JPH03291516A - Stable value extracting method for earth magnetism azimuth sensor - Google Patents

Stable value extracting method for earth magnetism azimuth sensor

Info

Publication number
JPH03291516A
JPH03291516A JP9337890A JP9337890A JPH03291516A JP H03291516 A JPH03291516 A JP H03291516A JP 9337890 A JP9337890 A JP 9337890A JP 9337890 A JP9337890 A JP 9337890A JP H03291516 A JPH03291516 A JP H03291516A
Authority
JP
Japan
Prior art keywords
azimuth
sensor
value
geomagnetic
values
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9337890A
Other languages
Japanese (ja)
Inventor
Tadatomi Ishigami
忠富 石上
Fumio Ueda
文夫 上田
Hiroshi Noda
博司 野田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP9337890A priority Critical patent/JPH03291516A/en
Publication of JPH03291516A publication Critical patent/JPH03291516A/en
Pending legal-status Critical Current

Links

Landscapes

  • Navigation (AREA)

Abstract

PURPOSE:To accurately process the traveling direction of a vehicle by removing respective heretical data according to a evaluation reference value of evaluation for the running mean value of absolute values of variation angles of several past absolute azimuths of the earth magnetism azimuth sensor. CONSTITUTION:Output data from the earth magnetism azimuth sensor 1, a wheel speed sensor 2, and a travel distance sensor 2 are inputted to an arithmetic part 5 through a sensor interface 4. The arithmetic part 5 performs total evaluation as to variance of data on coordinates, azimuths, and radio according to the XY component output values of the sensor 1 and several data of detected absolute azimuths including current values. The coordinate variance is evaluated as the ratios of several mean coordinate points including the current values, values between individual coordinate points, and the optional set value of the azimuth radius of the sensor 1. Further, azimuth variance is evaluated as the mean value of azimuth variation angles of several absolute azimuths including the current value. Further, radius variance is evaluated as the ratio of the optional set value of the azimuth circle radius of the sensor 1 and the current value.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

この発明は、地磁気方位センサや車輪速センサを車両に
搭載し外乱磁気の影響による異端データを除去して安定
データを抽出する地磁気方位センサの安定値抽出方法に
関するものである。
The present invention relates to a method for extracting stable values of a geomagnetic azimuth sensor, in which a geomagnetic azimuth sensor and a wheel speed sensor are mounted on a vehicle, and stable data is extracted by removing irregular data due to the influence of magnetic disturbance.

【従来の技術】[Conventional technology]

第8図及び第9図は例えば特開昭63−128222号
公報に示された従来の地磁気方位センサの着磁補正方法
を示す装置の構成図及び方位変化における地磁気方位セ
ンサの出力変化原理の説明図であり、図において、71
は地磁気方位センサ、72は車両の方位変化検出手段と
しての、例えば車輪速センサ、73は演算手段である。 また第9図は、方位変化における地磁気方位センサ71
の出力変化説明図である。まず、車両がAだけ変化する
と方位センサ出力もAがらBに変化する。この場合、地
磁気方位センサ71の方位円の半径が方位変化前と方位
変化後で変らないとすると、第9図より明らかなように
、方位円の中心、0は線分ABを底辺とする2等辺三角
形で、頂角がθとなる三角形の頂点である。つまり車両
の方位変化量θと回転方向と車両が方位変化する前の地
磁気方位センサ71の出力A及び方位変化後の地磁気方
位センサ71の出力Bが求められれば、方位の中心、つ
まり着磁量を求めることができる。 磁気方位センサ71の出力変化、及び演算説明図である
。車両が進行中に新たな着磁が起こり、着磁量がΔX−
ΔXI+ Δy−ΔyIに変化したとする。また、カー
ブする前の比較的安定した地磁気方位センサ71の出力
をAP(XI 、Y+ ) 、カーブした後の比較的安
定した地磁気方位センサ71の出力をBP(XZ 、 
 3’z )とする。まず、車両が方位変化する前の地
磁気方位センサ71の出力AP(XI 、  )’I 
)を演算手段73に記憶しておく。 次に、車両が方位変化すると、左右輪の車輪速センサ7
2等により方位変化量θ、が求まる。(ハ)図は車両の
方位変化前を示し、(ニ)図は車両の左回りによる方位
変化後の変化角θとなったことを示している。前記左右
車輪速センサによって求まるθ、とθとは同じ角度と考
える。 方位変化後、方位センサの出力Bp (Xz 、yz)
が求まる。これらAPI(XI +y+) IBP(X
Z +3’りθ3より方位変化前後の方位用の半径は一
定としAP、B、間の長さ L=  (XI   xz)” +  (y+   V
z)2と、ユニで、ヘクI・ルA、、B、の方向をθA
p、llPとすると、 θA9+BF− tanリ [しL二V+  )(−π<θApBP〈K
x2 −x。 ヘクトルSO1の方向をθsap とすると、π θSOF ′:θAPBP+  2 着磁の中心○、(ΔX1+Δy+)は ) (八Xl+Δy+)− (SX+fcosθSOP+SV+ρsinθ3o、)
で求められる。
FIGS. 8 and 9 are block diagrams of a device showing a conventional magnetization correction method for a geomagnetic azimuth sensor disclosed in, for example, Japanese Unexamined Patent Publication No. 63-128222, and an explanation of the principle of output change of the geomagnetic azimuth sensor when the azimuth changes. In the figure, 71
72 is a geomagnetic azimuth sensor, 72 is a vehicle azimuth change detecting means, such as a wheel speed sensor, and 73 is a calculation means. Moreover, FIG. 9 shows the geomagnetic direction sensor 71 when the direction changes.
It is an explanatory diagram of output change. First, when the vehicle changes by A, the azimuth sensor output also changes from A to B. In this case, assuming that the radius of the azimuth circle of the geomagnetic azimuth sensor 71 does not change before and after the azimuth change, as is clear from FIG. It is an equilateral triangle, and the vertex of the triangle has an apex angle of θ. In other words, if the amount of change θ in the vehicle's azimuth, the rotation direction, the output A of the geomagnetic azimuth sensor 71 before the azimuth of the vehicle changes, and the output B of the geomagnetic azimuth sensor 71 after the azimuth has changed, the center of the azimuth, that is, the amount of magnetization can be found. FIG. 6 is an explanatory diagram of output changes and calculations of a magnetic orientation sensor 71. FIG. New magnetization occurs while the vehicle is moving, and the amount of magnetization becomes ΔX-
Suppose that it changes to ΔXI+ Δy−ΔyI. Furthermore, the relatively stable output of the geomagnetic direction sensor 71 before curving is AP(XI, Y+), and the relatively stable output of the geomagnetic direction sensor 71 after curving is BP(XZ,
3'z). First, the output AP(XI, )'I of the geomagnetic direction sensor 71 before the vehicle changes direction
) is stored in the calculation means 73. Next, when the vehicle changes direction, the wheel speed sensors 7 for the left and right wheels
2 etc., the amount of change in orientation θ is determined. Figure (C) shows the vehicle before the azimuth change, and Figure (D) shows the change angle θ after the azimuth has changed due to the counterclockwise rotation of the vehicle. It is assumed that θ determined by the left and right wheel speed sensors and θ are the same angle. After direction change, direction sensor output Bp (Xz, yz)
is found. These APIs (XI +y+) IBP(X
From Z + 3' and θ3, the radius for the azimuth before and after the azimuth change is constant, and the length between AP, B, L = (XI xz)" + (y + V
z) With 2 and Uni, the direction of Hec I Le A,,B is θA
p, llP, θA9+BF− tanri [shiL2V+)(−π<θApBP〈K
x2-x. If the direction of hector SO1 is θsap, π θSOF ′: θAPBP+ 2 Center of magnetization○, (ΔX1+Δy+) is) (8Xl+Δy+)− (SX+fcosθSOP+SV+ρsinθ3o,)
is required.

【発明が解決しようとする課題】[Problem to be solved by the invention]

従来の地磁気方位センサの着磁補正方法は、以上のよう
に実行されているので、地磁気方位センサを用いて検出
された磁気情報のうち地磁気以外の外乱磁気を含む磁気
情報を平均化処理する考え方は、地磁気環境が安定して
いる場所での単発的な外乱磁気に対しては有効であるが
、高架道路などの地磁気自身が歪んで絶対方位が偏って
いる場合には検出誤差を抑えることができないという課
題があった。また、地磁気方位センサの着磁補正のだめ
の使用している方位円の半径が方位変化前後で一定であ
るという考え方は、方位変化後の車体着磁状態が方位変
化前と異るときに地磁気環境が安定している場合では、
方位円の半径が変化したなりの大きさで安定して得られ
るので、車体着磁状態が変化したことを検出でき誤補正
を防止することができるとしても、高架道路などの地磁
気自身が歪んでいるときには車体着磁状態が変化できず
誤補正を実行してしまうおそれがあるなどの課題があっ
た。 この発明は上記のような課題を解消するためになされた
もので、地磁気方位センサのXYなる成分出力値及び検
出した絶対方位の夫々の現在値を含む過去何個か分のデ
ータをもとに座標、方位半径の夫々のデータのバラツキ
を評価対象として総合評価し、地磁気方位センサのデー
タに検出精度のランク(等級)を付けるようにして異端
データを除去する地磁気方位センサの安定値抽出方法を
得ることを目的とする。
The conventional magnetization correction method for a geomagnetic azimuth sensor is performed as described above, so the idea is to average the magnetic information that includes disturbance magnetism other than geomagnetism among the magnetic information detected using the geomagnetic azimuth sensor. is effective against isolated magnetic disturbances in places where the geomagnetic environment is stable, but it is difficult to suppress detection errors when the geomagnetism itself is distorted, such as on an elevated road, and the absolute orientation is biased. The problem was that it couldn't be done. In addition, the idea that the radius of the azimuth circle used for magnetization correction of the geomagnetic azimuth sensor is constant before and after the azimuth change is based on the idea that the radius of the azimuth circle used for magnetization correction of the geomagnetic azimuth sensor is fixed when the geomagnetic environment If is stable, then
Since the radius of the azimuth circle can be stably obtained as the radius changes, it is possible to detect changes in the vehicle body magnetization state and prevent erroneous corrections. There were problems, such as when the magnetization state of the vehicle body could not be changed and there was a risk of erroneous correction being executed. This invention was made to solve the above problems, and is based on several past data including the XY component output values of the geomagnetic azimuth sensor and the current values of the detected absolute azimuth. A method for extracting stable values of a geomagnetic azimuth sensor that comprehensively evaluates the variations in each data of coordinates and azimuth radius, and removes heretical data by assigning a rank (grade) of detection accuracy to the data of the geomagnetic azimuth sensor. The purpose is to obtain.

【課題を解決するための手段】[Means to solve the problem]

この発明に係る地磁気方位センサの安定値抽出方法は、
地磁気方位センサのχY成分出力値及び検出した絶対方
位の夫々の現在値を含む何個か分のデータを基に座標、
方位、半径の夫々のデータのバラツキを評価対象として
演算部で総合評価し、前記地磁気方位センサのデータに
検出精度の等級を付し、前記座標バラツキは、現在値を
含めた過去何個か分のXY座標点を移動平均した平均座
標点と平均に使った個々の座標点の座標点間の大きさと
、前記地磁気方位センサの方位円半径の任意の設定値と
の比として評価し、前記方位バラツキは、現在値を含め
た過去何個か分の絶対方位の方位変化角の絶対値を移動
平均した平均値の大きさとして評価し、前記半径バラツ
キは、前記地磁気方位センサの方位円半径の任意の設定
値と現在の大きさの比として評価するようにしたもので
ある。
The stable value extraction method of the geomagnetic direction sensor according to the present invention is as follows:
Coordinates are calculated based on several pieces of data including the χY component output value of the geomagnetic direction sensor and the current value of each detected absolute direction.
The arithmetic unit comprehensively evaluates the variation in each data of direction and radius as an evaluation target, and assigns a detection accuracy grade to the data of the geomagnetic direction sensor. It is evaluated as the ratio of the average coordinate point obtained by moving the XY coordinate points of The variation is evaluated as the magnitude of the average value obtained by moving the absolute value of the azimuth change angle of the past several absolute azimuths including the current value, and the radial variation is the magnitude of the average value of the azimuth circle radius of the geomagnetic azimuth sensor. It is designed to be evaluated as a ratio between an arbitrary setting value and the current size.

【作用】[Effect]

この発明における地磁気方位センサの安定値抽出方法は
、地磁気方位センサの方位円半径の任意の設定値に対す
る現在値の大きさの比の評価と、同じ(方位円半径の任
意の設定値に対する現在値を含む過去何個か分のX、Y
成分出力値によるχY座標点と同移動平均した平均座標
点の座標点間の大きさの比の評価と、そして現在値を含
む過去何個か分の絶対値方位の変化角の絶対値を移動平
均した平均値の大きさの評価の、夫々の評価基準値に基
づいて夫々の異端データを除去し、個々の評価では除去
できない異端データを漏れなく除去するようにして安定
データを抽出する。
The stable value extraction method of the geomagnetic azimuth sensor in this invention is the same as the evaluation of the ratio of the current value to an arbitrary setting value of the azimuth circle radius of the geomagnetic azimuth sensor (the current value for an arbitrary setting value of the azimuth circle radius). Past several X, Y including
Evaluate the size ratio between the coordinate points of the χY coordinate point and the moving averaged average coordinate point using the component output value, and move the absolute value of the change angle of the absolute value azimuth for several past values including the current value. Stable data is extracted by removing heretical data based on each evaluation standard value of the evaluation of the magnitude of the average value, and removing all heretical data that cannot be removed by individual evaluation.

【発明の実施例] 以下、この発明の一実施例を図について簡単に説明する
。 第1図は、この発明の一実施例による移動体用ナビゲー
ション装置の構成を示すブロック図で、図において1は
地磁気に基づいて絶対方位を検出する第1の方位センサ
としての地磁気方位センサ、2は車両の左右の車輪速の
相違などがら車両の方位変化を検出する第2の方位セン
サとしての車輪速センサ、3は移動体としての車両の移
動距離を検出する走行距離センサで、前記各センサ1〜
3はセンサインタフェース4に入力される。5は順次送
られてくる各センサ1〜3がらの出力データに基づいて
地磁気センナ・データの安定値抽出や車両の移動距離、
進行方位および自軍位置の算出などを行う演算部、6は
自軍位置などを描画する表示部である。 次に、地磁気方位センサ1の出力データの安定値抽出の
ための評価対象として、座標バラツキ、方位バラツキ、
及び半径バラツキ等を考慮したが、以下にそれぞれの評
価方法を示す。 座標バラツキは第2図(ロ)に示すように地磁気以外の
外乱磁気を含む磁気の乱れを判定するもので、地磁気方
位センサ1の方位円半径の自己学習値(任意の設定値)
RAiに対する、現在値を含めた過去何個か分のXY座
標点を移動平均した平均座標点と平均に使った個々の座
標点の座標点間の大きさΔLの比ΔL/RA、で区分す
ることで大中小の3段階に評価する。 方位バラツキは第2図(ハ)に示すように車両走行状態
の直進性を判定するもので、現在値を含めた過去何個か
分の絶対方位θ、の変化角の絶対値を移動平均した平均
値の大きさを区分することで大中小の3段階に評価する
。 また、半径バラツキは第2図(イ)に示すように地磁気
以外の外乱磁気の大きさを判定するもので、地磁気方位
センサ1の方位円半径の自己学習値RA、に対する、現
在値の大きさRの比でR/RA、で区分することで大中
小の3段階に評価する。 これらのバラツキの評価で使う評fi[[i基準値の一
例を第3回に示す。 第31kiこおいて、aは座標バラツキ、bは力位バラ
ツキ、そしてCは半径バラツキのそれぞれの評価基準値
である。 第4図は安定値抽出の等級区分を示す図であり、第3回
により得られた座標ハラウ′キと方位バラツキのそれぞ
れの評価結果−こより、1を最も安定として1から5ま
での5段階で等綴付けを行っている。 次二こ、第5図と第6図のフローチャートを用いて動作
について説明する。 まず、第5図QこおいてステップST41では装置のイ
ニシャル処理、初期表示と地磁気方位センサ1の旋回補
正を実行する。また、ここで地磁気方位センサ1の方位
円f径の自己学習値の初期化を行う。ステ、・ブST4
2では車両が一定距離以上移動するまで待機する。ステ
ップ5T43では地磁気方位センサ1と車輪速センサ2
からの出ヵデータをセンサインタフェース4を介して演
算部5に入力する。ステップST44では絶対方位と車
両の方位変化を算出する。ステップ5T45では地磁気
方位センサ・データの安定値抽出のための座標と方位の
バラツキ評価と検出精度の等級付けを行う。ステップ5
T46では(1)式により車両の進行方位を算出する。 (1)式で、θ、とθi−1は車両の進行方位の現在値
と前回値、JKは絶対方位、φは車両の方位変化、kは
等級により値を替える絶対方位の重み付は係数をそれぞ
れ示す。 θ、=θ=−++(JK−θ1−1) ×に+ψX (1−k)・・・・・・・・・(1)ステ
ップST47では地磁気方位センサ1の着磁補正を行う
。ステップST48では各データのメモリ格納と車両位
置の更新を行う。 第6図においてステップST51では車両の旋回角と旋
回距離の更新を行い、ステップ5T52では検出精度の
等級が1級(磁気の乱れが小で直進中)かどうかを判定
し、1級でないならば着磁補正の処理を抜け、1級なら
ばステップ5T53を実行する。ステップST53では
方位変化前のX、Y成分出力値の設定と車両の旋回角と
旋回距離の有効を判定し、方位変化前のX、Y成分出力
値が設定されていないか、もしくは、旋回角が60°未
満か120°超過か、旋回距離が200m超過ならばス
テップST54を実行し、そうでなければステップST
55を実行する。ここで、旋回角と旋回距離を処理の条
件に含めたのは、磁気環境の変化する前後のデータを除
去することと車両の左右折動作で補正ができるようにす
るためである。ステップ5T54では方位変化前のX。 Y成分出力値の設定と車両の旋回角、旋回距離の零クリ
アをし、その後着磁補正の処理を抜ける。 ステップST55では地磁気方位センサ1の方位円半径
のバラツキ評価(地磁気以外の外乱磁気の大きさの判定
)を行う。ステップ5T56ではステップ5T55での
評価結果が大ならば着磁補正の処理を抜け、そうでなけ
ればステップST57を実行する。ステップST57で
は地磁気方位センサ1の方位円半径の自己学習値を更新
する。ステップST58ではステップST55での評価
結果が中ならば着磁補正の処理を抜け、そうでなければ
ステップST59を実行する。ステップ5T59では第
7図に示す方位変化前後のX、Y成分出力値と車両の旋
回角との関係により(2)式及び(3)式に基づいて着
磁量の計算と補正を実行する。(2)式及び(3)式で
χ1.Y1とX2.Y2は方位変化前後のX、Y成分出
力値、ψは車両の旋回角、X CO+ YC6とX、、
Y、は地磁気方位センサ1の方位円の推定中心と回路的
に定めている固定中心のX、 Y成分出力値、δX、δ
Yは着磁量のXY成分出力値である。 δX=Xc、−X。 δY=Yc、−Y。 なお、上記実施例では、座標バラツキ、方位バラツキ、
および半径バラツキの個々の評価方法と使い方、等級の
付は方について説明したが、他の評価方法による等級付
けを用いてもよく上記実施例と同様の効果を奏する。 また、この実施例による地磁気センサの着磁補正は、方
位変化前後のX、Y成分出力値を生の座標点として用い
たが、平均したX、Y成分出力値の平均座標点としても
よい。 【発明の効果】 以上のようにこの発明によれば、地磁気方位センサの方
位円半径の任意の設定値に対する現在値の大きさの比の
評価と、同しく方位円半径の任意の設定値に対する現在
値を含む過去何個か分のXY成分出力値によるX、Y座
標点と同移動平均した平均座標点の座標点間の大きさの
比の評価と、そして現在値を含む過去何個か分の絶対方
位の変化角の絶対値を移動平均した平均値の大きさの評
価の夫々の評価基準値に基づいて夫々の異端データを除
去するようにしたので、外乱磁気を含む磁気乱れの大き
さ、外乱磁気の大きさ、そして方位乱れの大きさの観点
から異端データの除去ができ、車両の進行方位や地磁気
方位センサの着磁補正などの処理が的確に行える。又地
磁気方位センサ・データの使い分け(重み付け)が容易
に可能となる効果がある。
[Embodiment of the Invention] An embodiment of the present invention will be briefly described below with reference to the drawings. FIG. 1 is a block diagram showing the configuration of a mobile navigation device according to an embodiment of the present invention, in which numeral 1 denotes a geomagnetic azimuth sensor as a first azimuth sensor that detects absolute azimuth based on geomagnetism; 3 is a wheel speed sensor serving as a second azimuth sensor that detects changes in the orientation of the vehicle due to differences in left and right wheel speeds of the vehicle; 3 is a mileage sensor that detects the distance traveled by the vehicle as a moving object; 1~
3 is input to the sensor interface 4. 5 extracts the stable value of geomagnetic sensor data based on the output data of each sensor 1 to 3 sent sequentially, the distance traveled by the vehicle,
An arithmetic unit calculates the heading direction and the position of the own army, and 6 is a display unit that draws the position of the own army. Next, as evaluation targets for extracting stable values of the output data of the geomagnetic direction sensor 1, coordinate variations, direction variations,
and radius variations, etc., and the evaluation methods for each are shown below. As shown in Figure 2 (b), the coordinate variation is used to determine magnetic disturbances including disturbance magnetism other than geomagnetism, and is determined by the self-learning value (arbitrary set value) of the radius of the azimuth circle of the geomagnetic azimuth sensor 1.
For RAi, divide by the ratio ΔL/RA of the average coordinate point obtained by moving the moving average of several past XY coordinate points including the current value and the size ΔL between the coordinate points of the individual coordinate points used for the average. This will be evaluated in three stages: large, medium, and small. As shown in Figure 2 (c), the direction variation is used to determine the straightness of the vehicle running condition, and is a moving average of the absolute values of the change angles of the past several absolute directions θ, including the current value. By classifying the size of the average value, it is evaluated in three stages: large, medium, and small. In addition, the radius variation is used to determine the magnitude of disturbance magnetism other than geomagnetism, as shown in Figure 2 (A), and is the magnitude of the current value with respect to the self-learning value RA of the radius of the azimuth circle of the geomagnetic azimuth sensor 1. It is evaluated in three stages: large, medium, and small by classifying it by the ratio of R/RA. An example of the evaluation fi[[i standard value used in evaluating these variations is shown in Part 3. In the 31st ki, a is the coordinate variation, b is the force position variation, and C is the evaluation reference value of the radius variation. Figure 4 is a diagram showing the grade classification of stable value extraction, and is based on the evaluation results of the coordinate range and orientation variation obtained in the third round.From this, there are five grades from 1 to 5, with 1 being the most stable. I'm spelling it out in the same way. Next, the operation will be explained using the flowcharts shown in FIGS. 5 and 6. First, in step ST41 in FIG. 5Q, initial processing of the device, initial display, and rotation correction of the geomagnetic azimuth sensor 1 are executed. Also, the self-learning value of the diameter of the azimuth circle f of the geomagnetic azimuth sensor 1 is initialized here. Ste, bu ST4
In step 2, the system waits until the vehicle has moved a certain distance or more. In step 5T43, the geomagnetic direction sensor 1 and the wheel speed sensor 2
The output data is inputted to the calculation section 5 via the sensor interface 4. In step ST44, the absolute heading and the change in the heading of the vehicle are calculated. In step 5T45, variations in coordinates and orientation are evaluated and detection accuracy is graded for extracting stable values of geomagnetic orientation sensor data. Step 5
At T46, the traveling direction of the vehicle is calculated using equation (1). In equation (1), θ and θi-1 are the current and previous values of the vehicle's heading, JK is the absolute heading, φ is the change in the vehicle's heading, and k is a coefficient that changes the value depending on the class.The weighting of the absolute heading is a coefficient. are shown respectively. θ,=θ=−++(JK−θ1−1)×+ψX (1−k) (1) In step ST47, the magnetization of the geomagnetic direction sensor 1 is corrected. In step ST48, each data is stored in the memory and the vehicle position is updated. In FIG. 6, in step ST51, the turning angle and turning distance of the vehicle are updated, and in step 5T52, it is determined whether the detection accuracy class is class 1 (moving straight with small magnetic disturbance), and if it is not class 1, it is determined. It exits the magnetization correction process and executes step 5T53 if it is class 1. In step ST53, it is determined whether the settings of the X and Y component output values before the azimuth change and the turning angle and turning distance of the vehicle are valid, and whether the X and Y component output values before the azimuth change are not set or the turning angle is less than 60° or more than 120°, or if the turning distance exceeds 200m, execute step ST54; otherwise, execute step ST54.
Execute 55. Here, the reason why the turning angle and turning distance are included in the processing conditions is to remove data before and after changes in the magnetic environment and to enable correction based on left and right turning movements of the vehicle. In step 5T54, X before the direction change. The Y component output value is set and the turning angle and turning distance of the vehicle are cleared to zero, and then the process exits from the magnetization correction process. In step ST55, variation evaluation of the radius of the azimuth circle of the geomagnetic azimuth sensor 1 is performed (determination of the magnitude of disturbance magnetism other than the terrestrial magnetism). In step 5T56, if the evaluation result in step 5T55 is large, the magnetization correction process is skipped, and if not, step ST57 is executed. In step ST57, the self-learning value of the azimuth circle radius of the geomagnetic azimuth sensor 1 is updated. In step ST58, if the evaluation result in step ST55 is within the range, the magnetization correction process is exited, otherwise step ST59 is executed. In step 5T59, the amount of magnetization is calculated and corrected based on equations (2) and (3) based on the relationship between the X and Y component output values before and after the azimuth change and the turning angle of the vehicle shown in FIG. In equations (2) and (3), χ1. Y1 and X2. Y2 is the X and Y component output values before and after the azimuth change, ψ is the turning angle of the vehicle, X CO + YC6 and X,
Y is the fixed center X and Y component output value, δX, δ, which is determined by the circuit as the estimated center of the azimuth circle of the geomagnetic orientation sensor
Y is the XY component output value of the amount of magnetization. δX=Xc, -X. δY=Yc, -Y. In addition, in the above embodiment, coordinate variations, azimuth variations,
Although the individual evaluation methods, usage, and grading of radial variation and radial variation have been described, grading by other evaluation methods may also be used and the same effects as in the above embodiments can be achieved. Further, in the magnetization correction of the geomagnetic sensor according to this embodiment, the X and Y component output values before and after the azimuth change are used as raw coordinate points, but the average coordinate point of the averaged X and Y component output values may be used. Effects of the Invention As described above, according to the present invention, it is possible to evaluate the ratio of the current value to an arbitrary set value of the radius of the azimuth circle of a geomagnetic azimuth sensor, and also to Evaluation of the size ratio between X and Y coordinate points and the moving averaged average coordinate point using several past XY component output values including the current value, and several past XY component output values including the current value. Since each heretical data is removed based on the evaluation standard value of the magnitude of the average value obtained by moving the moving average of the absolute value of the change angle of the absolute azimuth, the magnitude of magnetic disturbance including disturbance magnetism is removed. It is possible to remove outlier data from the viewpoint of the magnitude of magnetic disturbance, the magnitude of azimuth disturbance, and accurate processing such as correction of vehicle heading and magnetization of the geomagnetic azimuth sensor. Moreover, there is an effect that the geomagnetic direction sensor data can be easily used (weighted).

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例による車両位置検出装置の
構成図、第2図(イ)〜(ハ)はバラツキ対象の評価説
明図、第3図は一例としてバラツキ評価で使う評価基準
値の説明図、第4図は安定値抽出の等綴付けの説明図、
第5図及び第6図はこの発明の動作を示すフローチャー
ト、第7図は方位変化前後のX、 Y成分出力値と車両
旋回角の説明図、第8図は従来の車両検出装置における
着磁補正の構成図、第9図は方位変化における地磁気方
位センサの出力変化説明図、第10図(イ)は地磁気方
位センサの出力変化及び演算説明図、同図(ロ)は左右
車輪速センサによって求めた車両の回転角説明図、同図
(ハ)(ニ)は車両の方位変化説明図である。 図において、1は地磁気方位センサ(第1の方位センサ
)、2は車輪速センサ(第2の方位センサ)、3は走行
距離センサ、5は演算部である。 なお、図中、同一符号は同一、又は相当部分を示す。
Fig. 1 is a configuration diagram of a vehicle position detection device according to an embodiment of the present invention, Figs. 2 (a) to (c) are explanatory diagrams of evaluation of variation targets, and Fig. 3 is an example of evaluation reference values used in variation evaluation. Figure 4 is an explanatory diagram of stable value extraction,
5 and 6 are flowcharts showing the operation of the present invention, FIG. 7 is an explanatory diagram of the X and Y component output values and vehicle turning angles before and after changes in azimuth, and FIG. 8 is a diagram showing magnetization in a conventional vehicle detection device. A configuration diagram of the correction, Fig. 9 is an explanatory diagram of the output change of the geomagnetic azimuth sensor when the direction changes, Fig. 10 (a) is an explanatory diagram of the output change and calculation of the geomagnetic azimuth sensor, and the same figure (b) is an explanatory diagram of the output change of the geomagnetic azimuth sensor and calculation by the left and right wheel speed sensors. Figures (C) and (D) are diagrams illustrating the vehicle's orientation change. In the figure, 1 is a geomagnetic azimuth sensor (first azimuth sensor), 2 is a wheel speed sensor (second azimuth sensor), 3 is a travel distance sensor, and 5 is a calculation unit. In addition, in the figures, the same reference numerals indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】[Claims] 地磁気方位センサのX、Y成分出力値及び検出した絶対
方位の夫々の現在値を含む過去何個か分のデータを基に
座標、方位、半径の夫々のデータのバラツキを評価対象
として演算部で総合評価し、前記地磁気方位センサのデ
ータに検出精度の等級を付し、前記座標バラツキは、現
在値を含めた過去何個か分のXY座標点を移動平均した
平均座標点と平均に使った個々の座標点の座標点間の大
きさと前記地磁気方位センサの方位円半径の任意の設定
値との比として評価し、前記方位バラツキは、現在値を
含めた過去何個か分の絶対方位の方位変化角の絶対値を
移動平均した平均値の大きさとして評価し、前記半径バ
ラツキは、前記地磁気方位センサの方位円半径の任意の
設定値と現在値の大きさの比として評価するようにした
地磁気方位センサの安定値抽出方法。
Based on several past pieces of data including the X and Y component output values of the geomagnetic azimuth sensor and the current values of the detected absolute azimuth, the arithmetic unit evaluates the variations in the coordinates, azimuth, and radius data. After a comprehensive evaluation, the data of the geomagnetic direction sensor was graded for detection accuracy, and the coordinate variation was determined using the average coordinate point obtained by moving the average of several past XY coordinate points including the current value. It is evaluated as the ratio of the size between the coordinate points of each coordinate point and the arbitrary set value of the azimuth circle radius of the geomagnetic azimuth sensor, and the azimuth variation is calculated based on the absolute azimuth of several past values including the current value. The absolute value of the azimuth change angle is evaluated as a moving average value, and the radius variation is evaluated as a ratio between an arbitrary set value and a current value of the azimuth circle radius of the geomagnetic azimuth sensor. A method for extracting stable values from a geomagnetic orientation sensor.
JP9337890A 1990-04-09 1990-04-09 Stable value extracting method for earth magnetism azimuth sensor Pending JPH03291516A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9337890A JPH03291516A (en) 1990-04-09 1990-04-09 Stable value extracting method for earth magnetism azimuth sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9337890A JPH03291516A (en) 1990-04-09 1990-04-09 Stable value extracting method for earth magnetism azimuth sensor

Publications (1)

Publication Number Publication Date
JPH03291516A true JPH03291516A (en) 1991-12-20

Family

ID=14080645

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9337890A Pending JPH03291516A (en) 1990-04-09 1990-04-09 Stable value extracting method for earth magnetism azimuth sensor

Country Status (1)

Country Link
JP (1) JPH03291516A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006275523A (en) * 2005-03-28 2006-10-12 Citizen Watch Co Ltd Electronic azimuth device and recording medium
JP2007240194A (en) * 2006-03-06 2007-09-20 Japan Radio Co Ltd Azimuth measuring device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006275523A (en) * 2005-03-28 2006-10-12 Citizen Watch Co Ltd Electronic azimuth device and recording medium
JP2007240194A (en) * 2006-03-06 2007-09-20 Japan Radio Co Ltd Azimuth measuring device

Similar Documents

Publication Publication Date Title
EP0640207B1 (en) Calibration method for a relative heading sensor
CN107289930B (en) Pure inertial vehicle navigation method based on MEMS inertial measurement unit
EP0372916A2 (en) Vehicle in-situ locating apparatus
EP1580687A1 (en) Method and apparatus for calculating motion of mobile body, and navigation system
JPH02206716A (en) Running azimuth detection device for vehicle
JPH0833302B2 (en) Position detection device
JPH03291516A (en) Stable value extracting method for earth magnetism azimuth sensor
JPH07162846A (en) Follow-up recognizing device for object
JPH03291514A (en) Stable value extracting method for earth magnetism azimuth sensor
JP2677390B2 (en) Vehicle azimuth correction device
JP2723651B2 (en) Magnetization correction method for geomagnetic bearing sensor
JP3682091B2 (en) Current position calculation system and current position calculation method
JP3660392B2 (en) Current position calculation system and current position calculation method
Trojnacki et al. Determination of motion parameters with inertial measurement units–Part 1: mathematical formulation of the algorithm
JP3587904B2 (en) Current position calculation device
JPH0634379A (en) Navigation device
JP3868058B2 (en) Car navigation system
JPH0633368Y2 (en) Car navigation system
JPH03188316A (en) Azimuth detector
JPH0769181B2 (en) Vehicle direction detector
JP3693383B2 (en) Current position calculation system and current position calculation method
JP2737243B2 (en) Mobile navigation system
JP3660393B2 (en) Current position calculation device
JPH0526681A (en) Navigation device
JPH03148010A (en) Azimuth detecting apparatus mounted in vehicle