JPH0329194B2 - - Google Patents
Info
- Publication number
- JPH0329194B2 JPH0329194B2 JP1937983A JP1937983A JPH0329194B2 JP H0329194 B2 JPH0329194 B2 JP H0329194B2 JP 1937983 A JP1937983 A JP 1937983A JP 1937983 A JP1937983 A JP 1937983A JP H0329194 B2 JPH0329194 B2 JP H0329194B2
- Authority
- JP
- Japan
- Prior art keywords
- vapor pressure
- group
- diffusion
- solution
- crystal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000009792 diffusion process Methods 0.000 claims description 42
- 239000013078 crystal Substances 0.000 claims description 29
- 150000001875 compounds Chemical class 0.000 claims description 14
- 239000012535 impurity Substances 0.000 claims description 14
- 239000004065 semiconductor Substances 0.000 claims description 11
- SBIBMFFZSBJNJF-UHFFFAOYSA-N selenium;zinc Chemical compound [Se]=[Zn] SBIBMFFZSBJNJF-UHFFFAOYSA-N 0.000 description 14
- 239000000203 mixture Substances 0.000 description 11
- 239000000243 solution Substances 0.000 description 11
- 239000003708 ampul Substances 0.000 description 10
- 239000000758 substrate Substances 0.000 description 7
- 239000010453 quartz Substances 0.000 description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 239000002904 solvent Substances 0.000 description 4
- 239000000470 constituent Substances 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000000295 emission spectrum Methods 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 125000006850 spacer group Chemical group 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000002109 crystal growth method Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000014509 gene expression Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- OKKJLVBELUTLKV-UHFFFAOYSA-N methanol Substances OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/34—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies not provided for in groups H01L21/0405, H01L21/0445, H01L21/06, H01L21/16 and H01L21/18 with or without impurities, e.g. doping materials
- H01L21/38—Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions
- H01L21/388—Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions using diffusion into or out of a solid from or into a liquid phase, e.g. alloy diffusion processes
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Led Devices (AREA)
Description
【発明の詳細な説明】
本発明は、−族化合物半導体の熱拡散法に
関し特に化学量論的組成からの偏差を生じせしめ
ない蒸気圧制御拡散法及び装置に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a thermal diffusion method for -group compound semiconductors, and particularly to a vapor pressure controlled diffusion method and apparatus that do not cause deviation from stoichiometric composition.
現在、可視光領域での発光ダイオードとして、
赤色から緑色にわたる波長領域のものはすでに各
種結晶で実用化されているが、光の三原色の一つ
である青色の発光ダイオードの実現が待ち望まれ
ている。青色発光を実現するためには室温で
2.6eV以上の禁止帯幅を持つことが必要であり、
この様な半導体材料としては、ZnS、ZnSe、
GaN、SiC等の−、−、−族の化合
物半導体がある。しかし、いずれの結晶について
も結晶成長が高温で行なわれること、P形n形両
方の伝導性を有する結晶を得難いことなど、それ
ぞれに対して欠点を有しているので室温で効率の
よい発光中心を得ることが難しい等の問題があつ
た。 Currently, as a light emitting diode in the visible light range,
Various crystals have already been put into practical use in the wavelength range from red to green, but the realization of a light-emitting diode that emits blue light, one of the three primary colors of light, is eagerly awaited. To achieve blue light emission, at room temperature
It is necessary to have a forbidden band width of 2.6eV or more,
Such semiconductor materials include ZnS, ZnSe,
There are -, -, - group compound semiconductors such as GaN and SiC. However, each crystal has its own drawbacks, such as the fact that crystal growth takes place at high temperatures and the difficulty of obtaining crystals with both P and N-type conductivity. There were problems such as difficulty in obtaining
このうちで特に−族化合物は青色発光の可
能性が高いのでZnSeを例にとり説明する。 Among these, - group compounds are particularly likely to emit blue light, so ZnSe will be used as an example for explanation.
ZnSe結晶は禁止帯幅が室温で2.67eV以上あり、
青色から紫色にかけての短波長において発光が期
待できる結晶である。しかしながら、いずれの構
成元素も蒸気圧が高いために、格子欠陥や不純物
の制御が難しく、不純物添加によるp−n接合の
形成が難しい等の問題点があつた。 ZnSe crystal has a forbidden band width of 2.67 eV or more at room temperature.
It is a crystal that can be expected to emit light at short wavelengths ranging from blue to violet. However, since each of the constituent elements has a high vapor pressure, it is difficult to control lattice defects and impurities, and there are problems such as difficulty in forming a pn junction by adding impurities.
このために本発明者は、高蒸気圧成分元素を溶
媒として用い、低蒸気圧成分元素の蒸気圧制御下
で結晶成長を行なうことによつて化学量論的組成
からの偏差の少ない−族化合物結晶を得るこ
とのできる結晶成長法を特許第1313593号(特公
昭60−37077号)で提供している。 For this purpose, the present inventor has developed a - group compound with a small deviation from the stoichiometric composition by using a high vapor pressure component element as a solvent and performing crystal growth under the control of the vapor pressure of a low vapor pressure component element. A crystal growth method by which crystals can be obtained is provided in Patent No. 1313593 (Japanese Patent Publication No. 37077/1983).
又、本発明者は、p−n接合形成法として、
−族化合物半導体で広く一般に行なわれている
エピタキシヤル成長法を、−族化合物半導体
にも応用し、ZnSeを例にとれば、Seを溶媒とし
てZnの蒸気圧を制御したエピタキシヤル成長法
を特許第1328673号(特公昭60−50759号)等で提
供している。又、特開昭59−6583号ではn形
ZnSe基板上へp形ZnSe層をエピタキシヤル成長
させることによつて高効率青色ZnSe発光ダイオ
ードを製造する方法を提供している。 In addition, the present inventor has discovered that as a p-n junction formation method,
The epitaxial growth method that is widely used for - group compound semiconductors is applied to - group compound semiconductors. Taking ZnSe as an example, we have patented an epitaxial growth method that controls the vapor pressure of Zn using Se as a solvent. No. 1328673 (Special Publication No. 60-50759), etc. Also, in JP-A No. 59-6583, the n-type
A method is provided for manufacturing high efficiency blue ZnSe light emitting diodes by epitaxially growing a p-type ZnSe layer on a ZnSe substrate.
本発明は、拡散によつてpn接合を形成する際
に結晶の化学量論的組成からの偏差を制御しつつ
不純物を拡散する方法及び拡散装置を提供するも
ので、この結晶がp形の場合には、族又は族
の不純物を数mol%添加した、構成元素の内の低
蒸気圧成分元素である族元素の溶液中に浸し、
高蒸気圧成分元素の族元素の蒸気圧を制御しな
がら熱拡散することによつて数μm〜数+μmのn
形拡散層を形成する。一方n形結晶にp形拡散層
を形成する場合には、族又は族の不純物を数
mol%添加した高蒸気圧成分元素の族元素の溶
液中に浸し、低蒸気圧成分元素の族元素の蒸気
圧制御下で熱拡散することによつて化学量論的組
成からの偏差の少ない−族化合物半導体装置
を得るための蒸気圧制御拡散法及び拡散装置を提
供するものである。次に実施例を掲げて説明す
る。 The present invention provides a method and a diffusion device for diffusing impurities while controlling the deviation from the stoichiometric composition of the crystal when forming a p-n junction by diffusion. To do this, immerse it in a solution of a group element, which is a low vapor pressure component element among the constituent elements, to which a few mol% of a group or group impurity is added.
By thermal diffusion while controlling the vapor pressure of the group element of high vapor pressure component elements, it is possible to
form a shape diffusion layer. On the other hand, when forming a p-type diffusion layer in an n-type crystal, several group or group impurities are added.
By immersing it in a solution of a high vapor pressure component group element added in mol% and thermally diffusing the low vapor pressure component group element under vapor pressure control, it is possible to minimize deviations from the stoichiometric composition. The present invention provides a vapor pressure controlled diffusion method and a diffusion device for obtaining a group compound semiconductor device. Next, examples will be given and explained.
実施例1
−族化合物半導体の代表的な結晶である
ZnSeの場合を例に掲げ、具体的な実施例を第1
図に示す。内径5〜7mmφ、肉厚1mmの石英管1
1の底に、p形ZnSe単結晶基板(厚み300〜
500μm)12を設置し、その上に基板結晶の浮遊
防止用の石英のバツクアツプリング13を乗せ、
Zn14を約1〜2g、n形の拡散用不純物とし
て族のGa15をZnに対して3〜10mol%投入
する。アンプル上部には高蒸気圧成分元素のSe
蒸気圧室16が設けてあり、又、SeとZnとの直
接反応を極力抑えること及び両室間の熱分離のた
めに実質的に両室間の通路が細くなる様に石英の
スペーサ17を挿入し、1×10-6mmHg程度の真
空度で封じてある。拡散温度については種々実験
を行なつたが、700〜850℃特に720〜760℃で1時
間程度拡散した時にダイオード特性が最も良く、
かつ深い準位からの発光が抑制される。この条件
でSe圧を種々変えて蒸気圧制御拡散を行ない、
数μm程度のn形層を形成した。この状態の結晶
20は、第2図1に示すよ様に、結晶表面全体がn
形拡散層21で覆われているので、矢印a、a′方
向は劈開により取り除き、底面はラツピングによ
り取り除き、第2図2の様な0.5×0.5mm角状のチ
ツプ状態にする。この結晶をBr−メタノール混
合液等のエツチング液で処理し、p側の電極とし
てAu22を蒸着し(第2図(3))、n形層上にInを
乗せ、Arガス雰囲気中350〜370℃で10分間シン
ターを行なつてダイオードチツプを作製し(第2
図(4))、ステムにマウントして発光ダイオードを
試作した。Example 1 A typical crystal of a − group compound semiconductor
Taking the case of ZnSe as an example, we will discuss specific examples in the first section.
As shown in the figure. Quartz tube 1 with inner diameter 5~7mmφ and wall thickness 1mm
1, a p-type ZnSe single crystal substrate (thickness 300~
500 μm) 12 is installed, and a quartz back-up spring 13 is placed on top of it to prevent the substrate crystal from floating.
Approximately 1 to 2 g of Zn14 and 3 to 10 mol % of Ga15 of the group as an n-type diffusion impurity are added relative to Zn. The upper part of the ampoule contains Se, a high vapor pressure component element.
A vapor pressure chamber 16 is provided, and a quartz spacer 17 is provided so that the passage between the two chambers becomes narrow in order to suppress the direct reaction between Se and Zn as much as possible and to isolate heat between the two chambers. It is inserted and sealed at a vacuum level of approximately 1×10 -6 mmHg. Various experiments were conducted regarding the diffusion temperature, but the diode characteristics were best when diffused at 700-850℃, especially 720-760℃ for about 1 hour.
In addition, light emission from deep levels is suppressed. Under these conditions, vapor pressure controlled diffusion was performed by varying the Se pressure.
An n-type layer with a thickness of several μm was formed. crystal in this state
20, the entire crystal surface is n, as shown in Figure 2.
Since it is covered with a shape diffusion layer 21, the directions of the arrows a and a' are removed by cleaving, and the bottom surface is removed by wrapping to form a 0.5 x 0.5 mm square chip as shown in FIG. This crystal is treated with an etching solution such as a Br-methanol mixture, Au22 is evaporated as the p-side electrode (Fig. 2 (3)), In is placed on the n-type layer, and the Diode chips were fabricated by sintering at ℃ for 10 minutes (second
Figure (4)), a light emitting diode was prototyped by mounting it on a stem.
第3図は、室温における注入発光スペクトルの
青色発光ピーク強度と深い準位との発光ピーク強
度の比のSe圧依存性を示している。これによる
とSe圧150Torr付近での発光ピーク強度比が最も
小さく、青色発光ピークが最も優勢となつてい
る。即ちダイオードを形成する際に最も化学量論
的組成からの偏差の少ない拡散層を形成できる
Se圧が印加されたことを示している。これによ
り、Zn溶液で拡散中発生するSe空孔を制御する
ことはできるが、化学量論的組成からずらしてn
形層を形成するのではなく、不純物を導入するこ
とにより伝導型変換を行なつた。その不純物とし
ては族元素であるGaを数mol%添加すること
により、Znの格子位置と置換することにより、
確実にn形拡散層が形成されかつ最適Se圧によ
つて化学量論的組成からの偏差を少なくすること
によつて結晶性の良いZnSen形層を得ることがで
きた。拡散層の厚さは740℃、1hrで5μm、18hrで
20μmが得られた。 第1図は、アンプルを縦型
に置いた場合の具体的な実施例であるが、横型の
場合も同様の形状のアンプルを使用し、同様の熱
拡散を行なうことができる。 FIG. 3 shows the Se pressure dependence of the ratio of the blue emission peak intensity and the deep level emission peak intensity of the injection emission spectrum at room temperature. According to this, the emission peak intensity ratio is the smallest near the Se pressure of 150 Torr, and the blue emission peak is the most dominant. In other words, when forming a diode, it is possible to form a diffusion layer with the least deviation from the stoichiometric composition.
This indicates that Se pressure was applied. This makes it possible to control the Se vacancies generated during diffusion in the Zn solution, but it is possible to control the Se vacancies generated during diffusion in the Zn solution.
The conductivity type conversion was achieved by introducing impurities rather than forming a shaped layer. By adding several mol% of Ga, a group element, as an impurity, by substituting the lattice position of Zn,
An n-type diffusion layer was reliably formed and a ZnSen type layer with good crystallinity could be obtained by reducing the deviation from the stoichiometric composition by adjusting the optimum Se pressure. The thickness of the diffusion layer is 5μm at 740℃, 1hr, and 18hr.
20 μm was obtained. Although FIG. 1 shows a specific example in which the ampoule is placed vertically, it is also possible to use an ampoule of the same shape and perform heat diffusion in the same manner in the case of a horizontally placed ampoule.
又、逆にn形の−族化合物半導体を用い、
p層を熱拡散によつて得る場合は、単に熱拡散処
理を旋すと、低蒸気圧成分の不足あるいは高蒸気
圧成分の過剰な結晶となり、化学量論的組成を制
御した無欠陥の結晶を得ることはできない。この
欠点を解消する為、結晶成長中に低蒸気圧成分の
不足を補うことによつて、化学量論的組成からの
偏差の精密制御が可能となる。が単に低蒸気圧成
分元素を溶媒である高蒸気圧成分元素の中に投入
すると、両者の反応が進み、結晶を形成してしま
うため、成長の開始時と終了時で、低蒸気圧成分
元素の蒸気圧が異なる値を示すことになり、成長
した結晶の化学量論的組成が変化し、均一な結晶
を得ることができない。即ち成長中は低蒸気圧成
分元素の蒸気圧がほぼ一定量で印加されることが
望ましく、両方の成分の直接反応を極力少なく
し、低蒸気圧成分の蒸気圧が結晶成長中ほぼ一定
値で溶媒上より印加する構成にすることが必要で
ある。 Also, conversely, using an n-type - group compound semiconductor,
When the p-layer is obtained by thermal diffusion, simply performing a thermal diffusion process will result in crystals lacking in low vapor pressure components or in excess of high vapor pressure components, resulting in defect-free crystals with controlled stoichiometric composition. cannot be obtained. To overcome this drawback, the deviation from the stoichiometric composition can be precisely controlled by compensating for the lack of low vapor pressure components during crystal growth. However, if a low vapor pressure component element is simply introduced into a high vapor pressure component element, which is a solvent, the reaction between the two will proceed and a crystal will be formed. As a result, the vapor pressure of the crystals will show different values, and the stoichiometric composition of the grown crystal will change, making it impossible to obtain a uniform crystal. In other words, it is desirable that the vapor pressure of the low vapor pressure component element be applied at a nearly constant amount during crystal growth, so that the direct reaction of both components is minimized, and the vapor pressure of the low vapor pressure component is kept at a nearly constant value during crystal growth. It is necessary to adopt a configuration in which the voltage is applied from above the solvent.
実施例2
具体的な実施例を、実施例1と同様ZnSeの場
合を例に掲げ、第4図1に示す。内径12〜14mm
φ、肉厚1.5〜2.0mmの石英管40の右端に、石英
製のホルダー41に縦にセツトした、直径8〜10
mmφで、厚さ300〜500μm程度にスライスした
ZnSen形基板42をセツトし、拡散溶液となるSe
43を約5〜8g、p形の拡散用不純物として例
えばla族のLi44を8〜20×10-3mol%投入す
る。アンプル左部には低蒸気圧成分元素のZn蒸
気圧室45が設けてあり、又SeとZnの直接反応
を極力抑えること及び両室間の熱分離のために実
質的に両室間の通路が細くなる様に石英のスペー
サ46を挿入し、1×10-6mmHg程度の真空度で
封じてある。このアンプルを縦又は第4図1の様
にななめにした炉にセツトして蒸気圧拡散を行な
う。蒸気圧拡散終了後は、アンプル又は炉全体を
あるいは炉よりアンプルを取り出して直ちに第4
図2の様に傾斜させることによつて、Se溶液と
ZnSe基板を分離させることにより拡散が終了す
る。Example 2 A specific example is shown in FIG. 4, taking the case of ZnSe as an example as in Example 1. Inner diameter 12~14mm
A diameter of 8 to 10 mm is set vertically in a quartz holder 41 at the right end of a quartz tube 40 with a wall thickness of 1.5 to 2.0 mm.
Sliced into 300-500μm thick slices with mmφ
The ZnSen type substrate 42 is set, and Se
About 5 to 8 g of 43 and 8 to 20 x 10 -3 mol % of Li44 of the LA group as a p-type diffusion impurity, for example, are added. A Zn vapor pressure chamber 45, which is a low vapor pressure component element, is provided on the left side of the ampoule, and there is also a passageway between the two chambers in order to suppress the direct reaction between Se and Zn as much as possible and to isolate heat between the two chambers. A quartz spacer 46 is inserted so that it becomes thinner, and it is sealed with a degree of vacuum of about 1×10 -6 mmHg. This ampoule is placed in a vertical or diagonal furnace as shown in FIG. 4 to perform vapor pressure diffusion. After the vapor pressure diffusion is completed, immediately remove the ampoule or the entire furnace or the ampoule from the furnace and
By tilting as shown in Figure 2, Se solution and
Diffusion is terminated by separating the ZnSe substrate.
化学量論的偏差が最小となるZn圧、Se圧とし
ては、次の様な関係式となる。第5図に1/T
〔〓〕(TはSe溶液の温度を示す)と最適Zn圧
〔Torr〕の関係を示した。この関係を式で表わす
と、
Popt=4.77×106exp(−0.790/K・TseeV)〔Torr〕
…(1)
Popt:Zn最適蒸気圧〔Torr〕
K:ボルツマン定数
Tse:熱拡散温度〔〓〕となる。 The Zn pressure and Se pressure at which the stoichiometric deviation is minimized are expressed by the following relational expressions. 1/T in Figure 5
The relationship between [〓] (T indicates the temperature of the Se solution) and the optimum Zn pressure [Torr] is shown. This relationship can be expressed as a formula: Popt=4.77×10 6 exp (−0.790/K・TseeV) [Torr] …(1) Popt: Zn optimum vapor pressure [Torr] K: Boltzmann constant Tse: Thermal diffusion temperature [〓 ].
よつてSeの熱拡散温度が決まれば、式(1)に代
入して最適Zn圧を求めることができる。例えば、
Se熱拡散温度700℃とすると、Tse=973〔〓〕を
式(1)に代入して、Popt=389〔Torr〕即ちZn部を
約840℃に保てば良いことになる。又、Zn溶液中
での熱拡散の場合も、式(1)を用いることによつ
て、熱拡散温度・Se蒸気圧を求めることができ
る。例えばZn溶液中800℃で熱拡散するとすれ
ば、800℃(1223〓)の時のZn圧(Pzn=
234.3Torr)を式(1)に代入すると、Tse=923.2
〔〓〕、即ちSe圧を448〔Torr〕で制御すれば良い
ことになる。 Therefore, once the thermal diffusion temperature of Se is determined, the optimal Zn pressure can be determined by substituting it into equation (1). for example,
If the Se thermal diffusion temperature is 700°C, then by substituting Tse = 973 [〓] into equation (1), it is sufficient to maintain Popt = 389 [Torr], that is, the Zn part at about 840°C. Also, in the case of thermal diffusion in a Zn solution, the thermal diffusion temperature and Se vapor pressure can be determined by using equation (1). For example, if thermal diffusion occurs in a Zn solution at 800℃, the Zn pressure at 800℃ (1223〓) (Pzn=
234.3Torr) into equation (1), Tse=923.2
[〓], that is, it is sufficient to control the Se pressure at 448 [Torr].
本発明による蒸気圧制御拡散法及び拡散装置
は、化学量論的組成からの偏差が小さく、極めて
欠陥の少ないp−n接合を形成でき、従つて発光
効率及び寿命を著しく高める点からも、工業的に
も価値の高いものである。 The vapor pressure controlled diffusion method and diffusion device according to the present invention can form a p-n junction with a small deviation from the stoichiometric composition and extremely few defects, and therefore, it is suitable for industrial use because it significantly increases luminous efficiency and lifetime. It is also of high value.
第1図及び第4図は本発明に用いられたアンプ
ルの構造及び温度分布、第2図はZn溶液中でSe
蒸気圧制御拡散を行なつたZnSe結晶のダイオー
ド製作過程、第3図は室温における注入発光スペ
クトルの青色発光ピーク強度と深い準位との発光
ピーク強度の比のSe圧依存性、第5図は1/T
〔〓〕と最適Zn圧〔Torr〕の関係を示した図であ
る。
12……p形ZnSe基板、14……Zn溶液、1
5……Ga、16……Se蒸気圧室、42……n形
ZnSe基板、43……Se溶液、44……Li、45
……Zn蒸気圧室。
Figures 1 and 4 show the structure and temperature distribution of the ampoule used in the present invention, and Figure 2 shows the structure and temperature distribution of the ampoule used in the present invention.
Figure 3 shows the manufacturing process of a ZnSe crystal diode using vapor pressure controlled diffusion. Figure 3 shows the Se pressure dependence of the ratio of the blue emission peak intensity of the injection emission spectrum at room temperature to the emission peak intensity of the deep level. 1/T
It is a diagram showing the relationship between [〓] and the optimum Zn pressure [Torr]. 12... p-type ZnSe substrate, 14... Zn solution, 1
5...Ga, 16...Se vapor pressure chamber, 42...n type
ZnSe substrate, 43...Se solution, 44...Li, 45
...Zn vapor pressure chamber.
Claims (1)
元素の蒸気圧制御下で、低蒸気圧成分元素ととも
に所定量の族あるいは族のn形不純物を添加
した溶液中で一定温度で熱拡散することを特徴と
する−族化合物中への不純物の蒸気圧制御拡
散法。 2 −族化合物半導体結晶を、低蒸気圧成分
元素の蒸気圧制御下で、高蒸気圧成分元素ととも
に所定量の族あるいは族のp形不純物を添加
した溶液中で、一定温度で熱拡散することを特徴
とする−族化合物中への不純物の蒸気圧制御
拡散法。 3 所定の不純物を含む族もしくは族元素の
溶液を入れ、かつ前記溶液の下または中に半導体
結晶を配置する拡散室、族又は族元素の蒸気
圧を発生しその蒸気圧を拡散室に印加するための
族ましくは族元素を配置する蒸気圧室とから
成り、前記拡散室と前記蒸気圧室間の通路が実効
的に細く形成されていることを特徴とする−
族化合物の蒸気圧制御拡散装置。[Claims] A 1-group compound semiconductor crystal is heated at a constant temperature in a solution to which a predetermined amount of a group or group n-type impurity is added together with a low vapor pressure component element under the control of the vapor pressure of a high vapor pressure component element. A vapor pressure controlled diffusion method of impurities into - group compounds characterized by thermal diffusion at . Thermal diffusion of a 2-group compound semiconductor crystal at a constant temperature in a solution containing a predetermined amount of a group or group p-type impurity together with a high vapor pressure component element under vapor pressure control of a low vapor pressure component element. A vapor pressure controlled diffusion method of impurities into - group compounds, characterized by: 3. A diffusion chamber in which a solution of a group or group element containing predetermined impurities is placed and a semiconductor crystal is placed under or in the solution; a vapor pressure of the group or group element is generated and the vapor pressure is applied to the diffusion chamber. a vapor pressure chamber in which a group element or a group element is arranged, and the passage between the diffusion chamber and the vapor pressure chamber is formed to be effectively narrow.
Vapor pressure control diffusion device for group compounds.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58019379A JPS59144189A (en) | 1983-02-08 | 1983-02-08 | Diffusing method and apparatus of vapor pressure control of ii-vi group compound semiconductor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58019379A JPS59144189A (en) | 1983-02-08 | 1983-02-08 | Diffusing method and apparatus of vapor pressure control of ii-vi group compound semiconductor |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS59144189A JPS59144189A (en) | 1984-08-18 |
JPH0329194B2 true JPH0329194B2 (en) | 1991-04-23 |
Family
ID=11997679
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58019379A Granted JPS59144189A (en) | 1983-02-08 | 1983-02-08 | Diffusing method and apparatus of vapor pressure control of ii-vi group compound semiconductor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59144189A (en) |
-
1983
- 1983-02-08 JP JP58019379A patent/JPS59144189A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS59144189A (en) | 1984-08-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4378259A (en) | Method for producing mixed crystal wafer using special temperature control for preliminary gradient and constant layer deposition suitable for fabricating light-emitting diode | |
JPS6057214B2 (en) | Method of manufacturing electroluminescent materials | |
US4526632A (en) | Method of fabricating a semiconductor pn junction | |
US7255742B2 (en) | Method of manufacturing Group III nitride crystals, method of manufacturing semiconductor substrate, Group III nitride crystals, semiconductor substrate, and electronic device | |
KR100296094B1 (en) | Gallium phosphide green light-emitting device | |
US5856208A (en) | Epitaxial wafer and its fabrication method | |
US4216484A (en) | Method of manufacturing electroluminescent compound semiconductor wafer | |
JP3146874B2 (en) | Light emitting diode | |
US4280131A (en) | Pleochroic light emitting diode and method of fabricating the same | |
JPH0329194B2 (en) | ||
JP3633806B2 (en) | Epitaxial wafer and light-emitting diode manufactured using the same | |
JPH08335555A (en) | Fabrication of epitaxial wafer | |
JPH04328878A (en) | Manufacture of light emitting diode epitaxial wafer | |
JPH04328823A (en) | Manufacture of epitaxial wafer for light emitting diode | |
JPH1065211A (en) | Light-emitting diode | |
JPH05343740A (en) | Gallium arsenide phosphide epitaxial wafer | |
JP3584714B2 (en) | Method for manufacturing impurity diffusion layer in compound semiconductor | |
JP3859383B2 (en) | Semiconductor light emitting device and manufacturing method thereof | |
JPH0332916B2 (en) | ||
JP2804093B2 (en) | Optical semiconductor device | |
JPH0550154B2 (en) | ||
JP2783580B2 (en) | Double hetero-type infrared light emitting device | |
JPS6285480A (en) | Manufacture of gallium phosphide green light emitting element | |
JP2001036133A (en) | Epitaxial wafer and light-emitting diode | |
JP2000164923A (en) | Epitaxial wafer and led |