JPH03291371A - Thin film formation - Google Patents

Thin film formation

Info

Publication number
JPH03291371A
JPH03291371A JP40777390A JP40777390A JPH03291371A JP H03291371 A JPH03291371 A JP H03291371A JP 40777390 A JP40777390 A JP 40777390A JP 40777390 A JP40777390 A JP 40777390A JP H03291371 A JPH03291371 A JP H03291371A
Authority
JP
Japan
Prior art keywords
substrate
thin film
plumes
target
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP40777390A
Other languages
Japanese (ja)
Inventor
Satoru Takano
悟 高野
Noriyuki Yoshida
葭田 典之
Chikushi Hara
原 築志
Kiyoshi Okaniwa
岡庭 潔
Takahiko Yamamoto
隆彦 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP40777390A priority Critical patent/JPH03291371A/en
Publication of JPH03291371A publication Critical patent/JPH03291371A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To stably produce a thin film having superior crystallinity hy measuring the state of excited particles in plumes and moving a substrate to the optimum position according to the result of the above measurement at the time of forming a thin film on a substrate by means of plumes by a laser ablation method. CONSTITUTION:A target 3 is disposed in a vacuum chamber 2, and the target 3 is irradiated with laser light from a laser generator 1 via a condenser lens 11 and a window material 12 to produce plumes, by which a thin film is formed on a substrate 5. At this time, the plumes in the vicinity of the substrate 5 are received via a window material 13 by an optical system device 6 and the resulting received light is sent via an optical fiber 14 a spectroscope 7 and a computer 8, where the state of excited particles in the plumes is measured. Signals according to the result of spectrometric measurement are sent to substrate holder driving devices 9, 10, by which the position of the substrate 5 is regulated by moving the substrate 5 vertically and horizontally so that the substrate 5 always shows a measurement result fitted to the result of the initial spectrometric measurement in the course of film formation. By this method, the thin films always having superior characteristics can be obtained even if thin film formation is continuously carried out for a long time.

Description

【発明の詳細な説明】[Detailed description of the invention]

[0001] [0001]

【産業上の利用分野】[Industrial application field]

この発明は、半導体集積回路、表面弾性波素子およびド
リルチップ等の薄膜や酸化物超電導薄膜を製造するため
の方法に関するものであり、特に連続薄膜製造や長尺体
への連続薄膜製造に適する薄膜製造方法に関するもので
ある。 [0002]
The present invention relates to a method for manufacturing thin films such as semiconductor integrated circuits, surface acoustic wave devices, drill tips, etc., and oxide superconducting thin films, and is particularly suitable for manufacturing continuous thin films and continuous thin film manufacturing on elongated bodies. This relates to a manufacturing method. [0002]

【従来の技術】[Conventional technology]

レーザアブレーション法は、近年酸化物超電導薄膜の製
造方法として、多くの利点を有することが明らかになり
つつある(Applied  PhysicsLett
ers、53,6,517−519 (1988)およ
びAppliedPhysics  Letters、
 54.6.578−580 (1989)など)。 [0003] また、レーザアブレーション法は、■ターゲットと膜の
組成ずれがない、■低温でかつ高速の成膜が可能である
という特徴を有しており、分光学的手法によりそのメカ
ニズムが検討されている(Applied  Phys
ics  Letters、54,2,179−181
 (1989)およびApplied  Physic
s  Letters、54,3,280−282  
(1989)など)。 [0004] これらの研究により、ターゲットから飛び出した粒子が
光化学的に励起され、励起された粒子が基板に到達して
膜を形成するため、低温でかつ高速の成膜が可能である
ことが判明しつつある。 [0005]
In recent years, it has become clear that the laser ablation method has many advantages as a method for producing oxide superconducting thin films (Applied Physics Lett.
ers, 53, 6, 517-519 (1988) and Applied Physics Letters,
54.6.578-580 (1989), etc.). [0003] In addition, the laser ablation method has the following characteristics: (1) There is no compositional deviation between the target and the film, (2) It is possible to form a film at low temperature and at high speed, and the mechanism thereof has been investigated using spectroscopic methods. (Applied Phys.
ics Letters, 54, 2, 179-181
(1989) and Applied Physics
s Letters, 54, 3, 280-282
(1989) etc.). [0004] These studies have revealed that particles ejected from the target are photochemically excited, and the excited particles reach the substrate to form a film, making it possible to form films at low temperatures and at high speeds. It is being done. [0005]

【発明が解決しようとする課題】[Problem to be solved by the invention]

このようなレーザアブレーション法においては、基板上
に繰返し薄膜を形成させたり、あるいは長時間にわたり
薄膜を基板上に形成させる場合に、得られる薄膜の結晶
性が時間とともに変動し、安定して良好な特性の薄膜を
得ることができないという問題があった。 [0006] この発明の目的は、このようなレーザアブレーション法
において、長時間連続して薄膜を形成させても、常に良
好な特性を有する薄膜を製造することのできる方法を提
供することにある。 [0007]
In such laser ablation methods, when a thin film is repeatedly formed on a substrate or when a thin film is formed on a substrate over a long period of time, the crystallinity of the obtained thin film changes over time, making it difficult to maintain a stable and good quality film. There was a problem that a thin film with specific characteristics could not be obtained. [0006]An object of the present invention is to provide a method that can consistently produce a thin film with good properties even if the thin film is continuously formed for a long time in such a laser ablation method. [0007]

【課題を解決するための手段】[Means to solve the problem]

本発明者は、上記のようなレーザアブレーション法に従
う従来の薄膜製造方法の問題点を解消するため、種々検
討した結果、レーザアブレーション法により薄膜を長時
間連続して製造する場合、良好な結晶特性を得ることの
できる基板の位置が時間とともに変動していることを見
出する工程と、前記発明をなすに至った。 [0008] すなわち、この発明は、レーザアブレーション法に従い
、ターゲットにレーザを照射してプルームを発生させ、
このプルームによって基板上に薄膜を形成する方法であ
り、プルーム内の励起粒子の状態を測定する工程と、測
定結果に応じて基板を最適な位置に移動させる工程とを
備えている。 [0009] ここで、プルームとは、ターゲットに固有のプラズマを
いい、プラスイオンと電子とが併存した状態をいう。 [0010] レーザアブレーション法により長時間連続して薄膜を製
造した場合に良好な特性を得ることのできる基板位置が
時間とともに変動する原因は、明らかではないが、浸蝕
によるターゲット表面の変化、レーザガスの劣化による
ビーム形状や分布の変化、振動や熱膨張によるレンズお
よび真空チャンバの変形や移動等が考えられる。 [0011] このような良好な特性を得ることのできる基板の位置は
、プルーム内の励起粒子の分布や、記載に対する励起粒
子の比率の分布の変動に伴い変動することを見い出する
工程と、前記発明が完成された。 [0012] プルーム内の励起粒子の状態は、たとえば分光計測によ
って測定することができる。またプルーム内の記載の状
態は、たとえばレーザ分光および/または質量分析によ
って測定することができる。 [0013] この発明の製造方法により酸化物超電導体の薄膜を製造
することができるが、この発明は、酸化物超電導体に限
定されるものではなく、その他の薄膜にも適用し得るも
のである。 [0014]
In order to solve the problems of the conventional thin film manufacturing method according to the laser ablation method as described above, the present inventor conducted various studies and found that when thin films are manufactured continuously for a long time by the laser ablation method, good crystal properties can be obtained. The process of finding out that the position of the substrate that can be obtained changes with time, and the invention has been achieved. [0008] That is, the present invention irradiates a target with a laser to generate a plume according to a laser ablation method,
This method forms a thin film on a substrate using this plume, and includes the steps of measuring the state of excited particles within the plume and moving the substrate to an optimal position according to the measurement results. [0009] Here, the plume refers to plasma specific to the target, and refers to a state in which positive ions and electrons coexist. [0010] The reason why the substrate position, where good characteristics can be obtained when manufacturing a thin film continuously for a long time using the laser ablation method, changes over time is not clear, but it is due to changes in the target surface due to erosion, changes in the laser gas, etc. Possible causes include changes in beam shape and distribution due to deterioration, and deformation and movement of the lens and vacuum chamber due to vibration and thermal expansion. [0011] A step of discovering that the position of the substrate at which such good characteristics can be obtained changes with changes in the distribution of excited particles in the plume and the distribution of the ratio of excited particles to the description; The invention has been completed. [0012] The state of the excited particles within the plume can be measured, for example, by spectrometry. The described conditions within the plume can also be determined, for example, by laser spectroscopy and/or mass spectrometry. [0013] Although a thin film of an oxide superconductor can be produced by the production method of the present invention, the present invention is not limited to oxide superconductors and can be applied to other thin films. . [0014]

【作用】[Effect]

この発明の製造方法は、プルーム内の励起粒子の状態が
初期の状態から変化しても、初期の状態と同等なところ
へ基板を移動させることにより、薄膜の時性を常に一定
に保つものである。 [0015] プルーム内の励起粒子の状態は、分光計測により測定す
ることができる。特定発光波長における発光強度は、そ
の波長の発光を示す粒子濃度にほぼ比例する。 たとえばY−Ba−Cu−〇系酸化物超電導体の場合に
は、レーザアブレーション法のプルーム内で発生する励
起粒子としては、Y、Cu、Ba   YO等の励起粒
子が観測される。 [0016] この発明においては、必ずしも記載の状態を測定せずど
もよいが、記載の状態を測定するには、たとえばレーザ
分光や質量分析等の方法により、記載濃度や、記載と励
起粒子の和として測定することができる。この記載濃度
や、記載と励起粒子の和は、粒子ごとにそれぞれ別個に
測定することができる。このため、たとえばY−Ba−
Cu−0系酸化物超電導体の場合には、YSBa、Cu
の濃度をそれぞれ測定することができる。 [00i7] この発明の製造方法においては、分光計測だけで、励起
粒子の状態のみを測定してもよいが、励起粒子と記載の
双方を測定する方が良好な結果が得られより好ましい。 この理由については明らかでないが、記載が比較的均一
に分布しているからかもしれない。 [0018] 分光計測の測定結果は、特定の発光波長の発光強度を1
点のみの信号としてもよいし、複数点の測定値を信号と
してもよい。 [0019] また記載あるいは励起粒子と記載の総和は、特定の元素
濃度に対応する信号を使用してもよいし、各元素濃度の
総和を使用してもよい。なお、各元素濃度の総和として
は、基板近傍に配置した膜厚計の信号を使用してもよい
。 [0020]
The manufacturing method of this invention keeps the temporality of the thin film constant by moving the substrate to a position equivalent to the initial state even if the state of the excited particles in the plume changes from its initial state. be. [0015] The state of excited particles within the plume can be measured by spectrometry. The emission intensity at a specific emission wavelength is approximately proportional to the concentration of particles exhibiting emission at that wavelength. For example, in the case of a Y-Ba-Cu-O-based oxide superconductor, excited particles such as Y, Cu, and Ba YO are observed as excited particles generated within the plume of laser ablation. [0016] In the present invention, it is not necessary to measure the described state, but in order to measure the described state, for example, by using a method such as laser spectroscopy or mass spectrometry, the described concentration or the sum of the described state and the excited particles can be measured. It can be measured as This stated concentration and the sum of the stated and excited particles can be measured separately for each particle. For this reason, for example, Y-Ba-
In the case of Cu-0 based oxide superconductor, YSBa, Cu
The concentration of each can be measured. [00i7] In the manufacturing method of the present invention, only the state of the excited particles may be measured by spectroscopic measurement, but it is more preferable to measure both the excited particles and the description since better results can be obtained. The reason for this is not clear, but it may be because the descriptions are distributed relatively evenly. [0018] The measurement results of the spectroscopic measurement indicate that the emission intensity of a specific emission wavelength is 1
It is good also as a signal of only a point, and good also as a signal of the measured value of multiple points. [0019] Further, for the description or the sum of the excited particles and the description, a signal corresponding to a specific element concentration may be used, or the sum of the concentrations of each element may be used. Note that as the sum of the concentrations of each element, a signal from a film thickness meter placed near the substrate may be used. [0020]

【実施例】【Example】

図1は、この発明の詳細な説明するための装置を示す概
略構成図である。図1を参照して、真空チャンバ2内に
はターゲット3が設置されている。真空チャンバ2の外
部にはレーザ発生装置1が設置されており、レーザ発生
装置1からのレーザ光は集光レンズ11および真空チャ
ンバ2に設けられた窓材12を通りターゲット3に照射
される。 [0021] ターゲット3と対向する位置には、基板台4が設けられ
ており、基板台4には基板5が載せられている。基板台
4は、基板を加熱するたのヒータを内蔵している。基板
台4は、基板台駆動装置10により保持されている。こ
の基板台駆動装置10は、基板5をターゲット3の面と
平行な方向に駆動するための駆動機構である。またこの
基板台駆動装置10は基板台駆動装置9に取付けられて
いる。基板台駆動装置9は、基板5をターゲット3の面
と垂直な方向に駆動するための駆動機構である。基板5
近傍のプルームを分光計測するための光学系装置6は真
空チャンバ2の外部に設けられており、真空チャンバ2
の窓材13を通過した光が光学系装置6に受光される。 光学系装置6で受光された光は、光ファイバ14を通り
分光器7に送られる。分光器7にはコンピュータ8が接
続されており、分光計測の結果に応じた信号を、基板台
駆動装置9および基板台駆動装置10に送る。基板台駆
動装置9は、基板5をターゲット3の面に垂直な方向に
駆動し、基板台駆動装置10は基板5をターゲット3の
面に平行の方向に駆動する。 [0022] 図1に示す装置では、たとえば初期において基板5近傍
のプルームの分光計測を行ない、成膜中に常に基板5が
初期の分光計測結果と適合または最も近い計測結果を示
すように、基板5の位置を調整するように移動する。 [0023] 分光計測と合わせ、レーザ分光法および/または質量分
析法等の基底状態にある記載も分析可能な手段を使用す
れば、励起粒子と記載の比率を測定することができ、さ
らに高精度な制御を行なうことができる。また分光法と
単なる膜厚計を用いてもよい。 [0024] 図1に示すような装置を用いて、Y−Ba−Cu−0系
酸化物超電導体の薄膜をレーザアブレーション法により
基板上に製造した。製造条件は以下のようにして製造し
た。 [0025] ターゲット:直径100mmYIBa2Cu307−δ
焼結体レーザ:KrFエキシマレーザ(248nm)エ
ネルギ密度:2J/cm2 繰返し周波数: IHz ピーク幅:15ns 酸素圧:100mtorr 基板温度ニア00℃ 成膜時間:3000オングストローム/h基板:MgO
(100) この発明に従う薄膜製造方法の実施例を以下に示す。 [実施例1] この実施例では、励起状態のY   Ba   Cuの
発光分光のみを行ない、初期の状態のそれぞれの発光強
度を■Y” (i)   Ba  (i)      
。u(1)■ +   および工   とし 成膜合計時間X時間後の発光強度をI+    I  
+   および工Y  (x)   Ba  (x) 
     Cu(x)としたとき、以下の式で表わされ
るFが最小となるように基板の位置を移動させた。 [0026]
FIG. 1 is a schematic configuration diagram showing an apparatus for explaining the present invention in detail. Referring to FIG. 1, a target 3 is installed within a vacuum chamber 2. A laser generator 1 is installed outside the vacuum chamber 2, and a laser beam from the laser generator 1 passes through a condenser lens 11 and a window member 12 provided in the vacuum chamber 2, and is irradiated onto the target 3. [0021] A substrate stand 4 is provided at a position facing the target 3, and a substrate 5 is placed on the substrate stand 4. The substrate stand 4 has a built-in heater for heating the substrate. The substrate stand 4 is held by a substrate stand driving device 10. This substrate stage driving device 10 is a driving mechanism for driving the substrate 5 in a direction parallel to the surface of the target 3. Further, this substrate stand driving device 10 is attached to a substrate stand driving device 9. The substrate stage driving device 9 is a driving mechanism for driving the substrate 5 in a direction perpendicular to the surface of the target 3. Board 5
An optical system device 6 for spectroscopically measuring a plume in the vicinity is provided outside the vacuum chamber 2.
The light passing through the window material 13 is received by the optical system device 6. The light received by the optical system device 6 is sent to the spectrometer 7 through the optical fiber 14. A computer 8 is connected to the spectrometer 7 , and sends a signal according to the result of spectroscopic measurement to a substrate table driving device 9 and a substrate table driving device 10 . The substrate stage driving device 9 drives the substrate 5 in a direction perpendicular to the surface of the target 3, and the substrate stage driving device 10 drives the substrate 5 in a direction parallel to the surface of the target 3. [0022] In the apparatus shown in FIG. 1, for example, in the initial stage, spectroscopic measurement of the plume near the substrate 5 is performed, and during film formation, the substrate 5 is always measured so that the substrate 5 shows the measurement result that matches or is closest to the initial spectroscopic measurement result. Move to adjust the position of 5. [0023] In addition to spectroscopic measurement, if a means that can also analyze descriptions in the ground state, such as laser spectroscopy and/or mass spectrometry, is used, the ratio of excited particles to descriptions can be measured, and even more precisely. control. Alternatively, spectroscopy and a simple film thickness meter may be used. [0024] Using an apparatus as shown in FIG. 1, a thin film of a Y-Ba-Cu-0 based oxide superconductor was manufactured on a substrate by a laser ablation method. The manufacturing conditions were as follows. [0025] Target: 100 mm diameter YIBa2Cu307-δ
Sintered laser: KrF excimer laser (248 nm) Energy density: 2 J/cm2 Repetition frequency: IHz Peak width: 15 ns Oxygen pressure: 100 mtorr Substrate temperature near 00°C Film forming time: 3000 angstroms/h Substrate: MgO
(100) Examples of the thin film manufacturing method according to the present invention are shown below. [Example 1] In this example, only the emission spectroscopy of Y Ba Cu in the excited state was performed, and the respective emission intensities in the initial state were expressed as ■Y'' (i) Ba (i)
. u(1)■ + and
+ and Y (x) Ba (x)
The position of the substrate was moved so that, when Cu(x), F expressed by the following formula was minimized. [0026]

【数1】 計測および基板の位置の制御は、1時間おきに実施した
。基板の移動は、前後方向−水平力同一上下方向で、各
1mmずつ移動させてFの最小値を求めた。 [0027] [実施例2] この実施例では、発光分光により励起されたY の発光
強度と、レーザ分光によるYの発光強度を測定した。上
記実施例1と同様の方法によされるFの値が最小となる
ように基板の位置を移動させた。 [0028]
[Equation 1] Measurement and control of the substrate position were performed every hour. The substrate was moved in the longitudinal direction and in the vertical direction with the same horizontal force by 1 mm each to determine the minimum value of F. [0027] [Example 2] In this example, the emission intensity of excited Y 2 by emission spectroscopy and the emission intensity of Y by laser spectroscopy were measured. The position of the substrate was moved so that the value of F determined by the same method as in Example 1 was minimized. [0028]

【数2】 す、以下の式で示 但し、ここで工′はレーザ分光による発光強度を示す。 [0029] [比較例1] 比較のため基板1を移動させずに薄膜を製造した。 [0030] 実施例1および2ならびに比較例1において、薄膜製造
の繰返しの10回ごとに、DC4端子法により、77.
3に°の臨界電流密度を測定した。なお、測定を行なわ
ない場合には、ダミー基板を使用して9時間連続成膜を
行なった。 [00313 得られた臨界電流密度のデータを図2に示す。 図2からも明らかなように、この発明に従う実施例1お
よび2で製造された薄膜は、時間が経過しても、初期の
状態と同様に高い臨界電流密度を示している。 これに対し、基板1を制御しない比較例1の薄膜は、時
間の経過とともに大幅に臨界電流密度が低下している。 [0032] [実施例3] レーザ繰返し周波数を5Hz、酸素圧を200mtor
r、成膜時間を3000A715分とした以外は、実施
例1と同じ条件でY−Ba−Cu−0系酸化物超電導体
の薄膜を製造した。基板を、ターゲットのレーザ照射部
を通るターゲットに垂直な軸上で移動するように設定し
た。 [0033] レーザアブレーション法により発生したプラズマのスペ
クトルは、凸レンズで集光し分析した。凸レンズの焦点
を基板中心の真上10mmの位置に合わせるように、凸
レンズを基板台とともに移動させる機構を設けた。 [0034] 波長569.78〜576.43nmのスペクトル強度
の総和(YOおよびBaOの発光スペクトル)と422
.04±0.1nm(Yの発光スペクトル)の比■56
9.78 576、43nm/■422.04を求めた
・[0035] ■569.78〜5□6.43nm/■4゜2. o4
> 15の場合は基板をターゲットに近づけるように、
■569.78〜576、43nm/■422.04〈
10の場合は、基板をターゲットから遠ざけるように駆
動した。 [0036] 連続して10枚の基板に成膜を行なったところ、1ツト
一基板間距離(各基板の成膜終了時の値で代表)密度が
表1の結果となった。 [0037]
[Formula 2] is expressed by the following formula, where x' represents the intensity of light emitted by laser spectroscopy. [0029] [Comparative Example 1] For comparison, a thin film was manufactured without moving the substrate 1. [0030] In Examples 1 and 2 and Comparative Example 1, 77.0% was measured by the DC 4-terminal method every 10 times of thin film production.
The critical current density at 3° was measured. Note that when measurements were not performed, continuous film formation was performed for 9 hours using a dummy substrate. [00313 The obtained critical current density data is shown in FIG. 2. As is clear from FIG. 2, the thin films manufactured in Examples 1 and 2 according to the present invention exhibit high critical current densities as in the initial state even after time passes. On the other hand, in the thin film of Comparative Example 1 in which the substrate 1 was not controlled, the critical current density decreased significantly over time. [0032] [Example 3] Laser repetition frequency is 5 Hz, oxygen pressure is 200 mtor
A thin film of Y-Ba-Cu-0 based oxide superconductor was manufactured under the same conditions as in Example 1 except that the film forming time was 3000A715 minutes. The substrate was set to move on an axis perpendicular to the target passing through the laser irradiation portion of the target. [0033] The spectrum of plasma generated by the laser ablation method was collected and analyzed using a convex lens. A mechanism was provided to move the convex lens together with the substrate stand so that the focus of the convex lens was set at a position 10 mm directly above the center of the substrate. [0034] The sum of the spectral intensities of wavelengths 569.78 to 576.43 nm (emission spectra of YO and BaO) and 422
.. 04±0.1 nm (Y emission spectrum) ratio ■56
9.78 576, 43nm/■422.04 was determined.・[0035] ■569.78~5□6.43nm/■4°2. o4
> In the case of 15, move the board closer to the target.
■569.78~576, 43nm/■422.04〈
In the case of No. 10, the substrate was driven away from the target. [0036] When films were continuously formed on 10 substrates, the density of the distance between each substrate (representative value at the end of film formation on each substrate) was as shown in Table 1. [0037]

【表1】 0枚連続成膜前後のターゲ と77.3にでの臨界電流 [比較例2] 実施例3で、1回目のターゲット−基板間距離63mm
で111回目成績を実施した。基板の移動は行なわなか
った。臨界電流密度は2.3X104A/cm2にまで
低下した。 [0038] [実施例4] 図1に示すような装置を用いて、B i −3r−Ca
−Cu−0系酸化物超電導体の薄膜をレーザアブレーシ
ョン法によりMgO(110)面上に製造した。製造条
件を以下に示した。 [0039] ターゲット:直径75 mrnB i2 S r 2 
Ca 2 Cu 3 oxレーザ:KrFエキシマレー
ザ(248nm)エネルギ密度=3.2J/Cm2 繰返し周波数: 5Hz 酸素圧:50mtorr 基板温度ニア00℃ 成膜時間:5000オングストロ一ム720分波長55
0〜580nmのスペクトル強度の総和(主として酸化
物分子の発光スペクトル)と400〜430nm(主と
して金属原子またはイオンの発光スペクトル)の比■ 
 〜   /■  〜   を求めた。 550 580nm   400 430nm[004
0] I5.。〜580nm /I400〜43onm〉1.
5の場合は基板をターゲットを近づけるように、工  
〜   /I  〜   く1.Oの場合は、基板をタ
ーゲラ550 580nm   400 430nmト
から遠ざけるように駆動した。 [0041] 連続して5枚の基板に成膜を行なったところ、5枚連続
成膜前後のターゲット−基板間距離(各基板の成膜終了
時の値で代表)とゼロ抵抗温度が表2の結果となった。 [0042]
[Table 1] Target before and after continuous film formation of 0 sheets and critical current at 77.3 [Comparative Example 2] In Example 3, the first target-substrate distance was 63 mm.
The results were conducted for the 111th time. No movement of the substrate was performed. The critical current density decreased to 2.3×104 A/cm2. [0038] [Example 4] Using the apparatus shown in FIG. 1, B i -3r-Ca
A thin film of a -Cu-0 based oxide superconductor was fabricated on an MgO (110) surface by laser ablation. The manufacturing conditions are shown below. [0039] Target: Diameter 75 mrnB i2 S r 2
Ca 2 Cu 3 ox laser: KrF excimer laser (248 nm) Energy density = 3.2 J/Cm2 Repetition frequency: 5 Hz Oxygen pressure: 50 mtorr Substrate temperature near 00°C Film forming time: 5000 angstroms 720 minutes wavelength 55
The ratio of the sum of the spectral intensities from 0 to 580 nm (mainly the emission spectrum of oxide molecules) and 400 to 430 nm (mainly the emission spectrum of metal atoms or ions)
~ /■ ~ was sought. 550 580nm 400 430nm [004
0] I5. . ~580nm/I400~43onm>1.
In case of 5, move the board closer to the target.
~ /I ~ 1. In the case of O, the substrate was driven away from the target laser by 550 nm, 580 nm, 400 nm, and 430 nm. [0041] When film formation was performed on five substrates in succession, the target-substrate distance (representative value at the end of film formation for each substrate) and zero resistance temperature before and after continuous film formation on five substrates are shown in Table 2. The result was [0042]

【表2】 [比較例3] 実施例4で、1回目のターゲット−基板間距離56mm
とし6回目の成膜を実施した。基板移動は行なわなかっ
た。ゼロ抵抗温度は、56Kにまで低下した。 [0043]
[Table 2] [Comparative Example 3] In Example 4, the first target-substrate distance was 56 mm.
Then, the sixth film formation was performed. No substrate movement was performed. Zero resistance temperature decreased to 56K. [0043]

【発明の効果】【Effect of the invention】

以上のことから明らかなように、この発明に従う薄膜製
造方法によれば、良好の結晶時性を有する薄膜を安定し
て製造することができる。特に多数回または長時間にわ
たり薄膜を製造する場合に有用である。したがって、長
尺体、たとえばテープ状の基板上に酸化物超電導薄膜を
形成し、そらにその上に銅安定化層を形成した酸化物超
電導テープ等を製造するのに有効である。 [0044] 実施例では、超電導薄膜の製造を例にして説明したが、
この発明の製造方法は超電導薄膜の製造に限定されるも
のではなく、その他の薄膜の製造にも適用されるもので
ある。特に、低温でかつ高速の成膜が要求される製品に
有用なものである。
As is clear from the above, according to the thin film manufacturing method according to the present invention, a thin film having good crystallization time can be stably manufactured. This is particularly useful when manufacturing thin films many times or over a long period of time. Therefore, it is effective for manufacturing an oxide superconducting tape, etc., in which an oxide superconducting thin film is formed on a long body, for example, a tape-shaped substrate, and a copper stabilizing layer is formed thereon. [0044] In the example, the manufacturing of a superconducting thin film was explained as an example, but
The manufacturing method of the present invention is not limited to manufacturing superconducting thin films, but can also be applied to manufacturing other thin films. It is particularly useful for products that require low-temperature and high-speed film formation.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】 この発明の説明のための装置を示す概略構成図である。[Figure 1] FIG. 1 is a schematic configuration diagram showing an apparatus for explaining the present invention.

【図2】 この発明に従い製造されるY−Ba−Cu−0系酸化物
超電導薄膜の臨界電流密度の時間的な変化を示す図であ
る。
FIG. 2 is a diagram showing temporal changes in critical current density of a Y-Ba-Cu-0 based oxide superconducting thin film produced according to the present invention.

【符号の説明】[Explanation of symbols]

レーザ発生装置 真空チャンバ ターゲット 基板台 基板 光学系装置 分光器 コンピュータ 基板台駆動装置 O基板台駆動装置 1 集光レンズ 2.13窓材 laser generator vacuum chamber target board stand substrate optical system equipment spectrometer Computer Board drive device O board stand drive device 1 Condensing lens 2.13 Window materials

【書類基】[Document base]

図面 drawing

【図1】[Figure 1]

【図2】[Figure 2]

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】レーザアブレーシヨン法に従い、ターゲッ
トにレーザを照射してプルームを発生させ、このプルー
ムによって基板上に薄膜を形成する方法であって、 前記プルーム内の励起粒子の状態を測定する工程と、前
記測定結果に応じて前記基板を最適な位置に移動させる
工程とを備える、薄膜製造方法。
1. A method according to a laser ablation method, in which a target is irradiated with a laser to generate a plume, and the plume forms a thin film on a substrate, the method comprising: measuring the state of excited particles within the plume; and a step of moving the substrate to an optimal position according to the measurement result.
【請求項2】前記プルーム内の励起粒子の状態とともに
非励起粒子の状態をも測定する、請求項1に記載の薄膜
製造方法。
2. The thin film manufacturing method according to claim 1, wherein the state of non-excited particles as well as the state of excited particles within the plume are measured.
【請求項3】前記プルーム内の励起粒子の状態を分光計
測によって測定する、請求項1に記載の薄膜製造方法。
3. The thin film manufacturing method according to claim 1, wherein the state of excited particles within the plume is measured by spectrometry.
【請求項4】前記プルーム内の非励起粒子の状態をレー
ザ分光および/または質量分析によって測定する、請求
項2に記載の薄膜製造方法。
4. The thin film manufacturing method according to claim 2, wherein the state of unexcited particles within the plume is measured by laser spectroscopy and/or mass spectrometry.
【請求項5】前記薄膜は超電導薄膜である、請求項1に
記載の薄膜製造方法。
5. The thin film manufacturing method according to claim 1, wherein the thin film is a superconducting thin film.
【請求項6】前記基板が長尺体である、請求項1に記載
の薄膜製造方法。
6. The thin film manufacturing method according to claim 1, wherein the substrate is a long body.
JP40777390A 1989-12-27 1990-12-27 Thin film formation Pending JPH03291371A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP40777390A JPH03291371A (en) 1989-12-27 1990-12-27 Thin film formation

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP1-343486 1989-12-27
JP34348689 1989-12-27
JP40777390A JPH03291371A (en) 1989-12-27 1990-12-27 Thin film formation

Publications (1)

Publication Number Publication Date
JPH03291371A true JPH03291371A (en) 1991-12-20

Family

ID=26577543

Family Applications (1)

Application Number Title Priority Date Filing Date
JP40777390A Pending JPH03291371A (en) 1989-12-27 1990-12-27 Thin film formation

Country Status (1)

Country Link
JP (1) JPH03291371A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06192821A (en) * 1991-03-26 1994-07-12 Toyo Eng Corp Laser pvd device
KR20030053101A (en) * 2001-12-22 2003-06-28 주식회사 포스코 Measurement apparatus for concentration of aluminum alloy using laser induced plasma
JP2010037615A (en) * 2008-08-06 2010-02-18 Sumitomo Electric Ind Ltd Thin film production method and thin film production device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06192821A (en) * 1991-03-26 1994-07-12 Toyo Eng Corp Laser pvd device
KR20030053101A (en) * 2001-12-22 2003-06-28 주식회사 포스코 Measurement apparatus for concentration of aluminum alloy using laser induced plasma
JP2010037615A (en) * 2008-08-06 2010-02-18 Sumitomo Electric Ind Ltd Thin film production method and thin film production device

Similar Documents

Publication Publication Date Title
DE4340752C2 (en) Device for producing a uniform thin film on a large substrate area using a laser
Creasy et al. Large carbon cluster ion formation by laser ablation of polyimide and graphite
KR920007850B1 (en) Plasma temperature measuring method and apparatus therefor
US7307727B2 (en) Method and apparatus for forming substrate for semiconductor or the like
Klini et al. Growth of ZnO thin films by ultraviolet pulsed-laser ablation: study of plume dynamics
JPH01122905A (en) Formation of oxide layer on substrate
JPH03291371A (en) Thin film formation
US5264412A (en) Laser ablation method for forming oxide superconducting thin films using a homogenized laser beam
Vase et al. Deposition, characterization, and laser ablation patterning of YBCO thin films
JP2001308009A (en) Non-single crystal film, substrate therewith method and device for manufacturing the same, inspection device and method of inspecting the same, thin-film transistor formed by use thereof, thin-film transistor array and image display device
Iembo et al. In situ diagnostics of pulsed laser deposition of ferroelectric Pb (Ti0. 48Zr0. 52) O3 on Si
TW200521424A (en) Impurity introducing method, impurity introducing apparatus, and electronic device produced by using the same
Oh et al. In situ diode laser absorption measurements of plasma species in a gaseous electronics conference reference cell reactor
Danev et al. Properties of vacuum-deposited polyimide films
JP3080096B2 (en) Fabrication method of large area thin film
JPH04296015A (en) Manufacture of semiconductor device
JPH11236666A (en) Film forming device and production of dielectric film
JP4545902B2 (en) Deposition method
Schuler Properties and characterisation of sputtered ZnO
Cervelli et al. In situ diagnostics of pulsed laser ablation through atomic oxygen absorption spectroscopy
Rodrigues et al. Ablation of molybdenum and niobium with a HyBrID copper laser
Rubahn et al. Excimer laser sputtering of mica surfaces: Mechanisms and applications
Yuhya et al. Optical spectroscopic study of the radio-frequency oxygen thermal plasma evaporated YBa2Cu3O7− x
Inoue et al. DIRECT WRITING OF THIN FILMS BY PYROLYTIC LASER CVD
JPH07307314A (en) Method of eliminating thin film on substrate surface by using pulse laser

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20000613