JPH03292779A - Light emitting element and manufacture thereof - Google Patents

Light emitting element and manufacture thereof

Info

Publication number
JPH03292779A
JPH03292779A JP2095740A JP9574090A JPH03292779A JP H03292779 A JPH03292779 A JP H03292779A JP 2095740 A JP2095740 A JP 2095740A JP 9574090 A JP9574090 A JP 9574090A JP H03292779 A JPH03292779 A JP H03292779A
Authority
JP
Japan
Prior art keywords
compound semiconductor
semiconductor layer
conductivity type
light emitting
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2095740A
Other languages
Japanese (ja)
Inventor
Tetsuro Nakamura
哲朗 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2095740A priority Critical patent/JPH03292779A/en
Publication of JPH03292779A publication Critical patent/JPH03292779A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector

Landscapes

  • Led Device Packages (AREA)
  • Led Devices (AREA)

Abstract

PURPOSE:To enable a light emitting element to be easily mounted on a mounting board by a method wherein a P-side and an N-side lead-out electrode are formed on the same plane. CONSTITUTION:A compound semiconductor layer 2 formed of a P-type GaP epitaxial layer and the like is formed on a compound semiconductor substrate 1, and a compound semiconductor layer 3 formed of an N-type GaP epitaxial layer and the like is formed thereon. Then, an insulator thin film of Al2O3, Si3N4, phosphorus glass, or the like is formed on the compound semiconductor layer 3 to serve as a diffusion mask, a window is provided in a prescribed position, and an impurity diffusion region 4 is formed so deep as to reach to the compound semiconductor layer 2. Then, a P-side electrode 5 is formed on the impurity diffused region 4, and an N-side electrode 6 is provided in a prescribed position on the compound semiconductor layer 3. Lastly, an isolating groove 7 is provided between the N-side electrode 6 and the P-side electrode 5 on the surface of the compound semiconductor layer 3 so deep as to reach to the compound semiconductor layer 2.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、発光素子およびその製造方法に関する。[Detailed description of the invention] Industrial applications The present invention relates to a light emitting device and a method for manufacturing the same.

従来の技術 近年、■−V化合物半導体を用いた発光素子が一般に普
及し始めている。以下、その構成について第3図を参照
しながら説明する0図に示すように、n型(またはp型
)化合物半導体基板21上に形成されたn型(またはP
型)化合物半導体層22、さらにその上面に形成された
p型(またはn型)化合物半導体層23およびP(また
はn)電極24、n(またはp)電極25より構成され
ており、電極24と25の間に電圧を加えることにより
化合物半導体層22と23間のp−n接合部が発光し、
化合物半導体層23を透過して照明を行っていた。
BACKGROUND OF THE INVENTION In recent years, light emitting devices using -V compound semiconductors have become popular. The structure will be explained below with reference to FIG. 3. As shown in FIG.
It is composed of a p-type (or n-type) compound semiconductor layer 22, a p-type (or n-type) compound semiconductor layer 23 formed on the upper surface thereof, a P (or n) electrode 24, and an n (or p) electrode 25. By applying a voltage between the compound semiconductor layers 22 and 23, the p-n junction between the compound semiconductor layers 22 and 23 emits light.
Illumination was performed through the compound semiconductor layer 23.

発明が解決しようとする課題 このような従来の発光素子では、電極24.25が上下
面に分れているので、実装基板へ実装する場合、電極2
5が基板上の回路導体層の所定の位置に当接するように
金属ペーストで接続し、さらに電極24についてはワイ
ヤボンドにより金属細線で実装基板上の回路導体層の所
定の位置へ接続するという複雑で時間の要する工程が必
要であるという課題あった。
Problems to be Solved by the Invention In such a conventional light emitting element, the electrodes 24 and 25 are divided into upper and lower surfaces, so when mounting on a mounting board, the electrodes 24 and 25 are divided into upper and lower surfaces.
The electrode 24 is connected to a predetermined position of the circuit conductor layer on the mounting board using metal paste, and the electrode 24 is connected to a predetermined position of the circuit conductor layer on the mounting board using a thin metal wire using wire bonding. The problem was that it required a time-consuming process.

本発明は上記課題を解決するもので、実装が簡単で、信
頼性の高い発光素子を提供することを目的とする。
The present invention solves the above problems, and aims to provide a light emitting element that is easy to mount and has high reliability.

課題を解決するための手段 本発明は上記目的を達成するために化合物半導体基板上
に形成された一導電型化合物半導体層と、その一導電型
化合物半導体層上に形成された、その一導電型化合物半
導体層と逆の導電型の化合物半導体層と、その逆の導電
型の化合物半導体層の所定部分に形成された少なくとも
一導電型化合物半導体層に達するまでその一導電型化合
物半導体層の電極取出しのためのその一導電型化合物半
導体層と同じ型の不純物拡散領域と、その不純物拡散領
域表面に形成された一導電型化合物半導体層の取出し電
極と、逆の導電型の化合物半導体層表面の所定部分に形
成されたその逆の導電型の化合物半導体層の取出し電極
と、その取出し電極と一導電型化合物半導体層の取出し
電極の間に形成された逆の導電型の化合物半導体層表面
から少なくとも一導電型化合物半導体層に達する分離層
とを涌する構成としたものである。
Means for Solving the Problems In order to achieve the above objects, the present invention provides a compound semiconductor layer of one conductivity type formed on a compound semiconductor substrate, and a compound semiconductor layer of one conductivity type formed on the compound semiconductor layer of one conductivity type. A compound semiconductor layer of a conductivity type opposite to that of the compound semiconductor layer, and an electrode of the one conductivity type compound semiconductor layer formed in a predetermined portion of the compound semiconductor layer of the opposite conductivity type until reaching at least one conductivity type compound semiconductor layer. an impurity diffusion region of the same type as that one conductivity type compound semiconductor layer, an extraction electrode of the one conductivity type compound semiconductor layer formed on the surface of the impurity diffusion region, and a predetermined location on the surface of the compound semiconductor layer of the opposite conductivity type. an extraction electrode of a compound semiconductor layer of the opposite conductivity type formed in the part, and at least one portion from the surface of the compound semiconductor layer of the opposite conductivity type formed between the extraction electrode and the extraction electrode of the compound semiconductor layer of one conductivity type. This structure includes a separation layer that reaches the conductive compound semiconductor layer.

作用 本発明は上記した構成により、発光素子のpおよびnの
画電極が同一面(発光面)上に形成されることになるの
で、実装基板への実装の際、−度に実装基板の回路導体
層の所定の位置にフリノプチンプ実装方弐等で直接実装
が可能となり、実装工程が簡単かつ短時間となる。
According to the present invention, with the above-described configuration, the p and n picture electrodes of the light emitting element are formed on the same surface (light emitting surface). Direct mounting is possible at a predetermined position on the conductor layer using a flinopchimp mounting method or the like, making the mounting process simple and short.

寞施例 以下、本発明の一実施例について第1[iIUおよび第
2図を参照しながら説明する。
Embodiment Hereinafter, an embodiment of the present invention will be described with reference to the first [iIU] and FIG.

第1図において1はP型GaP等の化合物半導体基板、
2はその化合物半導体基板1上に形成されたp型GaP
エピタキシャル層等からなる一導電型化合物半導体層、
3はその一導電型化合物半導体層2上に形成されたn型
GaPエピタキシャル層等からなる一導電型化合物半導
体層2と逆の導電型の化合物半導体層、4はその逆の導
電型の化合物半導体層3の所定部分に形成された少なく
とも一導電型化合物半導体層2に達するまでその一導電
型化合物半導体層2の電極取出しのだめのその一導電型
化合物半導体層2と同じ型の不純物拡散領域、5はその
不純物拡散領域4の表面に形成された一導電型化合物半
導体I!2の取出し電極、6は逆の導電型の化合物半導
体層3の表面の所定部分に形成されたその逆の導電型の
化合物半導体層3の取出し電極、7は電極5と電極6の
間に形成された逆の導電型の化合物半導体層3の表面か
ら少なくとも一導電型化合物半導体層2に達する分離溝
である。
In FIG. 1, 1 is a compound semiconductor substrate such as P-type GaP;
2 is a p-type GaP formed on the compound semiconductor substrate 1;
a single conductivity type compound semiconductor layer consisting of an epitaxial layer, etc.;
3 is a compound semiconductor layer of the opposite conductivity type to the one conductivity type compound semiconductor layer 2, which is formed on the one conductivity type compound semiconductor layer 2 and is formed of an n-type GaP epitaxial layer, etc., and 4 is a compound semiconductor of the opposite conductivity type. An impurity diffusion region 5 of the same type as the one conductivity type compound semiconductor layer 2 for taking out the electrode of the one conductivity type compound semiconductor layer 2 until reaching at least one conductivity type compound semiconductor layer 2 formed in a predetermined portion of the layer 3; is a one-conductivity type compound semiconductor I! formed on the surface of the impurity diffusion region 4. 2 is an extraction electrode, 6 is an extraction electrode of the compound semiconductor layer 3 of the opposite conductivity type formed on a predetermined portion of the surface of the compound semiconductor layer 3 of the opposite conductivity type, and 7 is formed between the electrode 5 and the electrode 6. This is a separation trench that reaches at least one conductivity type compound semiconductor layer 2 from the surface of the compound semiconductor layer 3 of the opposite conductivity type.

以上のように構成される発光素子の製造方法および動作
原理について説明する。
The manufacturing method and operating principle of the light emitting device configured as above will be explained.

まず、グレイデイエンド フリージー(Gradien
LFreeze)法や液体被覆引上法等のGaP結晶製
作装置を用い、直径的1.5〜2.0インチφのP型G
aPの単結晶を作製する。この時用いるアクセプタ不純
物としてはZn (亜鉛)を採用する。この単結晶を厚
さ約0.15閣にスライスしてp型GaP等の化合物半
導体基板lを作製する。つぎに液相エピタキシャル成長
技術により先に作製した化合物半導体基板1上にp型G
aPエピタキシャル層等からなる一導電型化合物半導体
層2を厚さ約0.11I11程度形成する。この時のア
クセプタ不純物もZnを採用する。さらに、この一導電
型化合物半導体層2上に同じく液相エピタキシャル成長
技術によりn型Gapエピタキシャル層等からなる一導
電型化合物半導体層2と逆の導電型の化合物半導体層3
を数μm〜士数μm程度形成する。この時のドナー不純
物にはTe(テルル)を採用した。これらのエピタキシ
ャル層を形成するのには、多層液相エピタキシャル成長
用スライド式成長装置を作製し、一連の作業で行9た。
First of all, Gradien Freezee (Gradien
P-type G with a diameter of 1.5 to 2.0 inches is produced using GaP crystal manufacturing equipment such as the LFreeze method or the liquid coating pulling method.
A single crystal of aP is produced. Zn (zinc) is used as the acceptor impurity used at this time. This single crystal is sliced into a thickness of approximately 0.15 mm to produce a compound semiconductor substrate l such as p-type GaP. Next, a p-type G
A compound semiconductor layer 2 of one conductivity type made of an aP epitaxial layer or the like is formed to a thickness of about 0.11I11. Zn is also used as the acceptor impurity at this time. Furthermore, on this one conductivity type compound semiconductor layer 2, a compound semiconductor layer 3 of the opposite conductivity type to the one conductivity type compound semiconductor layer 2, which is made of an n-type Gap epitaxial layer or the like, is formed by the same liquid phase epitaxial growth technique.
is formed in the order of several μm to several μm. Te (tellurium) was used as the donor impurity at this time. In order to form these epitaxial layers, a sliding type growth apparatus for multilayer liquid phase epitaxial growth was fabricated, and a series of operations were performed.

つぎに、逆の導電型の化合物半導体層3上に、拡散マス
クとしてCVD法またはスパッタ法等によりAl2O3
、Si+Na、リンガラス等の絶縁物薄膜を形成し、所
定の位置に窓を開け、不純物拡散領域4を少なくとも一
導電型化合物半導体層2に達するまで形成する。この時
の拡散源としてはZnを用いる。
Next, Al2O3 is applied onto the compound semiconductor layer 3 of the opposite conductivity type by CVD or sputtering as a diffusion mask.
, Si+Na, phosphorus glass, or the like is formed, windows are opened at predetermined positions, and impurity diffusion regions 4 are formed up to at least one conductivity type compound semiconductor layer 2 . Zn is used as a diffusion source at this time.

つぎに、蒸着およびホトエツチングの技術により不純物
拡散領域4上にn側の電極5と、逆の導電型の化合物半
導体層3の所定部分にn側の電極6を形成する。電極材
料としては、n側の電極6にはAu(金)とSi (シ
リコン)との合金、n側の電極5にはAuとBe (ベ
リリュウム)との合金を用いた。
Next, an n-side electrode 5 is formed on the impurity diffusion region 4 and an n-side electrode 6 is formed on a predetermined portion of the compound semiconductor layer 3 of the opposite conductivity type by vapor deposition and photoetching techniques. As electrode materials, an alloy of Au (gold) and Si (silicon) was used for the n-side electrode 6, and an alloy of Au and Be (beryllium) was used for the n-side electrode 5.

最後に、n側の電極6とn側の電極5との間に、ホトエ
ンチング技術により、逆の導電型の化合物半導体層3の
表面から少なくとも一導電型化合物半導体層2に達する
まで分離溝7を形成する。なお、以上の実施例では化合
物半導体基板1としてはp型GaPを用いた場合につい
て述べたが、p型といっても、低不純物濃度で高抵抗の
ものでもよく、GaP以外の材料にも通用できる。
Finally, a separation groove 7 is formed between the n-side electrode 6 and the n-side electrode 5 from the surface of the compound semiconductor layer 3 of the opposite conductivity type until it reaches at least the compound semiconductor layer 2 of one conductivity type using a photo-etching technique. Form. In the above embodiments, the case where p-type GaP was used as the compound semiconductor substrate 1 was described, but p-type may be one with low impurity concentration and high resistance, and materials other than GaP can also be used. can.

この発光素子については、電極間に電圧をかけると逆の
導電型の化合物半導体層3と一導電型化合物半導体層2
との間のp−n接合面に電流が流れて発光し、その光が
逆の導電型の化合物半導体層3を透して外部へ導かれ照
明を行う。
In this light emitting element, when a voltage is applied between the electrodes, a compound semiconductor layer 3 of opposite conductivity type and a compound semiconductor layer 2 of one conductivity type are formed.
A current flows through the p-n junction between the two and emits light, and the light is guided to the outside through the compound semiconductor layer 3 of the opposite conductivity type to provide illumination.

つぎに以上の実施例の発光素子のアレイを実装基板に実
装する方法について第2図を参照しながら説明する。
Next, a method of mounting the array of light emitting elements of the above embodiment on a mounting board will be explained with reference to FIG.

11はその表面に回路導体層(図示せず)を有するガラ
ス基板からなる実装基板、12は発光素子13を実装基
板11へ実装するための透明光硬化型絶縁樹脂、14は
発光素子13に設けた電極、15は発光素子13を保護
するためのコーティング樹脂である。
11 is a mounting board made of a glass substrate having a circuit conductor layer (not shown) on its surface; 12 is a transparent photocurable insulating resin for mounting the light emitting element 13 on the mounting board 11; and 14 is a mounting board provided on the light emitting element 13. The electrode 15 is a coating resin for protecting the light emitting element 13.

以上のように構成されたLEDアレイについて、その実
装方法および動作原理について説明する。
The mounting method and operating principle of the LED array configured as described above will be explained.

実装基板11上にアクリレート系の透明光硬化型絶縁樹
脂12をスタンピング方法により所定の位置に規定量塗
布し、発光素子13をその電極14が実装基板11上の
薄膜形成技術とホトリソ法を用いて形成した回路導体層
の所定の位置に当接するように配置し、上方から規定圧
力を加え、実装基板11側から紫外線を照射し透明光硬
化型絶縁樹脂12を硬化することにより実装する。さら
に、発光素子13を保護するために、その上にデイスペ
ンサーによりノリコン樹脂をコーティング樹脂15とし
て塗布して作製する。このように構成した発光素子(L
ED)のアレイについては、実装方法が簡単で短時間で
あり、またコンパクト性にすぐれている。
A specified amount of acrylate-based transparent photocurable insulating resin 12 is applied to a predetermined position on the mounting board 11 by a stamping method, and the light emitting element 13 is attached to the light emitting element 13 so that its electrode 14 is formed on the mounting board 11 using a thin film forming technique and a photolithography method. The transparent photocurable insulating resin 12 is mounted by placing it in contact with a predetermined position of the formed circuit conductor layer, applying a specified pressure from above, and irradiating ultraviolet rays from the mounting board 11 side to harden the transparent photocurable insulating resin 12. Furthermore, in order to protect the light emitting element 13, Noricon resin is applied thereon as a coating resin 15 using a dispenser. The light emitting element (L
The array of ED) is easy to implement, takes a short time, and has excellent compactness.

このLEDアレイに電圧を加えると、発光素子13が発
光し、透明光硬化型絶縁樹脂12および実装基板11を
透過して照明を行う。この時、従来の発光素子では、実
装の際、発光面上の中心に位置した電極二二ワイヤボン
ド法により金属細線を接続しており、それによる光の遮
藪が大きかったが、本発明の発光素子では電極を小さく
しかも発光面の周辺に配置することができ、発光効率の
向上が実現できた。
When a voltage is applied to this LED array, the light emitting element 13 emits light, which is transmitted through the transparent photocurable insulating resin 12 and the mounting board 11 to provide illumination. At this time, in conventional light emitting devices, when mounting, thin metal wires are connected using the electrode 22 wire bonding method located at the center of the light emitting surface, which causes a large blockage of light, but the present invention In the light-emitting element, the electrodes can be made small and placed around the light-emitting surface, resulting in improved luminous efficiency.

発明の効果 以上の実施例から明らかなように本発明によれば、同一
平面上に、pおよびn側の取出し電極を形成しているの
で、ワイヤボンドの必要性もなく、実装基板への実装が
非常に容易で、かつワイヤによる光の遮蔽もなく発光効
率も向上し、安価で高品質、高効率の発光素子を提供で
きる。
Effects of the Invention As is clear from the above embodiments, according to the present invention, the p-side and n-side extraction electrodes are formed on the same plane, so there is no need for wire bonding, and mounting on the mounting board is easy. It is very easy to do this, there is no need to block light with wires, the luminous efficiency is improved, and an inexpensive, high-quality, highly efficient light-emitting element can be provided.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の発光素子の断面図、第2図
は同発光素子のアレイを実装基板に実装した場合の断面
図、第3図は従来の発光素子の断面図である。 ■・・・・・・化合物半導体基板、2・・・・・・一導
電型化合物半導体層、3・・・・・・逆の導電型の化合
物半導体層、4・・・・・・不純物拡散領域、5・・・
・・・一導電型化合物半導体層の取出し電極、6・・・
・・・逆の導電型の化合物半導体層の取出し電極、7・
・・・・・分離溝。
FIG. 1 is a sectional view of a light emitting device according to an embodiment of the present invention, FIG. 2 is a sectional view of an array of the same light emitting devices mounted on a mounting board, and FIG. 3 is a sectional view of a conventional light emitting device. . ■... Compound semiconductor substrate, 2... Compound semiconductor layer of one conductivity type, 3... Compound semiconductor layer of opposite conductivity type, 4... Impurity diffusion Area, 5...
...Extraction electrode of one conductivity type compound semiconductor layer, 6...
... Extraction electrode of compound semiconductor layer of opposite conductivity type, 7.
...Separation groove.

Claims (2)

【特許請求の範囲】[Claims] (1)化合物半導体基板上に形成された一導電型化合物
半導体層と、その一導電型化合物半導体層上に形成され
たその一導電型化合物半導体層と逆の導電型の化合物半
導体層と、その逆の導電型の化合物半導体層の所定部分
に形成された少なくとも前記一導電型化合物半導体層に
達するまでその一導電型化合物半導体層の電極取出しの
ためのその一導電型化合物半導体層と同じ型の不純物拡
散領域と、その不純物拡散領域表面に形成された前記一
導電型化合物半導体層の取出し電極と、前記逆の導電型
の化合物半導体層表面の所定部分に形成されたその逆の
導電型の化合物半導体層の取出し電極と、その取出し電
極と前記一導電型化合物半導体層の取出し電極の間に形
成された前記逆の導電型の化合物半導体層表面から少な
くとも前記一導電型化合物半導体層に達する分離溝とを
有する発光素子。
(1) A compound semiconductor layer of one conductivity type formed on a compound semiconductor substrate, a compound semiconductor layer of the opposite conductivity type to the compound semiconductor layer of one conductivity type formed on the compound semiconductor layer of one conductivity type, and A compound semiconductor layer of the same type as that of the one conductivity type compound semiconductor layer for taking out an electrode of the one conductivity type compound semiconductor layer formed in a predetermined portion of the compound semiconductor layer of the opposite conductivity type until reaching at least the one conductivity type compound semiconductor layer. an impurity diffusion region, an extraction electrode of the compound semiconductor layer of one conductivity type formed on the surface of the impurity diffusion region, and a compound of the opposite conductivity type formed in a predetermined portion of the surface of the compound semiconductor layer of the opposite conductivity type. an extraction electrode of the semiconductor layer; and a separation groove extending from the surface of the compound semiconductor layer of the opposite conductivity type to at least the one conductivity type compound semiconductor layer formed between the extraction electrode and the extraction electrode of the one conductivity type compound semiconductor layer. A light emitting element comprising:
(2)化合物半導体基板上にエピタキシャル成長技術に
より一導電型の化合物半導体層を形成する工程と、その
一導電型の化合物半導体層上にエピタキシャル成長技術
により前記一導電型の化合物半導体層と逆の導電型の化
合物半導体層を形成する工程と、その逆の導電型の化合
物半導体層の所定の部分に少なくとも前記一導電化合物
半導体層に対するまでその一導電型化合物半導体層の電
極取出しのためのその一導電型化合物半導体層と同じ型
の不純物拡散領域を形成する工程と、その不純物拡散領
域表面に前記一導電型化合物半導体層の取出し電極を形
成する工程と、前記逆の導電型の化合物半導体層表面の
所定部分にその逆の導電型の化合物半導体層の取出し電
極を形成する工程と、その取出し電極と前記一導電型化
合物半導体層の取出し電極の間に前記逆の導電型の化合
物半導体層表面から少なくとも前記一導電型化合物半導
体層に達する分離溝を形成する工程とを有する発光素子
の製造方法。
(2) Forming a compound semiconductor layer of one conductivity type on a compound semiconductor substrate by epitaxial growth technology; and forming a compound semiconductor layer of one conductivity type on the compound semiconductor layer of the opposite conductivity type by epitaxial growth technology. forming a compound semiconductor layer of the one conductivity type in order to take out an electrode of the one conductivity type compound semiconductor layer at least to the one conductivity type compound semiconductor layer at a predetermined portion of the compound semiconductor layer of the opposite conductivity type; A step of forming an impurity diffusion region of the same type as the compound semiconductor layer, a step of forming an extraction electrode of the compound semiconductor layer of one conductivity type on the surface of the impurity diffusion region, and a step of forming a predetermined surface of the compound semiconductor layer of the opposite conductivity type. a step of forming an extraction electrode of a compound semiconductor layer of the opposite conductivity type on the part, and a step of forming at least the A method for manufacturing a light emitting device, comprising the step of forming a separation groove reaching one conductivity type compound semiconductor layer.
JP2095740A 1990-04-10 1990-04-10 Light emitting element and manufacture thereof Pending JPH03292779A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2095740A JPH03292779A (en) 1990-04-10 1990-04-10 Light emitting element and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2095740A JPH03292779A (en) 1990-04-10 1990-04-10 Light emitting element and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH03292779A true JPH03292779A (en) 1991-12-24

Family

ID=14145889

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2095740A Pending JPH03292779A (en) 1990-04-10 1990-04-10 Light emitting element and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH03292779A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6060727A (en) * 1994-08-11 2000-05-09 Rohm Co., Ltd. Light emitting semiconductor device
KR100789112B1 (en) * 2002-02-06 2007-12-26 주식회사 엘지이아이 Method for manufacturing a light emitting device made from a chemical compound semiconductor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS546787A (en) * 1977-06-17 1979-01-19 Matsushita Electric Ind Co Ltd Luminous element
JPS57139976A (en) * 1981-02-23 1982-08-30 Omron Tateisi Electronics Co Light emitting/receiving device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS546787A (en) * 1977-06-17 1979-01-19 Matsushita Electric Ind Co Ltd Luminous element
JPS57139976A (en) * 1981-02-23 1982-08-30 Omron Tateisi Electronics Co Light emitting/receiving device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6060727A (en) * 1994-08-11 2000-05-09 Rohm Co., Ltd. Light emitting semiconductor device
KR100789112B1 (en) * 2002-02-06 2007-12-26 주식회사 엘지이아이 Method for manufacturing a light emitting device made from a chemical compound semiconductor

Similar Documents

Publication Publication Date Title
US7989237B2 (en) Package structure for solid-state lighting devices and method of fabricating the same
US9837583B2 (en) Light emitting diode package and method of manufacture
US4316208A (en) Light-emitting semiconductor device and method of fabricating same
US7179670B2 (en) Flip-chip light emitting diode device without sub-mount
EP3767688A1 (en) Light emitting diode
WO2008093880A1 (en) Semiconductor device and method for manufacturing the same
US20140014894A1 (en) High performance light emitting diode with vias
CN101626056A (en) Semiconductor device and fabrication methods thereof
US3636617A (en) Method for fabricating monolithic light-emitting semiconductor diodes and arrays thereof
KR101265642B1 (en) Light emitting device package and method of making the same
US20180182943A1 (en) Component and method of producing a component
JP2020129629A (en) Optical sensor device and manufacturing method thereof
US3577631A (en) Process for fabricating infrared detector arrays and resulting article of manufacture
US4005468A (en) Semiconductor photoelectric device with plural tin oxide heterojunctions and common electrical connection
US3266137A (en) Metal ball connection to crystals
US3636618A (en) Ohmic contact for semiconductor devices
US3794883A (en) Process for fabricating ge:hg infrared detector arrays and resulting article of manufacture
JPH03292779A (en) Light emitting element and manufacture thereof
JPH10209487A (en) Solid relay and fabrication thereof
JP2001085750A (en) Nitride semiconductor light-emitting chip
US20140183592A1 (en) Optical Device Package and Method of Manufacturing the Same
JPS57111076A (en) Semiconductor light-emitting device
KR100767681B1 (en) Led package and method for making the same
CN109473536A (en) Light emitting diode display and method of manufacturing the same
TWI441358B (en) Chip package structure and fabrication method thereof