと判定すも そして算出結果であるEとCの
値を記憶すも ステップ209ではCを繰上法 ステッ
プ210でCがnより大きいかどうかを判定すもCがn
より小さいか等しいときにはステップ2゜8の処理を繰
り返も 逆にCがnより大きいときには楕円の対称性の
判定処理を全ての代表点について行ったとしてステップ
211に移行すも ステップ211ではステップ208
で記憶したEとCの中からEが最小となるCの値を求め
も 最後にステップ212ではステップ211で求めた
Cからベクトル○D、の方向を算出し それを出方楕円
の軸方向と決定すも 以降この軸方向の代表値の中心座
標からの距離とこの軸方向から90°の方向の代表値と
中心座標の距離の差分から楕円の歪率を算出し 加えて
求めた軸方向が長軸の方向か短軸の方向かを判定すム 
な抵 ステップ207からステップ212までが軸方向
算出工程に相当する。
As shown in this example! F. A geomagnetic sensor that detects the strength of the earth's magnetic field by dividing it into components in two mutually orthogonal directions has been used as the orientation sensor of conventional orientation detection devices.
If this sensor is installed on a moving body mainly made of iron, there may be a difference in detection sensitivity in two directions.To correct this sensitivity, the maximum and minimum values of the two outputs when the moving body turns are calculated. However, in the above configuration, the geomagnetic direction is affected by the influence of the steel plates that make up the moving body. It does not take into account the case where the output circle of the sensor becomes an ellipse with a tilted axis.The present invention solves the above problems and creates an output ellipse. Aiming to calculate the direction of the axis of the earth and calculate the heading direction with high accuracy using a geomagnetic direction sensor Means for solving the four problems of the present invention In an azimuth detection device that detects the traveling direction of a moving body, which is equipped with a geomagnetic sensor that is disassembled and detected, and a turning angle sensor, averaging is performed to calculate a representative point by averaging the outputs of the geomagnetic sensor during rotation by a predetermined angle. The line symmetry of the output ellipse is determined by determining the line symmetry of the output ellipse with respect to the straight line connecting each representative point and the center coordinates, and determining the line symmetry of the output ellipse with respect to the straight line connecting each representative point and the center coordinates. The present invention is also effective in an output correction method for an orientation detection device characterized by calculating an axial direction in which the direction of a straight line that is line-symmetrical to the output ellipse is determined as the axial direction of the output ellipse. The geomagnetic azimuth data collected during one revolution is averaged every time it rotates by a predetermined angle based on the output from the turning angle sensor, and a representative point is calculated.The center coordinates of the ellipse are also determined from this representative point.Center coordinates and ellipse The axial direction can be accurately determined by determining whether the ellipse is symmetrical to the line segment connecting each representative point on the circumference and calculating the direction of the symmetrical line segment as the axial direction of the ellipse. (8) Accurate correction of the output is possible and the accuracy of the detected direction is improved This is a diagram showing the configuration of the direction detection device. In Figure 1, 1 is a geomagnetic sensor, which detects the strength of the geomagnetism by decomposing it into components in two mutually orthogonal directions. 2 is a turning angle sensor, for example Both wheel sensors, angular velocity sensors, etc. are used.4 31.32 is A
/D converter 4 is a microcomputer, 5 is an output means such as a CRT, and 6 is a memory.The operation of the output correction method of the orientation detecting device of this embodiment configured as described above will be explained below. do. In this example, the two mutually orthogonal outputs of the geomagnetic sensor are assumed to be x and y, respectively, and it is assumed that the outputs are expressed as points on the xy plane. In the flowchart, steps 201 and 202 correspond to the azimuth change amount calculation process. First, in step 201, the two mutually orthogonal outputs of the geomagnetic sensor when the vehicle turns are detected at regular time intervals so that they can be handled by a microcomputer. In the next step 202, the turning angle of the moving body is calculated from the output of the turning angle sensor.In step 203, it is determined whether the moving body has rotated by a predetermined angle. When the angle has not been rotated, the processes of steps 201 and 202 are repeated.When the angle has been rotated, the process moves to step 204.Step 204
In step 205, the data stored in step 201 is averaged to calculate a representative point.Next, in step 205, it is determined from the turning angle calculated in step 202 whether or not the moving object has completed one revolution. Repeat the process up to step 204 while the moving body rotates once to find n representative points DI to D on the circumference of the geomagnetic output ellipse. n is an integer and is the value obtained by dividing 360゛ by the predetermined angle mentioned above. Aa - When the cycle is complete, proceed to step 206.
In this case, steps 203 and 204 correspond to an averaging process. Next, step 206 corresponds to a center coordinate calculation process. center coordinates 0 (Cx, C
y). Next, in step 207, a constant p for determining the symmetry of the ellipse is determined.
In addition, initialize by assigning 1 to C, which is a counter for the number of repetitions. In step 208, the vector OD, and the vector Do-
Calculate the inner product E with eDo+- as follows: E= (X@
-Cx)* (Xs, *--Xs-s)+ (Y*-
Cy) * (Y・◆−−Y・−) ...(1)
However, by assuming the coordinates of D as (X,, Y,) and taking the inner product in this way, we can create a line segment connecting a certain representative value and the center coordinates, and p pieces of that representative value, as shown in Figure 3. The angle at which the line segment connecting the previous and p representative values intersects is calculated, and the closer the angle is to 90" (the closer the inner product is to 0), the greater the symmetry of the ellipse is determined. And here is the calculation result: The values of E and C are memorized. In step 209, C is carried forward. In step 210, it is determined whether C is greater than n.
If C is smaller than or equal to n, repeat the process in step 2.8. Conversely, if C is greater than n, the ellipse symmetry judgment process is performed for all representative points and the process moves to step 211. In step 211, step 208
Find the value of C that minimizes E from E and C memorized in step 212.Finally, in step 212, calculate the direction of vector ○D from C found in step 211, and use it as the axis direction of the exit ellipse. Once determined, the distortion rate of the ellipse is calculated from the difference between the distance from the center coordinate of the representative value in this axial direction and the distance between the representative value in the direction 90° from this axis direction and the center coordinate. A method to determine whether the direction is the major axis or the minor axis.
The steps from step 207 to step 212 correspond to the axial direction calculation step.

以後は以上のように求めた楕円の軸方向 歪率を利用し
て地磁気センサの出力から方位を算出し出力手段で方位
検出結果を出力すも 以上のように本実施例によれζ戴 −周旋回により収集
した地磁気方位データを旋回角センサからの出力をもと
に所定の角度回転する毎に平均化し代表点を算出すム 
この代表点から楕円の中心座標を求め、 中心座標と楕
円円周上の各代表点を結ぶ線分に対して楕円が線対称と
なるかどうかを判定し 線対称となる線分の方向を楕円
の軸方向として算出することにより、データ収集時に周
囲の異常磁界の影響を受けて収集データにノイズが重畳
されたときにも出力楕円の軸方向の算出が正確に行える
たべ 検出方位の精度が向上する。
Thereafter, the azimuth is calculated from the output of the geomagnetic sensor using the axial strain rate of the ellipse obtained as above, and the azimuth detection result is outputted by the output means. A system that calculates a representative point by averaging the geomagnetic direction data collected during each rotation at a predetermined angle based on the output from the turning angle sensor.
Find the center coordinates of the ellipse from this representative point, determine whether the ellipse has line symmetry with respect to the line segment connecting the center coordinates and each representative point on the circumference of the ellipse, and set the direction of the line segment that is line symmetrical to the ellipse. By calculating the axial direction of the output ellipse, the axial direction of the output ellipse can be accurately calculated even when noise is superimposed on the collected data due to the influence of surrounding abnormal magnetic fields during data collection.The accuracy of the detection direction is improved. do.

な耘 本実施例では楕円の線対称性の判定を二直線の交
わる角度をもってしたb<  pの値を複数設定して三
直線以上から線対称性の判定を行ってもよしt また 本実施例ではベクトルの内積を求めることで楕円
の線対称性の判定を行った方丈 二直線の交わる角度を
三角関数で表わして線対称性を求めてもよ(〜 さらく 本実施例では代表点のx、  y座標の平均を
取ることにより楕円の中心座標を算出した方丈代表点の
x、  y座標の最大値と最小値を求へ その中点の座
標を楕円の中心座標としてもよし〜発明の効果 以上のようへ 本発明によれば 地磁気センサを用いて
方位を算出する時に必要な地磁気出力楕円の中心座徴 
偏平風 軸方向を一周旋回時のデータから得た出力楕円
上の複数の代表点の座標から求めることにより正確に算
出することが可能になり、方位検出精度が向上すム
Note: In this example, the line symmetry of an ellipse may be determined using the angle at which two straight lines intersect, and multiple values of b<p may be set to determine the line symmetry from three or more straight lines. Now, we can determine the line symmetry of the ellipse by calculating the inner product of the vectors.The angle at which the two straight lines intersect can be expressed as a trigonometric function to find the line symmetry. , Calculate the center coordinates of the ellipse by taking the average of the y coordinates. Find the maximum and minimum values of the x and y coordinates of the Hojo representative point. You can use the coordinates of the midpoint as the center coordinates of the ellipse ~ Effects of the invention As described above, according to the present invention, the center feature of the geomagnetic output ellipse is required when calculating the direction using the geomagnetic sensor.
Oblate wind It is possible to accurately calculate by determining from the coordinates of multiple representative points on the output ellipse obtained from the data when turning once in the axial direction, and the direction detection accuracy is improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の方位検出装置の毒券榛士赤
曇÷構成を示すブロック医 第2図は同実施例における
出力補正方法のフローチャート、第3図は楕円の線対称
性の判定方法の説明図である。 ■・・地磁気方位センサ、 2・・旋回角センサ、 3
1、32・・A/D変換器 4・・マイクロコンピユー
久 5・・出方 6・・メモ1九
Fig. 1 is a block diagram showing the configuration of a direction detecting device according to an embodiment of the present invention. Fig. 2 is a flowchart of an output correction method in the embodiment, and Fig. 3 is a line symmetry of an ellipse. FIG. 2 is an explanatory diagram of a determination method. ■... Geomagnetic direction sensor, 2... Turning angle sensor, 3
1, 32...A/D converter 4...Microcomputer 5...How to get it 6...Memo 19

Claims (1)

【特許請求の範囲】[Claims] 地磁気の強さを互いに直交する2方向の成分に分解して
検出する地磁気センサと旋回角センサを備えた移動体の
進行方位を検出する方位検出装置において、旋回角セン
サの出力から方位変化量を算出する方位変化量算出過程
と、前記方位変化量算出過程で算出された方位変化量を
予め定められた設定値と比較し、所定の角度回転する間
の地磁気センサ出力を平均化して代表点を算出する平均
化過程と、地磁気出力楕円の中心座標を算出する中心座
標算出過程と、前記平均化工程により移動体の旋回時の
地磁気センサ出力から出力楕円上に複数の代表点を求め
、各代表点と前記中心座標を結ぶ直線に対して出力楕円
の線対称性を判定し、出力楕円がその直線に対して線対
称となる直線の方向を出力楕円の軸方向と決定する軸方
向算出過程を持つことを特徴とする方位検出装置の出力
補正法。
In an azimuth detection device that detects the heading of a moving object, it is equipped with a geomagnetic sensor that separates and detects the strength of the earth's magnetic field into components in two directions orthogonal to each other, and a turning angle sensor. Compare the azimuth change amount calculation process and the azimuth change amount calculated in the azimuth change amount calculation process with a predetermined setting value, and average the geomagnetic sensor output during rotation by a predetermined angle to obtain a representative point. The averaging process calculates the center coordinates of the geomagnetic output ellipse, the center coordinate calculation process calculates the center coordinates of the geomagnetic output ellipse, and the averaging process calculates a plurality of representative points on the output ellipse from the geomagnetic sensor output when the moving body turns, and each representative point is An axial direction calculation process that determines the line symmetry of the output ellipse with respect to a straight line connecting a point and the center coordinate, and determines the direction of the straight line in which the output ellipse is line symmetrical with respect to the line as the axial direction of the output ellipse. An output correction method for an orientation detection device, characterized in that:
JP9710790A 1990-04-12 1990-04-12 Correcting method for output of azimuth detecting apparatus Pending JPH03293516A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9710790A JPH03293516A (en) 1990-04-12 1990-04-12 Correcting method for output of azimuth detecting apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9710790A JPH03293516A (en) 1990-04-12 1990-04-12 Correcting method for output of azimuth detecting apparatus

Publications (1)

Publication Number Publication Date
JPH03293516A true JPH03293516A (en) 1991-12-25

Family

ID=14183376

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9710790A Pending JPH03293516A (en) 1990-04-12 1990-04-12 Correcting method for output of azimuth detecting apparatus

Country Status (1)

Country Link
JP (1) JPH03293516A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006035505A1 (en) * 2004-09-29 2006-04-06 C & N Inc Magnetic sensor control method, magnetic sensor controller and portable terminal device
JP2011257397A (en) * 2010-06-08 2011-12-22 Honeywell Internatl Inc Automatic data collection algorithm for 3d magnetic field calibration having reduced memory requirement

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006035505A1 (en) * 2004-09-29 2006-04-06 C & N Inc Magnetic sensor control method, magnetic sensor controller and portable terminal device
US7119533B2 (en) 2004-09-29 2006-10-10 C & N, Inc. Method, system and device for calibrating a magnetic field sensor
JP2011257397A (en) * 2010-06-08 2011-12-22 Honeywell Internatl Inc Automatic data collection algorithm for 3d magnetic field calibration having reduced memory requirement

Similar Documents

Publication Publication Date Title
US5349530A (en) Direction detecting device
JPH0621792B2 (en) Hybrid position measuring device
JPH0629732B2 (en) Direction detector for mobile
JPH061191B2 (en) A method for determining the strike direction of a vehicle using an electronic compass
JPH0833301B2 (en) Magnetization correction method for geomagnetic sensor
JPH03131712A (en) Method for correcting output of on-vehicle earth magnetism sensor
JPH03293516A (en) Correcting method for output of azimuth detecting apparatus
JP4004166B2 (en) Geomagnetic detector
JPS62140017A (en) Present position recognition apparatus for vehicle
JPH03285110A (en) Measuring apparatus of angular velocity
JPH0462419A (en) Azimuth detector
JPS63113309A (en) Method for processing data of earth magnetism sensor
JPS62191713A (en) Hybrid navigation apparatus
JP3682091B2 (en) Current position calculation system and current position calculation method
JPS635211A (en) Position measuring device for vehicle
JP2692884B2 (en) Azimuth detection system
JPH02193010A (en) Bearing meter for vehicle
JPS58190711A (en) Magnetic azimuth finder
JPS6010114A (en) Magnetic direction detector
JPH03136088A (en) Map matching method
JPH02194313A (en) Bearing indicator for vehicle
JPH03137676A (en) Map matching method
JPH0330088B2 (en)
JPH0468565B2 (en)
JPH0327843B2 (en)