JPH03292631A - Optical multilevel recording and reproducing system - Google Patents

Optical multilevel recording and reproducing system

Info

Publication number
JPH03292631A
JPH03292631A JP2094731A JP9473190A JPH03292631A JP H03292631 A JPH03292631 A JP H03292631A JP 2094731 A JP2094731 A JP 2094731A JP 9473190 A JP9473190 A JP 9473190A JP H03292631 A JPH03292631 A JP H03292631A
Authority
JP
Japan
Prior art keywords
recording
information
light
recorded
multilevel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2094731A
Other languages
Japanese (ja)
Inventor
Yutaka Adachi
豊 安達
Chiaki Sato
千秋 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP2094731A priority Critical patent/JPH03292631A/en
Publication of JPH03292631A publication Critical patent/JPH03292631A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Head (AREA)
  • Optical Record Carriers And Manufacture Thereof (AREA)
  • Optical Recording Or Reproduction (AREA)

Abstract

PURPOSE:To reproduce recorded information with high precision by modulating a laser beam in the breadthwise direction of recording pits or recording grooves to record multilevel information and reproducing multilevel information by the light intensity pattern of reflection diffracted light due to irradiation of a reproducing beam. CONSTITUTION:The laser beam modulated with multilevel information is made incident on a recording negative as an optical disk 20 to successively form recording pits 21, which have a fixed depth and have the width made multilevel, in the track direction, thereby recording multilevel information. At the time of reading recorded information from the optical disk 20, recorded pits 21 are irradiated with a light beam to form the light intensity pattern of the reflection diffracted light, which is changed in accordance with the pit width, on a line sensor 22, and edge intervals of + or -1st-order diffracted light are detected to reproduce multilevel information. Thus, information is recorded and reproduced in multiple levels by the simple constitution, and recorded information less affected by disturbance is reproduced with high precision.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、多値化された記録ピットを光ディスク等の光
記録媒体へ形成して高密度記録を行うと共に、その多値
化情報を再生する光学式多値記録再生方式に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention performs high-density recording by forming multivalued recording pits on an optical recording medium such as an optical disk, and also reproduces the multivalued information. This invention relates to an optical multilevel recording and reproducing method.

〔従来の技術〕[Conventional technology]

従来、光記録媒体の記録ピットや記録溝の深さや幅を多
値化して高密度記録を可能とする記録方式が知られてい
る。
Conventionally, there has been known a recording method that enables high-density recording by multileveling the depth and width of recording pits and recording grooves of an optical recording medium.

かかる方式によって記録された情報を再生する手段とし
ては、例えば特開昭81−115274号公報に記載さ
れているように、多値化されている記録ピットを照射し
た際に、記録ピットの形状の違いから光学ヘッド内に返
還される反射光量が変化する・のを利用して記録情報を
再生する再生方式がある。
As a means for reproducing information recorded by such a method, for example, as described in Japanese Patent Application Laid-Open No. 81-115274, when multilevel recording pits are irradiated, the shape of the recording pits is changed. There is a reproduction method that reproduces recorded information by utilizing the fact that the amount of reflected light returned to the optical head changes due to the difference.

また、記録溝の幅方向を多値化する技術としては、特開
昭82−43839号公報に記載されているように、記
録媒体に形成する記録溝を、その対向縁部が多値化レベ
ルをとるように記録溝の幅方向に変位させ、この変位量
をトラッキングエラー信号の高域成分により検出し、再
生する記録再生方式がある。
Furthermore, as a technique for converting the width direction of a recording groove into a multi-level recording groove, as described in Japanese Patent Application Laid-Open No. 82-43839, a recording groove formed on a recording medium is formed so that its opposite edge has a multi-level recording groove. There is a recording and reproducing method in which the recording groove is displaced in the width direction so as to take a value, and the amount of this displacement is detected and reproduced using the high-frequency component of the tracking error signal.

さらに、記録ピットの配列方向の配置位置に関する多値
化技術としては、連続する2ピツトまたは3ビツトを用
いてそのピット間隔を変化させ、光ビームを照射したと
きに生じる反射回折光の±1次光のピーク間距離を検出
して記録情報を再生する記録再生方式が考えられている
Furthermore, as a multi-value technology regarding the arrangement position of recording pits in the array direction, the pit interval is changed using consecutive 2 pits or 3 bits, and the ±1st order of reflected diffraction light generated when a light beam is irradiated is used. A recording/reproducing method is being considered in which recorded information is reproduced by detecting the distance between peaks of light.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、前述した記録ピットの深さ1幅の違いに
よる反射光量を検出する記録再生方式は、反射光量の強
度レベルの違いによって記録情報を再生するため、外部
からの光によってその再生精度が大きく左右され、S 
/N、感度ともに劣化する可能性が極めて高い。特に、
記録ピット等の深さを多値化する場合には、記録媒体の
複製時にスタンバの精度に厳しい工程管理が要求される
ため、極めて高度な技術が必要となる。
However, the recording and reproducing method that detects the amount of reflected light due to the difference in the depth and width of the recording pit described above reproduces recorded information based on the difference in the intensity level of the amount of reflected light, so the reproduction accuracy is greatly affected by external light. and S
/N, there is a very high possibility that both sensitivity will deteriorate. especially,
When the depth of recording pits, etc. is multivalued, extremely advanced technology is required because strict process control is required for the accuracy of the standby when duplicating the recording medium.

また、記録溝を幅方向に変位させる方式は、トラッキン
グサーボのエラー信号を利用して記録情報を再生してい
るため、トラッキングに対しては外乱となり、トラッキ
ングサーボの性能が低下するという問題がある。
In addition, the method of displacing the recording groove in the width direction uses the error signal of the tracking servo to reproduce the recorded information, which causes a disturbance to the tracking and has the problem of reducing the performance of the tracking servo. .

さらに、連続する2ピツトまたは3ビツトを用いて記録
再生する方式は、2ピツトまたは3ビツトのピット対を
記録媒体に書き込む必要があるため、1ビツトのみの場
合に比べて記録・再生に用いられるシステムが複雑化す
る。しかも、反射回折光の光強度のピーク検出を行う必
要があり、システムの複雑化と共に多値化できるレベル
数が減少するといった問題がある。
Furthermore, the method of recording and reproducing using consecutive 2 pits or 3 bits requires writing pit pairs of 2 pits or 3 bits on the recording medium, so it is used for recording and reproducing compared to the case where only 1 bit is used. The system becomes more complex. Moreover, it is necessary to detect the peak of the light intensity of the reflected and diffracted light, which poses the problem of complicating the system and reducing the number of levels that can be multivalued.

本発明は以上のような実情に鑑みてなされたもので、簡
単な構成で情報の多値記録および再生を行うことができ
、外乱による影響が少なく記録情報を高精度に再生でき
る光学式多値記録再生方式を提供することを目的とする
The present invention has been made in view of the above-mentioned circumstances, and is an optical multi-value optical method that can perform multi-value recording and reproduction of information with a simple configuration, and can reproduce recorded information with high precision with little influence from external disturbances. The purpose is to provide a recording and playback method.

〔課題を解決するための手段および作用〕本発明は、記
録すべき情報に応じて多値化された多値化情報によって
記録ピットまたは記録溝の幅方向に変調をかけて前記多
値化情報を記録し、その幅方向に変調がかけられた前記
記録ピットまたは記録溝に対して再生用ビームを照射し
、この再生用ビームの照射によって生じる反射回折光の
光強度パターンを検出し、この検出された光強度パター
ンを復調して前記多値化情報を再生する事を特徴とする
[Means and effects for solving the problem] The present invention modulates the multi-value information in the width direction of a recording pit or recording groove by using multi-value information that is multi-valued according to the information to be recorded. A reproducing beam is irradiated onto the recording pit or recording groove that is modulated in the width direction, and a light intensity pattern of reflected diffracted light generated by the irradiation of the reproducing beam is detected. The present invention is characterized in that the multivalued information is reproduced by demodulating the light intensity pattern obtained.

本発明によれば、記録ピットまたは記録溝の幅方向に変
調がかけられて多値化情報が記録される。
According to the present invention, multilevel information is recorded by applying modulation in the width direction of a recording pit or recording groove.

再生時は、記録ピットまたは記録溝に対して再生用ビー
ムを照射することによって生じる反射回折光の光強度パ
ターンにより、記録ピットまたは記録溝の幅方向に持た
せた多値化情報が再生される。
During reproduction, the multi-level information provided in the width direction of the recording pit or recording groove is reproduced by the light intensity pattern of reflected diffracted light generated by irradiating the recording pit or recording groove with a reproduction beam. .

〔実施例〕〔Example〕

先ず、本発明による光学式多値記録再生方式の記録およ
び再生原理について説明する。
First, the recording and reproducing principle of the optical multilevel recording and reproducing method according to the present invention will be explained.

先ず情報記録は、多値レベルを有する多値化情報で変調
された光ビームを光記録媒体に入射せしめ、その深さが
一定で、かつトラック方向に対して直交する幅方向に変
調された記録ピットまたは記録溝を形成して多値記録を
行う。
First, information recording is performed by making a light beam modulated by multi-value information having multi-level levels enter an optical recording medium, and recording the light beam at a constant depth and modulated in the width direction perpendicular to the track direction. Multilevel recording is performed by forming pits or recording grooves.

記録情報の再生は、記録ピットまたは記録溝に光ビーム
を照射したときに生じる反射回折光の0次光と±1次光
の干渉パターンによって生じる光強度分布の明暗のエツ
ジパターンを利用して多値記録情報を再生する。
Reproduction of recorded information is performed using the bright and dark edge pattern of the light intensity distribution caused by the interference pattern of the 0th order light and ±1st order light of the reflected diffracted light generated when a light beam is irradiated onto a recording pit or recording groove. Replay value recording information.

多値化された記録溝が形成されている光ディスクに光ビ
ームを入射して、その反射光により干渉パターンを生成
する光学系として第3図に示すごときものが考えられる
。これは、レーザダイオード1から出射されたレーザ光
をコリメータレンズ2で平行光に変換した後、偏光ビー
ムスプリッタ−3に入射せしめる。この偏光ビームスプ
リッタ−3を透過した光をλ/4板4によって円偏光か
ら直線偏光に変換した後、対物レンズ5によって光ディ
スク6の記録溝形成面側にレーザビームスポットを形成
する。そして、記録溝からの反射光が再びλ/4板4に
入射して、往復で90度回転されることにより偏光ビー
ムスプリッタ−3で反射されて、その光路上に配置され
た光デイチクタフの受光面上に所定の干渉パターンを形
成するものである。
An optical system as shown in FIG. 3 is conceivable as an optical system in which a light beam is incident on an optical disk in which multilevel recording grooves are formed and an interference pattern is generated by the reflected light. In this case, a laser beam emitted from a laser diode 1 is converted into parallel light by a collimator lens 2, and then made to enter a polarizing beam splitter 3. After the light transmitted through the polarizing beam splitter 3 is converted from circularly polarized light to linearly polarized light by a λ/4 plate 4, a laser beam spot is formed on the recording groove forming surface side of the optical disc 6 by an objective lens 5. Then, the reflected light from the recording groove enters the λ/4 plate 4 again, is rotated 90 degrees in a round trip, is reflected by the polarizing beam splitter 3, and is received by the optical photodetector placed on the optical path. A predetermined interference pattern is formed on the surface.

ここで、第4図に示すように、光ディスク1の記録溝W
に光ビームを照射することによって、その反射回折光の
0次光と±1次光により、記録溝Wの幅に応じた干渉パ
ターンが生じることについて説明する。
Here, as shown in FIG. 4, the recording groove W of the optical disc 1 is
It will be explained that by irradiating a light beam onto the recording groove W, an interference pattern corresponding to the width of the recording groove W is generated by the 0th-order light and the ±1st-order light of the reflected diffracted light.

第5図に示すように、反射型格子11に所定の入射角で
入射した入射光は、凸部上面11mで反射されて回折す
る。この時、回折光が強め合う条件は、プラグの条件式
より、 sinθ−5inθommλ/d−(1)m−0,±1
.±2・・・ となる。また、入射角θを0とした場合、すなわち第6
図に示すように、入射光ν1が周期dの反射回折格子1
1に入射角0で入射し、その反射光ν2が反射角θOで
反射する場合は、 sinθommλ/d  ・ (2) となる。以下、入射角がOとして説明を進める。
As shown in FIG. 5, the incident light that enters the reflective grating 11 at a predetermined angle of incidence is reflected and diffracted by the upper surface 11m of the convex portion. At this time, the condition for the diffracted lights to strengthen each other is sinθ-5inθommλ/d-(1)m-0,±1 from the plug conditional expression.
.. ±2... Also, when the incident angle θ is 0, that is, the sixth
As shown in the figure, the incident light ν1 is applied to a reflection grating 1 with a period d.
1 at an incident angle of 0 and its reflected light ν2 is reflected at a reflection angle of θO, sinθommλ/d·(2). The following description will proceed assuming that the incident angle is O.

次に、強め合う反射回折光の各次数の生ずる位置を、対
物レンズの開口数NAを規準とした換算座標系を用いて
第7図を参照しながら説明する。
Next, the positions where each order of the mutually reinforcing reflected and diffracted light occurs will be explained using a reduced coordinate system based on the numerical aperture NA of the objective lens with reference to FIG.

なお、同図に示す12は第2図における対物レンズ5の
レンズ面を表す。このレンズ面12には、0次回折光と
してコリメータレンズ2を出射瞳とすることによって生
じる円形の像が写される。この像は第8図に示す円形の
像13であり、第7図に於いて半径hsとしてその上半
分が示される。
Note that 12 shown in the figure represents the lens surface of the objective lens 5 in FIG. On this lens surface 12, a circular image is formed as zero-order diffracted light by using the collimator lens 2 as an exit pupil. This image is a circular image 13 shown in FIG. 8, the upper half of which is shown as radius hs in FIG.

一般に、レンズの開口数NAは NA−nesinθ    ・ (3)と表せる。なお
、nは空気中では1.θは第7図に示すθである。また
、一般には、0次回折光のひろがりの傾角θSとθとは
ほとんど等しくなるので、 NA−sinθ m5inθs−h s/ f   −(4)と表すこと
ができる。次に、1次回折光の円形像の中心が現れる位
置を第7図に示す点Bとすると、点BはO次回折光の円
形像の中心Cからhだけ離れた位置となる。いま、対物
レンズ5のNAを0.5と仮定すると、(4)式より、
hs−0,5fとなり、よって、 h/hs−fsinθo10.5 f  −<5)−s
  i  n e olo、5        (6)
となる。これは、hsを0.5としたときにsinθ0
より距離りが求まることを意味している。なお、sin
θ0は(2)式より求めることができる。
Generally, the numerical aperture NA of a lens can be expressed as NA-nesinθ·(3). Note that n is 1. θ is θ shown in FIG. Furthermore, since the inclination angle θS of the spread of the 0th-order diffracted light is generally equal to θ, it can be expressed as NA−sinθ m5inθs−h s/f −(4). Next, if the position where the center of the circular image of the 1st-order diffracted light appears is point B shown in FIG. 7, then point B is a distance h from the center C of the circular image of the 0th-order diffracted light. Now, assuming that the NA of the objective lens 5 is 0.5, from equation (4),
hs-0.5f, therefore, h/hs-fsinθo10.5 f -<5)-s
in e olo, 5 (6)
becomes. This is sinθ0 when hs is 0.5.
This means that more distance is required. In addition, sin
θ0 can be determined from equation (2).

以上のようにして求めた反射回折光の像を第8図(a)
(b)(c)に示す。同図(a)は周期=1.2μmの
場合、同図(b)は周期−1,8μmの場合、同図(c
)は周期−2,5μmの場合であって、それぞれ波長λ
−800nmとして計算した時の像を示している。各図
における点Cは0次回折光の円形像13の中心点2点B
は±1次回折光の円形像14a、  14bの中心点1
点りは±2次回折光の円形像15g、15bの中心点を
示している。このように、記録溝Wの幅に依存して変化
する反射回折光の干渉パターンによって生じる光強度分
布の明暗が光デイチクタフの受光面に形成される。
The image of the reflected diffraction light obtained in the above manner is shown in Figure 8(a).
Shown in (b) and (c). The figure (a) shows the period = 1.2 μm, the figure (b) shows the period -1.8 μm, and the figure (c
) are for periods of −2 and 5 μm, and the wavelength λ
An image calculated at -800 nm is shown. Point C in each figure is the center point B of the circular image 13 of the 0th order diffracted light.
is the center point 1 of the circular images 14a and 14b of the ±1st order diffracted light.
The dots indicate the center points of the circular images 15g and 15b of the ±2nd-order diffracted light. In this way, a brightness and darkness in the light intensity distribution caused by the interference pattern of the reflected and diffracted light that changes depending on the width of the recording groove W is formed on the light receiving surface of the optical photodetector.

第9図(a)(b)(c)に記録溝Wの溝幅と反射回折
光による光強度分布との関係を示す。なお、W1〜W3
は各々溝幅の異なる記録溝であり、W 1 < W 2
 < W 3の順に幅が太き(なっている。
FIGS. 9(a), 9(b), and 9(c) show the relationship between the groove width of the recording groove W and the light intensity distribution due to the reflected diffracted light. In addition, W1 to W3
are recording grooves with different groove widths, and W 1 < W 2
<W The width becomes thicker in the order of 3.

又、14a、14bは±1次回折光の円形像のエツジを
示している。記録溝Wの溝幅が変化するのに伴って、0
次回折光と±1次回折光の円形像が重なって生じる光強
度パターンが変化しているのが示されている。この様に
実際の像の干渉による明暗では±2次回折光はほとんど
影響しない。上述のように記録溝の幅が大きくなるのに
したがって光デイテクタ7の受光面に形成される±1次
回折光の出射瞳によって生ずる光強度分布の明暗の境界
部のエツジは重なっていく。
Further, 14a and 14b indicate edges of a circular image of ±1st-order diffracted light. As the groove width of the recording groove W changes, 0
It is shown that the light intensity pattern caused by the overlapping of the circular images of the first-order diffracted light and the ±1st-order diffracted light changes. In this way, the ±2nd-order diffracted light has almost no effect on the brightness and darkness caused by the interference of the actual image. As described above, as the width of the recording groove increases, the edges of the bright and dark boundaries of the light intensity distribution generated by the exit pupils of the ±1st-order diffracted light formed on the light receiving surface of the optical detector 7 overlap.

また、0次回折光、±1次回折光が円形となるのは各回
折光の径がコリメータレンズ2の出射瞳の大きさに依存
するためである。
Furthermore, the reason why the 0th-order diffracted light and the ±1st-order diffracted light are circular is that the diameter of each diffracted light depends on the size of the exit pupil of the collimator lens 2.

本発明では、この光強度パターンの変化を検出して多値
化されている記録溝の多値化情報を復調する。
In the present invention, the multi-value information of the multi-value recording groove is demodulated by detecting the change in the light intensity pattern.

次に、本発明の実施例について説明する。Next, examples of the present invention will be described.

第1図(a)は、本実施例によってその幅方向に多値化
された記録ピットが形成されている光ディスク21に光
ビームを入射して、その反射回折光による光強度パター
ンを光デイテクタ7上に生じさせた状態を示す図である
FIG. 1(a) shows that a light beam is incident on an optical disk 21 on which multivalued recording pits are formed in the width direction according to this embodiment, and a light intensity pattern due to the reflected diffracted light is detected by an optical detector 7. It is a figure which shows the state produced above.

本実施例では、光ディスク20となる記録原盤に所定の
情報を記録するために、記録すべき情報に応じて多値化
情報を生成し、この多値化情報で変調されたレーザビー
ムを上記記録原盤に入射して、その深さが一定でピット
幅が多値化された記録ピット21をトラック方向に順次
形成して多値情報を記録する。この様にして、第1図(
b)に示すピット列のように、ピット幅gが各記録ピッ
ト21ごとに変えられ、トラック方向と直行する幅方向
に多値記録が行われる。
In this embodiment, in order to record predetermined information on the recording master disc 20, multilevel information is generated according to the information to be recorded, and a laser beam modulated with this multilevel information is used to record the information. The recording pits 21 are incident on the master disk, and the recording pits 21 having a constant depth and multi-level pit width are sequentially formed in the track direction to record multi-level information. In this way, as shown in Figure 1 (
As in the pit row shown in b), the pit width g is changed for each recording pit 21, and multilevel recording is performed in the width direction perpendicular to the track direction.

この様な多値記録が行われた光ディスク20から記録情
報を読出す場合は、例えば第3図に示す光学系を用いて
多値化情報を再生する。なお、本実施例では、第3図に
示す光デイテクタ7としてラインセンサ22を設置する
。ピット幅方向に多値化されている記録ピット21に光
ビームを照射することにより、ラインセンサ22上にO
次回行光と±1次回折光とによって光強度分布の明暗が
生じる。ラインセンサ22によってその明暗の境界線L
l、L2のエツジ間隔が検出される。このエツジ間隔は
上述したように、ピット幅pに応じて変化するので、こ
の検出されたエツジ間隔より記録ピットの幅方向の多値
化情報が再生される。
When reading recorded information from the optical disc 20 on which such multilevel recording has been performed, the multilevel information is reproduced using, for example, an optical system shown in FIG. In this embodiment, a line sensor 22 is installed as the optical detector 7 shown in FIG. By irradiating a light beam onto the recording pit 21, which is multivalued in the pit width direction, O
The light intensity distribution is bright and dark due to the next-order light and the ±1st-order diffracted light. The line sensor 22 detects the bright and dark boundary line L.
The edge spacing of l and L2 is detected. As described above, this edge interval changes depending on the pit width p, so multi-valued information in the width direction of the recording pit is reproduced from the detected edge interval.

このように本実施例によれば、記録ピットの幅方向に変
調をかけて多値化情報を記録するようにしたので高密度
記録が可能となる。また、多値化されたピット幅pに応
じて変化する反射回折光の光強度パターンをラインセン
サ22上に形成して、±1次回折光のエツジ間隔を検出
して記録ピットの幅方向に持たせた多値化情報を再生す
るようにしたので、従来のように反射光量の大小を検出
する場合に比べて、外乱の影響を大幅に軽減でき、感度
が良く高精度な再生ができる。しかも、多値化レベルの
レベル数も増やすことができ、記録密度を向上できる。
As described above, according to this embodiment, since multilevel information is recorded by applying modulation in the width direction of the recording pit, high-density recording is possible. In addition, a light intensity pattern of the reflected diffracted light that changes according to the multivalued pit width p is formed on the line sensor 22, and the edge spacing of the ±1st-order diffracted light is detected and held in the width direction of the recording pit. Since the multivalued information is reproduced, the influence of external disturbances can be significantly reduced compared to the conventional method of detecting the amount of reflected light, allowing for highly sensitive and highly accurate reproduction. Furthermore, the number of multilevel levels can be increased, and the recording density can be improved.

さらに、本実施例によれば、従来の光デイスクシステム
とほとんどその基本構成を変えることなく記録再生が可
能となるので、装置の大型化を防止することもできる。
Furthermore, according to this embodiment, recording and reproduction can be performed without changing the basic configuration of a conventional optical disk system, so that it is possible to prevent the device from becoming larger.

なお、上記実施例では3値以上の多値記録が可能となる
が、記録ピットの幅pの多値化を2値とする場合には、
ラインセンサ22に変えて2分割フォトダイオード23
を用いることができる。記録ピットまたは記録溝の幅を
第9図(b)(c)のように2値化すれば、その反射回
折光の光強度パターンは、それぞれ第2図(a)、同図
(b)に示すようになる。そこで、2分割フォトダイオ
ード23を同図(a)(b)に示すように配置すれば、
光強度パターンの明暗が同図に示すように分かれるので
、この明暗の違いによってピット幅を再生することがで
きる。このとき、同図に示すように、2分割フォトダイ
オード23の中央部に不感帯24を設けることにより、
感度を向上させることができる。
Note that in the above embodiment, multi-value recording of three or more values is possible, but when the multi-value recording pit width p is made binary,
Two-split photodiode 23 instead of line sensor 22
can be used. If the width of the recording pit or recording groove is binarized as shown in FIGS. 9(b) and 9(c), the light intensity patterns of the reflected diffracted light will be as shown in FIGS. 2(a) and 2(b), respectively. It comes to show. Therefore, if the two-divided photodiode 23 is arranged as shown in FIGS.
Since the light intensity pattern is divided into brightness and darkness as shown in the figure, the pit width can be reproduced based on the difference in brightness and darkness. At this time, as shown in the figure, by providing a dead zone 24 in the center of the two-split photodiode 23,
Sensitivity can be improved.

〔発明の効果〕〔Effect of the invention〕

以上詳記したように本発明によれば、簡単な構成で情報
の多値記録および再生を行うことができ、外乱による影
響が少なく記録情報を高精度に再生できる光学式多値記
録再生方式を提供できる。
As described in detail above, according to the present invention, an optical multi-value recording and reproducing method is provided which can perform multi-value recording and reproduction of information with a simple configuration and can reproduce recorded information with high accuracy with less influence from external disturbances. Can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)は実施例による情報再生のための光学系の
概略図、第1図(b)は多値化された記録ピット列を示
す平面図、第2図は実施例の変形例を示す図、第3図は
上記光学系の構成図、第4図は反射回折光による光強度
分布パターンが生じる状態を示す図、第5図〜第9図は
記録溝の幅とその反射回折光による光強度パターンとの
関係を説明するための図である。 1・・・レーザダイオード、2・・・コリメータレンズ
、3・・・偏光ビームスプリッタ−4・・・λ/4板、
5・・・対物レンズ、6・・・光ディスク、7,2o・
・・光デイテクタ、21・・・記録ピット、22・・・
ラインセンサ、23・・・2分割フォトダイオード、2
4・り不感帯。 第1 図(a) 第 図(b) 第 図 第7 図 第 図(a) 第 図(b) 第8rI!J(c) 回折光 第 図 第4 図 第 図 手続補正書 平成  失乙69月1 日
FIG. 1(a) is a schematic diagram of an optical system for information reproduction according to the embodiment, FIG. 1(b) is a plan view showing a multivalued recording pit array, and FIG. 2 is a modification of the embodiment. Figure 3 is a diagram showing the configuration of the above optical system, Figure 4 is a diagram showing the state in which a light intensity distribution pattern is generated due to reflected diffraction light, and Figures 5 to 9 show the width of the recording groove and its reflected diffraction. FIG. 3 is a diagram for explaining the relationship with a light intensity pattern of light. 1...Laser diode, 2...Collimator lens, 3...Polarizing beam splitter-4...λ/4 plate,
5... Objective lens, 6... Optical disk, 7, 2o.
...Optical detector, 21... Recording pit, 22...
Line sensor, 23... 2-split photodiode, 2
4. Dead zone. Figure 1 (a) Figure (b) Figure 7 Figure 7 (a) Figure (b) 8rI! J(c) Diffracted light diagram Figure 4 Figure procedure amendment document Heisei 69/1

Claims (2)

【特許請求の範囲】[Claims] (1)記録すべき情報に応じて多値化された多値化情報
によって記録ピットまたは記録溝の幅方向に変調をかけ
て前記多値化情報を記録し、その幅方向に変調がかけら
れた前記記録ピットまたは記録溝に対して再生用ビーム
を照射し、この再生用ビームの照射によって生じる反射
回折光の光強度パターンを検出し、この検出された光強
度パターンを復調して前記多値化情報を再生することを
特徴とする光学式多値記録再生方式。
(1) The multi-value information is modulated in the width direction of a recording pit or recording groove by multi-value information that is multi-valued according to the information to be recorded, and the multi-value information is recorded, and the multi-value information is modulated in the width direction. A reproduction beam is irradiated onto the recorded pit or recording groove, a light intensity pattern of reflected diffracted light generated by the irradiation of the reproduction beam is detected, and the detected light intensity pattern is demodulated to generate the multi-valued signal. An optical multi-level recording and reproducing method characterized by reproducing digital information.
(2)前記光強度パターンをラインセンサで検出するこ
とを特徴とする請求項1記載の光学式多値記録再生方式
(2) The optical multi-level recording/reproducing method according to claim 1, wherein the light intensity pattern is detected by a line sensor.
JP2094731A 1990-04-10 1990-04-10 Optical multilevel recording and reproducing system Pending JPH03292631A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2094731A JPH03292631A (en) 1990-04-10 1990-04-10 Optical multilevel recording and reproducing system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2094731A JPH03292631A (en) 1990-04-10 1990-04-10 Optical multilevel recording and reproducing system

Publications (1)

Publication Number Publication Date
JPH03292631A true JPH03292631A (en) 1991-12-24

Family

ID=14118260

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2094731A Pending JPH03292631A (en) 1990-04-10 1990-04-10 Optical multilevel recording and reproducing system

Country Status (1)

Country Link
JP (1) JPH03292631A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5572502A (en) * 1993-09-28 1996-11-05 Hitachi, Ltd. Optical disk apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5572502A (en) * 1993-09-28 1996-11-05 Hitachi, Ltd. Optical disk apparatus

Similar Documents

Publication Publication Date Title
US7206108B2 (en) Method for recording and reproducing holographic data and holographic recording medium
EP0418879B1 (en) Optical recording/reproducing system and method, optical storage medium
JPH0721569A (en) Optical disk, optical disk reproducing device and recording and reproducing method for optical disk
US5774444A (en) Split photo detector for detecting a central portion and a peripheral portion of a reflected light beam
JPH04315820A (en) Recording/reproducing method/device/system
EP0646909B1 (en) Optical information recording/reproduction method and apparatus
JPH0438720A (en) Optical multivalue recording/reproducing system
JP3067872B2 (en) Recording medium and its information writing / reproducing devices
US5530641A (en) Optical recording medium having grooves and lands and/or plural pit lines, and reproducing apparatus therefor
JPH06195744A (en) Optical recording/reproducing apparatus, and optical recording medium
KR101413209B1 (en) Method for producing a security mark on an optical data carrier
JPH03292631A (en) Optical multilevel recording and reproducing system
JP2751884B2 (en) Optical head device
US6930976B2 (en) Optical recording medium and optical pickup device
JPS6139946A (en) Method and apparatus for reproducing optical memory
JPH0492212A (en) Optical many valued recording and reproducing system
US5812515A (en) Apparatus and method for playing back optical recording having high linear density
JPH02277003A (en) Diffraction grating and optical head device
JP3559603B2 (en) Optical disk recording and playback device
KR100317766B1 (en) High Density Information Recording and Playback Method
JPS61129748A (en) Optical information recording medium
JPH0437486B2 (en)
JPH0490129A (en) Optical reproducing device
JP2696938B2 (en) Optical disk and optical disk reproducing device
US20070247984A1 (en) Optical Record Carrier and Optical Scanning Device