JPH03291514A - Stable value extracting method for earth magnetism azimuth sensor - Google Patents

Stable value extracting method for earth magnetism azimuth sensor

Info

Publication number
JPH03291514A
JPH03291514A JP9337690A JP9337690A JPH03291514A JP H03291514 A JPH03291514 A JP H03291514A JP 9337690 A JP9337690 A JP 9337690A JP 9337690 A JP9337690 A JP 9337690A JP H03291514 A JPH03291514 A JP H03291514A
Authority
JP
Japan
Prior art keywords
azimuth
sensor
vehicle
coordinate
coordinate points
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9337690A
Other languages
Japanese (ja)
Inventor
Tadatomi Ishigami
忠富 石上
Fumio Ueda
文夫 上田
Hiroshi Noda
博司 野田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP9337690A priority Critical patent/JPH03291514A/en
Publication of JPH03291514A publication Critical patent/JPH03291514A/en
Pending legal-status Critical Current

Links

Landscapes

  • Navigation (AREA)

Abstract

PURPOSE:To reduce an error due to coordinate variance by performing a dividing and an evaluating process using the ratios of the mean coordinate points of several past X and Y coordinate points about an optional set value of the azimuth circle radius of the earth magnetism sensor and individual coordinate points used for the averaging. CONSTITUTION:Output data on an absolute azimuth which is detected by the earth magnetism azimuth sensor 1 and base upon the earth magnetism, output data on the azimuth change of a vehicle from the difference between the right and left wheel speeds of the vehicle which is detected by a wheel speed sensor 2, and output data on the moving distance of the vehicle which is detected by a travel distance sensor 3 are inputted to an arithmetic part 5 through a sensor interface 4. The arithmetic part 5 calculates the running mean coordinate point of several past coordinate points on X and Y coordinates based upon the X and Y component output values of the sensor 1 including the current point. Then the ratio of the values for the mean coordinate point of the past coordinate points used for the running averaging and the optional set value of the azimuth circle radius on the X and Y coordinates is evaluated as the coordinate variance, the data detected by the sensor 1 is given a grade of detection accuracy, and the result is display at a display part 6.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

この発明は、地磁気方位センサや車輪速センサを車両に
搭載し外乱磁気の影響による異端データを除去して安定
データを抽出する地磁気方位センサの安定値抽出方法に
関するものである。
The present invention relates to a method for extracting stable values of a geomagnetic azimuth sensor, in which a geomagnetic azimuth sensor and a wheel speed sensor are mounted on a vehicle, and stable data is extracted by removing irregular data due to the influence of magnetic disturbance.

【従来の技術】[Conventional technology]

第8図及び第9図は例えば特開昭63−128222号
公報に示された従来の地磁気方位センサの着磁補正方法
を示す装置の構成図及び方位変化における地磁気方位セ
ンサの出力変化原理の説明図であり、図において、71
は地磁気方位センサ、72は車両の方位変化検出手段と
しての、例えば車輪速センサ、73は演算手段である。 また第9図は、方位変化における地磁気方位センサ71
の出力変化説明図である。まず、車両がAだけ変化する
と方位センサ出力もAからBに変化する。この場合、地
磁気方位センサ71の方位円の半径が方位変化前と方位
変化後で変らないとすると、第9図より明らかなように
、方位円の中心、0は線分■を底辺とする2等辺三角形
で、頂角がθとなる三角形の頂点である。つまり車両の
方位変化量θと回転方向と車両が方位変化する前の地磁
気方位センサ71の出力A及び方位変化後の地磁気方位
センサ71の出力Bが求められれば、方位の中心、つま
り着磁量を求めることができる。 磁気方位センサ71の出力変化、及び演算説明図である
。車両が進行中に新たな着磁が起こり、着磁量がΔX−
ΔXI+ Δy−Δylに変化したとする。また、カー
ブする前の比較的安定した地磁気方位センサ71の出力
をAP(XI +  ’jI) 、カーブした後の比較
的安定した地磁気方位センサ71の出力をBP(XZ 
、  7z )とする。まず、車両が方位変化する前の
地磁気方位センサ71の出力AP(x+ 、)’+ )
を演算手段73に記憶しておく。 次に、車両が方位変化すると、左右輪の車輪速センサ7
2等により方位変化量θ、が求まる。(ハ)図は車両の
方位変化前を示し、(ニ)図は車両の左回りによる方位
変化後の変化角θとなったことを示している。前記左右
車輪速センサによって求まるθ、とθとは同じ角度と考
える。 方位変化後、方位センサの出力BP (XZ +yz)
が求まる。これらAPI(XI +y+)+Bp(Xz
 1y2)θ3より方位変化前後の方位用の半径は一定
として、(イ)図において、 s < s x、 s y) =(X + ” X 2
 、 V + ” V Z )2 Ap、B、間の長さ L−(x+   xz)” ± (y+   3’z)
” と、ここで、ベクトルA、、B、の方向をθ。+l
Fとすると、 ”All+1F= tan−’  [’=二」巨]( X、  −X。 πくθAll!IF<π ) ベクトルS02の方向をθSOP とすると、θSOP
 ”’θA P I P +  2着磁の中心0.(Δ
X1+Δy+)は (ΔXl+Δy1)= (SX+fcosθ5OPI S y + 42 sx
nθ、。、)で求められる。
FIGS. 8 and 9 are block diagrams of a device showing a conventional magnetization correction method for a geomagnetic azimuth sensor disclosed in, for example, Japanese Unexamined Patent Publication No. 63-128222, and an explanation of the principle of output change of the geomagnetic azimuth sensor when the azimuth changes. In the figure, 71
72 is a geomagnetic azimuth sensor, 72 is a vehicle azimuth change detecting means, such as a wheel speed sensor, and 73 is a calculation means. Moreover, FIG. 9 shows the geomagnetic direction sensor 71 when the direction changes.
It is an explanatory diagram of output change. First, when the vehicle changes by A, the direction sensor output also changes from A to B. In this case, assuming that the radius of the azimuth circle of the geomagnetic azimuth sensor 71 does not change before and after the azimuth change, as is clear from FIG. 9, the center of the azimuth circle, 0, is 2 with the line segment It is an equilateral triangle, and the vertex of the triangle has an apex angle of θ. In other words, if the amount of change θ in the vehicle's azimuth, the rotation direction, the output A of the geomagnetic azimuth sensor 71 before the azimuth of the vehicle changes, and the output B of the geomagnetic azimuth sensor 71 after the azimuth has changed, the center of the azimuth, that is, the amount of magnetization can be found. FIG. 6 is an explanatory diagram of output changes and calculations of a magnetic orientation sensor 71. FIG. New magnetization occurs while the vehicle is moving, and the amount of magnetization becomes ΔX-
Suppose that it changes to ΔXI+Δy−Δyl. Furthermore, the relatively stable output of the geomagnetic direction sensor 71 before curving is expressed as AP(XI + 'jI), and the output of the relatively stable geomagnetic direction sensor 71 after curving is expressed as BP(XZ
, 7z). First, the output AP (x+ , )'+ ) of the geomagnetic direction sensor 71 before the vehicle changes direction.
is stored in the calculation means 73. Next, when the vehicle changes direction, the wheel speed sensors 7 for the left and right wheels
2 etc., the amount of change in orientation θ is determined. Figure (C) shows the vehicle before the azimuth change, and Figure (D) shows the change angle θ after the azimuth has changed due to the counterclockwise rotation of the vehicle. It is assumed that θ determined by the left and right wheel speed sensors and θ are the same angle. After direction change, direction sensor output BP (XZ +yz)
is found. These APIs (XI +y+) + Bp(Xz
1y2) From θ3, assuming that the radius for the direction before and after the direction change is constant, in the figure (a), s < s x, s y) = (X + ”
, V + "V Z )2 Length between Ap and B, L-(x+ xz)" ± (y+ 3'z)
” and here, the direction of vectors A, , B is θ.+l
If F, then ``All+1F=tan-'['=2'' huge] (X, -X. π×θAll!IF<π) If the direction of vector S02 is θSOP, then θSOP
”'θA P I P + 2 Center of magnetization 0.(Δ
X1+Δy+) is (ΔXl+Δy1)=(SX+fcosθ5OPI S y + 42 sx
nθ,. , ).

【発明が解決しようとする課題】[Problem to be solved by the invention]

従来の地磁気方位センサの着磁補正方法は、以上のよう
に実行されているので、地磁気方位センサを用いて検出
された磁気情報のうち地磁気以外の°外乱磁気を含む磁
気情報を平均化処理する考え方は、地磁気環境が安定し
ている場所での単発的な外乱磁気に対しては有効である
が、高架道路などの地磁気自身が歪んで絶対方位が偏っ
ている場合には検出誤差を抑えることができないという
課題があった。また、地磁気方位センサの着磁補正のた
めの使用している方位円の半径が方位変化前後で一定で
あるという考え方は、方位変化後の車体着磁状態が方位
変化前と異るときに地磁気環境が安定している場合では
、方位円の半径が変化したなりの大きさで安定して得ら
れるので、車体着磁状態が変化したことを検出でき誤補
正を防止することができるとしても、高架道路などの地
磁気自身が歪んでいるときには車体着磁状態が変化でき
ず誤補正を実行してしまうおそれがあるなどの課題があ
った。 この発明は上記のような課題を解消するためになされた
もので、地磁気方位センサのX、Yなる成分出力値、検
出した絶対方位と、地磁気以外で移動体の方位を検出す
る車輪速センサ等、第2の方位センサの方位変化角の夫
々の現在値を含む過去何個か分のデータをもとに、夫々
のデータのバラツキを評価対象として総合評価し、地磁
気方位センサのデータに検出精度のランク(等級)を付
けるようにして異端データを除去する地磁気方位センサ
の安定値抽出方法を得ることを目的とする。
The conventional magnetization correction method for a geomagnetic azimuth sensor is executed as described above, and therefore, among the magnetic information detected using the geomagnetic azimuth sensor, magnetic information including disturbance magnetism other than geomagnetism is averaged. The idea is that it is effective against isolated magnetic disturbances in places where the geomagnetic environment is stable, but it is important to suppress detection errors when the geomagnetism itself is distorted, such as on an elevated road, and the absolute orientation is biased. The problem was that it was not possible. In addition, the idea that the radius of the azimuth circle used for magnetization correction of the geomagnetic azimuth sensor is constant before and after the azimuth change is based on the idea that the radius of the azimuth circle used for magnetization correction of the geomagnetic azimuth sensor is the same before and after the azimuth change. When the environment is stable, the radius of the azimuth circle is stably obtained as the radius changes, so even if it is possible to detect a change in the vehicle body magnetization state and prevent erroneous correction, When the earth's magnetic field itself is distorted, such as on an elevated road, the vehicle body magnetization state cannot be changed and there is a risk of incorrect correction being performed. This invention was made to solve the above-mentioned problems, and includes a geomagnetic azimuth sensor's X and Y component output values, a detected absolute azimuth, and a wheel speed sensor that detects the azimuth of a moving body using methods other than geomagnetism. , based on several past data including the current value of each azimuth change angle of the second azimuth sensor, a comprehensive evaluation is performed with the dispersion of each data as an evaluation target, and the detection accuracy is determined based on the data of the geomagnetic azimuth sensor. The purpose of the present invention is to obtain a stable value extraction method for a geomagnetic azimuth sensor that removes heretical data by assigning ranks (grades).

【課題を解決するための手段】[Means to solve the problem]

この発明に係る地磁気方位センサの安定値抽出方法は、
地磁気を利用した第1の方位センサのX。 Yなる成分出力値及び検出した絶対方位と前記地磁気以
外で車両の方位を検出する第2の方位センサの方位角の
現在値を含む過去何個か分のデータを基に座標、方位、
j鋲−夕の各バラツキを評価対象として演算部で総合評
価し、前記第1の方位センサのデータに検出精度の等級
を配分するようにしたもので、座標バラツキは、現在値
を含めた過去何個か分のX、Y座標点を移動平均した平
均座標点と平均に使った個々の座標点の座標点間の大き
さと、第1の方位センサの方位円半径の任意の設定値の
比として評価し、方位バラツキは、現在値を含めた過去
何個か分の絶対方位の方位変化角と第2の方位センサで
検出した方位変化角の夫々の絶対値を移動平均した両平
均値の差の大きさをもって評価し、半径バラツキは前記
第1の方位センサの方位円半径の任意の設定値と現在値
の大きさの比として評価するようにしたものである。
The stable value extraction method of the geomagnetic direction sensor according to the present invention is as follows:
X, the first orientation sensor that uses geomagnetism. Coordinates, direction,
The arithmetic unit performs a comprehensive evaluation of each variation between J and J, and assigns a grade of detection accuracy to the data of the first direction sensor. The ratio between the average coordinate point obtained by moving the moving average of several X and Y coordinate points, the size between the coordinate points of the individual coordinate points used for the average, and the arbitrary setting value of the radius of the azimuth circle of the first azimuth sensor The azimuth variation is calculated as the moving average of the azimuth change angle of the past several absolute azimuths including the current value and the absolute value of the azimuth change angle detected by the second azimuth sensor. The difference is evaluated based on the magnitude of the difference, and the radius variation is evaluated as the ratio between the arbitrary set value and the current value of the radius of the azimuth circle of the first azimuth sensor.

【作用】[Effect]

この発明における地磁気方位センサの安定値抽出方法は
、第1の方位センサの方位円半径の任意の設定値に対す
る現在値の大きさの比の評価と、同じく方位円半径の任
意の設定値に対する現在値を含む過去何個か分のX、Y
成分出力値に対するX、Y座標点の同移動平均した平均
座標点の大きさの比の評価と、現在値を含む過去何個か
分の絶対方位の変化角と地磁気以外で方位を検出する第
2の方位センサの方位変化角の夫々の絶対値を移動平均
した両平均値の差の評価の夫々の評価基準値に基づいて
夫々の異端データを除去し、個々の評価では除去できな
い異端データを漏れなく除去するようにして安定データ
を抽出できるようにする。
The stable value extraction method of the geomagnetic azimuth sensor in this invention includes evaluating the ratio of the current value to an arbitrary setting value of the azimuth circle radius of the first azimuth sensor, and also evaluating the ratio of the current value to an arbitrary setting value of the azimuth circle radius of the first azimuth sensor. The past number of X, Y including the value
Evaluation of the ratio of the size of the moving average of the X and Y coordinate points to the component output value, the change angle of the absolute azimuth for several past values including the current value, and the method for detecting the azimuth using methods other than geomagnetism. The heretical data that cannot be removed by individual evaluation is removed based on the evaluation standard value of the difference between the two average values obtained by moving the average of the absolute values of the azimuth change angles of the azimuth sensors of 2. To be able to extract stable data by removing everything without omission.

【発明の実施例】[Embodiments of the invention]

以下、この発明の一実施例を図について説明する。 第1図は、この発明の一実施例による移動体用ナビゲー
ション装置の構成を示すブロック図で、図において、1
は地磁気に基づいて絶対方位を検出する第1の方位セン
サとしての地磁気方位センサ2は車両の左右の車輪速の
相違などから車両の方位変化を検出する第2の方位セン
サとしての車輪速センサ、3は移動体としての車両の移
動距離を検出する走行距離センサで、前記各センサI〜
3はセンサインタフェース4に入力される。5は順次送
られてくる各センサ1〜3からの出力データに基づいて
地磁気センサ・データの安定値抽出や車両の移動距離、
進行方位および自軍位置の算出などを行う演算部、6は
自車位置などを描画する表示部である。 次に、地磁気方位センサlの出力データの安定値抽出の
ための評価対象として、座標バラツキ、方位バラツキ及
び半径バラツキ等を考慮したが、以下にそれぞれの評価
方法について示す。 最初に座標バラツキは第2図(Ilりに示すように地磁
気以外の外乱磁気を含む磁気の乱れを判定するもので地
磁気方位センサ1の方位円半径の自己学習値(任意の設
定値)RAiに対する、現在値を含めた過去何個か分の
XY座標点を移動平均した平均座標点と平均に使った個
々の座標点の座標点間の大きさΔLの比ΔL、 / R
Atで区分することで大中小の3段階に評価する。 方位バラツキは第2図(ハ)に示すように方位乱れを判
定するもので、現在値を含めた過去何個か分の絶対方位
θ、の方位変化角と第2の方位センサから検出した方位
変化角ψ1の、それぞれの絶対値を移動平均した両平均
値の逆の大きさを区分することで大中小の3段階に評価
する。ここで、両平均値の差の大きさで判定するように
したのは車両のジグザグ走行による方位乱れ分を除去し
たいためである。 また、半径バラツキは地磁気以外の外乱磁気の大きさを
判定するもので、地磁気方位センサ1の方位円半径の自
己学習値に対する、現在値の大きさの比で区分すること
で大中小の3段階に評価する。 これらのバラツキの評価で使う評価基準値の一例を第3
図に示す。 第3図において、aは座標バラツキ、bは方位バラツキ
、そしてCは半径バラツキのそれぞれの評価基準値であ
る。 第4図は安定値抽出の等線区分を示す図であり、第3図
により得られた座標バラツキと方位バラツキのそれぞれ
の評価結果により、1を最も安定として1から5までの
5段階で等級付けを行っている。 次に、第5図及び第6図のフローチャートを用いて動作
について説明する。 まず、第5図においてステップ5T41では、装置のイ
ニシャル処理、初期表示と地磁気方位センサ1の旋回補
正を実行する。また、ここで地磁気方位センサ1の方位
円半径の自己学習値の初期化を行う、ステップ5T42
では車両が一定距離以上移動するまで待機する。ステッ
プST43では地磁気方位センサ1と車輪速センサ2か
らの出力データをセンサインタフェース4を介して演算
部5に入力する。ステップ5T44では絶対方位と車両
の方位変化を算出する。ステップST45では地磁気方
位センサ・データの安定値抽出のための座標と方位のバ
ラツキ評価と検出精度の等級付けを行う、ステップ5T
46では(1)式により車両の進行方位を算出する。(
1)式で、θ、とθ1−1は車両の進行方位の現在値と
前回値、JKは絶対方位、ψは車両の方位変化、kは等
級により値を替える絶対方位の重み付は係数をそれぞれ
示す。 θ1=θ=−1+cJK−θ1−1) ×に+ψX(1−k)・・・・・・・・・(1)ステッ
プST47では地磁気方位センサ1の着磁補正を行う。 ステップ5T48では各データのメモリ格納と車両位置
の更新を行う。 第6図において、ステップST51では車両の旋回角と
旋回距離の更新を行い、ステップ5T52では検出精度
の等級が1級(磁気の乱れが小で直進中)かどうかを判
定し、1級でないならば着磁補正の処理を抜け、1級な
らばステップ5T53を実行する。ステップ5T53で
は方位変化前のX、Y成分出力値の設定と車両の旋回角
と旋回距離の有効を判定し、方位変化前のX、Y成分出
力値が設定されていないか、もしくは、旋回角が60°
未満か120°超過か、旋回距離が200m超過ならば
ステップST54を実行し、そうでなければステップS
T55を実行する。ここで、旋回角と旋回距離を処理の
条件に含めたのは、磁気環境の変化する前後のデータを
除去することと車両の左右折動作で補正ができるように
するためである。ステップ5T54では方位変化前のX
。 Y成分出力値の設定と車両の旋回角、旋回距離の零クリ
アをし、その後着磁補正の処理を抜ける。 ステップST55では地磁気方位センサ1の方位円半径
のバラツキ評価(地磁気以外の外乱磁気の大きさの判定
)を行う、ステップST56ではステップ5T55での
評価結果が大ならば着磁補正の処理を抜け、そうでなけ
ればステップST57を実行する。ステップ5T57で
は地磁気方位センサ1の方位円半径の自己学習値を更新
する。ステップST58ではステップ5T55での評価
結果が中ならば着磁補正の処理を抜け、そうでなければ
ステップ5T59を実行する。ステップ5T59では第
7図に示す方位変化前後のX、Y成分出力値と車両の旋
回角との関係により(2)式及び(3)式に基づいて着
磁量の計算と補正を実行する。(2)式及び(3)式で
X、、Y、とXz、Yzは方位変化前後のX、Y成分出
力値、ψは車両の旋回角、X eo+  YCOとXO
,Y(1は地磁気方位センサlの方位円の推定中心と回
路的に定めている固定中心のX、Y成分出力値、δX、
δYは着磁量のX。 Y成分出力値である。 δX=Xc、−X。 δY = Yc、−Y。 なお、上記実施例では、座標バラツキ、方位バラツキ、
および半径バラツキの個々の評価方法と使い方、等級の
付は方について説明したが、他の評価方法による等級付
けを用いてもよく上記実施例と同様の効果を奏する。 また、この実施例による地磁気センサの着磁補正は、方
位変化前後のX、Y成分出力値を生の座標点として用い
たが、平均したX、 Y成分出力値の平均座標点として
もよい。
An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a block diagram showing the configuration of a mobile navigation device according to an embodiment of the present invention.
The geomagnetic azimuth sensor 2 is a first azimuth sensor that detects an absolute azimuth based on geomagnetism, and the wheel speed sensor is a second azimuth sensor that detects changes in the vehicle's azimuth based on differences in vehicle left and right wheel speeds. 3 is a mileage sensor that detects the travel distance of a vehicle as a moving body, and each of the sensors I to
3 is input to the sensor interface 4. 5 extracts stable values of geomagnetic sensor data based on the output data from each sensor 1 to 3 sent sequentially, and the distance traveled by the vehicle;
A calculation unit calculates the heading direction and the position of the own army, and 6 is a display unit that draws the position of the own vehicle. Next, coordinate variations, azimuth variations, radius variations, etc. were considered as evaluation targets for extracting stable values of the output data of the geomagnetic azimuth sensor l, and respective evaluation methods will be described below. First, coordinate variations are determined as shown in Figure 2 (I), which determines magnetic disturbances including disturbance magnetism other than geomagnetism. , the ratio ΔL of the size ΔL between the average coordinate point obtained by moving the moving average of several past XY coordinate points including the current value and the individual coordinate points used for the average, /R
By classifying them by At, they are evaluated in three stages: large, medium, and small. Direction variation is used to determine direction disturbance as shown in Figure 2 (c), and is based on the direction change angle of the past several absolute directions θ, including the current value, and the direction detected from the second direction sensor. The change angle ψ1 is evaluated in three stages, large, medium, and small, by classifying the inverse magnitude of both average values obtained by moving averages of the respective absolute values of the change angle ψ1. Here, the reason why the determination is made based on the magnitude of the difference between both average values is to remove the azimuth disturbance caused by the zigzag running of the vehicle. In addition, the radius variation is used to determine the magnitude of disturbance magnetism other than geomagnetism, and is divided into three levels (large, medium, and small) based on the ratio of the current value to the self-learned value of the radius of the azimuth circle of the geomagnetic azimuth sensor 1. Evaluate. An example of the evaluation standard values used in evaluating these variations is shown in Part 3.
As shown in the figure. In FIG. 3, a is the evaluation reference value for the coordinate variation, b is the azimuth variation, and C is the evaluation reference value for the radius variation. Figure 4 is a diagram showing isoline divisions for stable value extraction, and is graded in five stages from 1 to 5, with 1 being the most stable, based on the evaluation results of the coordinate variations and orientation variations obtained in Figure 3. I am attaching it. Next, the operation will be explained using the flowcharts of FIGS. 5 and 6. First, in step 5T41 in FIG. 5, initial processing of the device, initial display, and rotation correction of the geomagnetic azimuth sensor 1 are executed. Also, here, the self-learning value of the azimuth circle radius of the geomagnetic azimuth sensor 1 is initialized, step 5T42.
The system then waits until the vehicle has traveled a certain distance. In step ST43, output data from the geomagnetic azimuth sensor 1 and wheel speed sensor 2 is input to the calculation unit 5 via the sensor interface 4. In step 5T44, the absolute heading and the change in the heading of the vehicle are calculated. Step ST45 evaluates variations in coordinates and orientation and ranks detection accuracy for extracting stable values of geomagnetic orientation sensor data, Step 5T
At step 46, the traveling direction of the vehicle is calculated using equation (1). (
In equation 1), θ and θ1-1 are the current and previous values of the vehicle's heading, JK is the absolute heading, ψ is the change in the vehicle's heading, and k is the value that changes depending on the grade.The weighting of the absolute heading is a coefficient. Each is shown below. θ1=θ=−1+cJK−θ1−1)×+ψX(1−k) (1) In step ST47, the magnetization of the geomagnetic direction sensor 1 is corrected. In step 5T48, each data is stored in the memory and the vehicle position is updated. In FIG. 6, in step ST51, the turning angle and turning distance of the vehicle are updated, and in step 5T52, it is determined whether the detection accuracy class is class 1 (moving straight with small magnetic disturbance), and if it is not class 1, If it is class 1, it exits the magnetization correction process and executes step 5T53. In step 5T53, it is determined whether the settings of the X and Y component output values before the azimuth change and the turning angle and turning distance of the vehicle are valid, and whether the X and Y component output values before the azimuth change are not set or the turning angle is 60°
If the turning distance is less than 120° or more than 200 m, execute step ST54; otherwise, execute step S.
Execute T55. Here, the reason why the turning angle and turning distance are included in the processing conditions is to remove data before and after changes in the magnetic environment and to enable correction based on left and right turning movements of the vehicle. In step 5T54, the X before the direction change
. The Y component output value is set and the turning angle and turning distance of the vehicle are cleared to zero, and then the process exits from the magnetization correction process. In step ST55, the variation in the radius of the azimuth circle of the geomagnetic azimuth sensor 1 is evaluated (determining the magnitude of disturbance magnetism other than geomagnetism). In step ST56, if the evaluation result in step 5T55 is large, the magnetization correction process is skipped, Otherwise, step ST57 is executed. In step 5T57, the self-learning value of the azimuth circle radius of the geomagnetic azimuth sensor 1 is updated. In step ST58, if the evaluation result in step 5T55 is within the range, the magnetization correction process is exited, otherwise step 5T59 is executed. In step 5T59, the amount of magnetization is calculated and corrected based on equations (2) and (3) based on the relationship between the X and Y component output values before and after the azimuth change and the turning angle of the vehicle shown in FIG. In equations (2) and (3), X, Y, and Xz, Yz are the X and Y component output values before and after the azimuth change, ψ is the vehicle turning angle, X eo + YCO and XO
, Y (1 is the X and Y component output value of the fixed center which is determined by the circuit as the estimated center of the azimuth circle of the geomagnetic azimuth sensor l, δX,
δY is the amount of magnetization X. This is the Y component output value. δX=Xc, -X. δY = Yc, -Y. In addition, in the above embodiment, coordinate variations, azimuth variations,
Although the individual evaluation methods, usage, and grading of radial variation and radial variation have been described, grading by other evaluation methods may also be used and the same effects as in the above embodiments can be achieved. Further, in the magnetization correction of the geomagnetic sensor according to this embodiment, the X and Y component output values before and after the azimuth change are used as raw coordinate points, but the average coordinate point of the averaged X and Y component output values may be used.

【発明の効果】【Effect of the invention】

以上のようにこの発明によれば、地磁気を利用した第1
の方位センサのX、Yなる成分出力値。 検出した絶対方位と、地磁気以外で車両の方位を検出す
る第2の方位センサの方位変化角の現在値を含む過去何
個か分のデータを基に座標、方位。 半径データの各バラツキを対象として演算部で総合評価
し、前記第1の方位センサのデータに検出精度の等級を
配分するようにしたので、夫々、外乱磁気を含む磁気乱
れの大きさ、外乱磁気の大きさ、方位の乱れの大きさの
観点から異端データを除去することができる効果がある
。更に前記3つのバラツキを任意に組み合わせて評価す
ることにより、1つのバラツキの評価では除去できない
異端データが除去でき、車両の進行方位や第1の方位セ
ンサの着磁補正などの処理が適確に行えるようになる効
果がある。また、第1の方位センサのデータに検出精度
の等級を付けたので、等級に応じた地磁気方位センサの
データの使い分け(又は重み付け)が容易になることや
、第1の方位センサのデータを処理する上での管理が簡
単に、しかも確実にできるなどの効果がある。
As described above, according to the present invention, the first
The X and Y component output values of the direction sensor. Coordinates and orientation based on several past data including the detected absolute orientation and the current value of the orientation change angle of the second orientation sensor that detects the vehicle orientation using methods other than geomagnetism. The calculation unit comprehensively evaluates each variation in the radius data and assigns a detection accuracy grade to the data of the first orientation sensor. This has the effect of being able to remove heretical data from the viewpoint of the size of the azimuth and the size of the azimuth disturbance. Furthermore, by evaluating any combination of the above three variations, it is possible to remove irregular data that cannot be removed by evaluating a single variation, and it is possible to accurately perform processes such as the vehicle heading direction and the magnetization correction of the first direction sensor. It has the effect of making you able to do it. In addition, since the data of the first direction sensor is graded in terms of detection accuracy, it is easy to use (or weight) the data of the geomagnetic direction sensor according to the grade, and it is possible to process the data of the first direction sensor. This has the effect of making management easier and more reliable.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例による車両位置検出装置の
構成を示すブロック図、第2図(イ)〜(ハ)はバラツ
キ対象の評価説明図、第3図は一例としてバラツキ評価
で使う評価基準値の説明図、第4図は安定値抽出の等縁
付けの説明図、第5図及び第6図はこの発明の動作を示
すフローチャート、第7図は方位変化前後のX、Y成分
出力値と車両旋回角の説明図、第8図は従来の車両検出
装置における着磁補正の構成図、第9図は方位変化にお
ける地磁気方位センサの出力変化説明図、第1O図(イ
)は地磁気方位センサの出力変化及び演算説明図、同図
(II)は左右車輪速センサによって求めた車両の回転
角説明図、同図(ハ)(ニ)は車両の方位変化説明図で
ある。 図において、1は地磁気方位センサ(第1の方位センサ
)、2は車輪速センサ(第2の方位センサ) 3は走行距離センサ、 5は演算部である。 なお、 図中、 同一符号は同一、 又は相当部分を 示す。
Fig. 1 is a block diagram showing the configuration of a vehicle position detection device according to an embodiment of the present invention, Figs. 2 (a) to (c) are illustrations for explaining evaluation of a variation target, and Fig. 3 is used for variation evaluation as an example. An explanatory diagram of evaluation reference values, Fig. 4 is an explanatory diagram of equal margining for stable value extraction, Figs. 5 and 6 are flowcharts showing the operation of the present invention, and Fig. 7 is the X and Y component output before and after the direction change. An explanatory diagram of values and vehicle turning angles, Figure 8 is a configuration diagram of magnetization correction in a conventional vehicle detection device, Figure 9 is an explanatory diagram of output changes of the geomagnetic azimuth sensor when the direction changes, and Figure 1O (a) is a diagram of the geomagnetic field. Figure (II) is an explanatory diagram of the rotation angle of the vehicle determined by the left and right wheel speed sensors, and (C) and (D) are diagrams explanatory of the change in the orientation of the vehicle. In the figure, 1 is a geomagnetic azimuth sensor (first azimuth sensor), 2 is a wheel speed sensor (second azimuth sensor), 3 is a travel distance sensor, and 5 is a calculation unit. In addition, the same symbols in the figures indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】[Claims]  地磁気を利用した第1の方位センサのX、Y成分出力
値、及び検出した絶対方位と、前記地磁気以外で車両の
方位を検出する第2の方位センサの方位変化角の現在値
を含む過去何個か分のデータを基に、座標、方位、半径
の夫々のデータの各バラツキを評価対象として演算部で
総合評価し、前記第1の方位センサのデータに検出精度
の等級を付し、前記座標バラツキは、現在値を含めた過
去何個か分のX、Y座標点を移動平均した平均座標点と
平均に使った個々の座標点間の大きさと、第1の方位セ
ンサの方位円半径の任意の設定値の比として評価し、前
記方位バラツキは、現在値を含めた過去何個か分の絶対
方位の方位変化角と第2の方位センサで検出した方位変
化角の夫々の絶対値を移動平均した両平均値の差の大き
さをもって評価し、前記半径バラツキは、第1の方位セ
ンサの方位円半径の任意の設定値と現在値の大きさの比
として評価するようにした地磁気方位センサの安定値抽
出方法。
Past information including the X and Y component output values of the first azimuth sensor that uses geomagnetism, the detected absolute azimuth, and the current value of the azimuth change angle of the second azimuth sensor that detects the azimuth of the vehicle using a method other than the geomagnetism. Based on the individual data, the arithmetic unit performs a comprehensive evaluation using the dispersion of each data of coordinates, direction, and radius as an evaluation target, and assigns a detection accuracy grade to the data of the first direction sensor. The coordinate variation is the average coordinate point obtained by moving the moving average of several past X and Y coordinate points including the current value, the size between the individual coordinate points used for the average, and the radius of the azimuth circle of the first azimuth sensor. The azimuth variation is calculated as the ratio of the azimuth change angle of the past several absolute azimuths including the current value and the respective absolute values of the azimuth change angle detected by the second azimuth sensor. The radial variation is evaluated as the ratio between the arbitrary set value and the current value of the radius of the azimuth circle of the first azimuth sensor. Stable value extraction method for direction sensor.
JP9337690A 1990-04-09 1990-04-09 Stable value extracting method for earth magnetism azimuth sensor Pending JPH03291514A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9337690A JPH03291514A (en) 1990-04-09 1990-04-09 Stable value extracting method for earth magnetism azimuth sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9337690A JPH03291514A (en) 1990-04-09 1990-04-09 Stable value extracting method for earth magnetism azimuth sensor

Publications (1)

Publication Number Publication Date
JPH03291514A true JPH03291514A (en) 1991-12-20

Family

ID=14080588

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9337690A Pending JPH03291514A (en) 1990-04-09 1990-04-09 Stable value extracting method for earth magnetism azimuth sensor

Country Status (1)

Country Link
JP (1) JPH03291514A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007240194A (en) * 2006-03-06 2007-09-20 Japan Radio Co Ltd Azimuth measuring device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007240194A (en) * 2006-03-06 2007-09-20 Japan Radio Co Ltd Azimuth measuring device

Similar Documents

Publication Publication Date Title
Li et al. A reliable fusion methodology for simultaneous estimation of vehicle sideslip and yaw angles
CN107289930B (en) Pure inertial vehicle navigation method based on MEMS inertial measurement unit
WO1993023721A1 (en) Calibration method for a relative heading sensor
CN105718710A (en) Driving behavior analysis method and equipment
WO2018214226A1 (en) Unmanned vehicle real-time posture measurement method
JPH03291514A (en) Stable value extracting method for earth magnetism azimuth sensor
JPH05215553A (en) Navigation apparatus
JPH03291516A (en) Stable value extracting method for earth magnetism azimuth sensor
JP2677390B2 (en) Vehicle azimuth correction device
JP2723651B2 (en) Magnetization correction method for geomagnetic bearing sensor
JP2003508737A (en) Apparatus and method for accurately measuring inertial operation data of a vehicle
JPH0634379A (en) Navigation device
JPH0633368Y2 (en) Car navigation system
JP3682091B2 (en) Current position calculation system and current position calculation method
JP3868058B2 (en) Car navigation system
JP3660392B2 (en) Current position calculation system and current position calculation method
JPH0769181B2 (en) Vehicle direction detector
JPH0690040B2 (en) Vehicle position detection device
JPS63172917A (en) Vehicle position detector
JPH05297799A (en) Vehicle advance azimuth correcting device
JPS61147104A (en) Azimuth detecting device for vehicle
JP2696410B2 (en) Map matching method
JPH0633369Y2 (en) Car navigation system
Juhant et al. Analysis of high dynamic car manoeuvres using two types of lever-arm correction
JPH03148009A (en) Azimuth detecting apparatus mounted in vehicle