JPH03291328A - Production of formed part of metallic extra fine wire - Google Patents

Production of formed part of metallic extra fine wire

Info

Publication number
JPH03291328A
JPH03291328A JP9468490A JP9468490A JPH03291328A JP H03291328 A JPH03291328 A JP H03291328A JP 9468490 A JP9468490 A JP 9468490A JP 9468490 A JP9468490 A JP 9468490A JP H03291328 A JPH03291328 A JP H03291328A
Authority
JP
Japan
Prior art keywords
wire
ultra
fine wire
extra fine
fine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9468490A
Other languages
Japanese (ja)
Inventor
Takaaki Yuzutori
柚鳥 登明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP9468490A priority Critical patent/JPH03291328A/en
Publication of JPH03291328A publication Critical patent/JPH03291328A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Articles (AREA)
  • Wire Processing (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To improve the straightness of an extra fine wire by annealing a wiredrawn extra fine metallic wire while applying tensile load and then carrying out forming. CONSTITUTION:A metallic wire rod is wiredrawn into an extra fine wire of the prescribed diameter. Annealing treatment is applied to this extra fine wire while applying tensile load, by which straightness in the stage of wire can be improved. Subsequently, the above extra fine wire is formed into the pre scribed shape, or further, the above extra fine wire is subjected to plating with Ni, etc., and then to stress relief annealing treatment to remove residual strain and uniformize yield strength. As a result, forming precision at the time of forming into the prescribed shape can be improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、例えば液晶基板、半導体基板上に形成された
回路パターンの導通性検査装置に使用されるピンプロー
ブ(検査用触子)、該ピンプローブを弾性支持する微細
ばね、あるいはゴルフソ中フトの補強ワイヤ、釣り糸等
に採用される金属極細線成形品の製造方法に間し、特に
金属極細線を所定形状に成形する場合の成形精度を改善
して面歪を小さくできるようにした熱処理工程の改善に
関する。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to pin probes (inspection probes) used in continuity testing devices for circuit patterns formed on, for example, liquid crystal substrates and semiconductor substrates; We are developing methods for manufacturing fine springs that elastically support pin probes, reinforcing wires for golf softballs, fishing lines, etc., and we are particularly concerned with the precision of forming metal wires when molding them into predetermined shapes. This invention relates to an improvement in a heat treatment process that can reduce surface distortion.

〔従来の技術〕[Conventional technology]

金属極細線を所定形状に成形してなる上記ピンプローブ
等の金属極細線成形品の製造に当たっては、まず金属線
材を所定直径の極細線に伸線加工し、これを所定形状に
成形し、しかる後歪取り焼鈍等の熱処理を施すのが一般
的である。そして上記伸線加工には、金属線材をローラ
で挟圧しながら引っ張ることにより所定直径に伸線する
機械的方法が採用されている。
In manufacturing an ultra-fine metal wire molded product such as the above-mentioned pin probe, which is made by forming an ultra-fine metal wire into a predetermined shape, first the metal wire is drawn into an ultra-fine wire of a predetermined diameter, which is then formed into a predetermined shape. It is common to perform heat treatment such as post-strain annealing. The wire drawing process employs a mechanical method of drawing the metal wire to a predetermined diameter by pulling the metal wire while compressing it with rollers.

ところで液晶投写装置等に採用される液晶基板において
は、高画質化に対応するために画素数の増大化が進んで
おり、近年では30万西素を有する液晶基板が開発され
ており、また近い将来には80〜300万画素のものも
要請されると考えられている。そしてこの画素数の増大
に伴って液晶基板の回路パターン間のピッチも狭くなる
。従ってこのような回路パターンの高密度化に対応する
には、上記各ピンプローブのピンチを極めて小さくする
ことが必要となる。
By the way, in liquid crystal substrates used in liquid crystal projection devices, etc., the number of pixels is increasing in order to correspond to higher image quality, and in recent years, liquid crystal substrates with 300,000 pixels have been developed, It is thought that in the future, devices with 80 to 3 million pixels will be required. As the number of pixels increases, the pitch between circuit patterns on the liquid crystal substrate also becomes narrower. Therefore, in order to cope with such high density circuit patterns, it is necessary to make the pinch of each pin probe extremely small.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところが上記従来の製造方法による場合は、金属極細線
を細くするほど所定形状への成形精度の確保が困難とな
る問題がある。そのため例えば上記ピンプローブに使用
した場合、成形品の面歪により隣接するピンプローブと
干渉し易く、結局線径を小さくしてもピッチを狭くする
ことができず。
However, when using the above-mentioned conventional manufacturing method, there is a problem that the thinner the metal wire is, the more difficult it becomes to ensure the precision of forming it into a predetermined shape. Therefore, for example, when used in the above-mentioned pin probe, it tends to interfere with adjacent pin probes due to surface distortion of the molded product, and even if the wire diameter is reduced, the pitch cannot be narrowed.

上記高密度化に対応できない、このように成形精度の向
上が困難なのは、極細線に伸線加工した時点での該極細
線の真直度が十分でないためであると考えられる。
The reason why it is difficult to cope with the above-mentioned high density and to improve the forming accuracy is considered to be because the straightness of the ultra-fine wire is not sufficient at the time of drawing into the ultra-fine wire.

本発明は、上記従来の問題点に鑑みてなされたもので、
伸線加工された金属極細線の真直度を向上でき、その結
果成形精度を大幅に向上できる金属極細線成形品の製造
方法を捷供することを目的としている。
The present invention has been made in view of the above-mentioned conventional problems.
The object of the present invention is to provide a method for manufacturing an ultra-fine metal wire molded product that can improve the straightness of the drawn ultra-fine metal wire and, as a result, greatly improve the forming accuracy.

〔問題点を解決するための手段〕 本発明は、金属線材を所定直径の極細線に伸線加工する
第1工程と、上記極細線を引張荷重を加えながら焼鈍処
理する第2工程と、該第2工程を経た極細線を所定形状
に成形加工する、又はさらにめっき加工を施す第3工程
と、該所定形状の極細線に歪取り焼鈍処理を施す第4工
程とを有する金属極細線成形品の製造方法である。
[Means for Solving the Problems] The present invention comprises a first step of drawing a metal wire into an ultra-fine wire of a predetermined diameter, a second step of annealing the ultra-fine wire while applying a tensile load, and a second step of annealing the ultra-fine wire while applying a tensile load. A metal ultra-fine wire molded product having a third process of forming the ultra-fine wire that has passed through the second process into a predetermined shape or further plating it, and a fourth process of subjecting the ultra-fine wire of the predetermined shape to strain relief annealing treatment. This is a manufacturing method.

即ち本発明は、所定直径に伸線加工された極細線に、所
定形状への成形加工に先立って引張荷重を加えながら焼
鈍処理する、いわゆるストレッチリリーフ加工を施す点
に特徴がある0本発明者等は、成形精度を向上させるに
は成形加工の前段階における素線の真直度が重要である
点に着目し、この素線段階での真直度を向上させるには
伸線加工後に引張荷重を加えながら焼鈍処理を施すこと
が有効であることを見出して本発明を完成したものであ
る。
That is, the present invention is characterized in that an ultra-fine wire that has been drawn to a predetermined diameter is subjected to a so-called stretch relief process, in which the ultra-fine wire is annealed while applying a tensile load prior to being formed into a predetermined shape. focused on the importance of straightness of the strands in the pre-forming stage to improve forming accuracy, and in order to improve the straightness of the strands at this stage, it is necessary to apply tensile load after wire drawing. The present invention was completed by discovering that it is effective to perform the annealing treatment while adding the material.

ここで本発明における極細線(緊線)は、概ね120μ
麟以下の線径を有するものを対象としている。また上記
引張荷重をかけながら行う焼鈍処理は、熱処理後の強度
が伸線加工終了時点での強度に対して約1〜2割程度低
下する処理条件で行うのが好ましい。
Here, the ultra-thin wire (tension wire) in the present invention is approximately 120μ
This applies to wires with a wire diameter of 100 mm or less. Further, the annealing treatment performed while applying the above-mentioned tensile load is preferably performed under treatment conditions such that the strength after the heat treatment is approximately 10 to 20% lower than the strength at the end of the wire drawing process.

〔作用〕[Effect]

本発明に係る金属極細線成形品の製造方法によれば、伸
線加工された極細線を引張荷重をかけながら焼鈍処理し
たので、この素線段階での真直度が向上し、さらに残留
歪除去、降伏強度の均一化が図られ、その結果所定形状
に成形した場合の成形精度が大幅に向上する。
According to the method for manufacturing an ultra-fine metal wire molded product according to the present invention, the drawn ultra-fine wire is annealed while applying a tensile load, so that the straightness at this strand stage is improved and residual strain is removed. , the yield strength is made uniform, and as a result, the molding accuracy when molded into a predetermined shape is greatly improved.

〔実施例〕〔Example〕

以下、本発明の実施例を図について説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.

第2rgJないし第4図は、後述の実施例方法によって
製造したピンプローブを使用した検査装置の要部を示す
図である。
2rgJ to 4 are diagrams showing main parts of an inspection device using a pin probe manufactured by the method of the embodiment described later.

図において、1はピンプローブであり、これはコ字状に
屈曲成形された取付部1aと、これに続いて斜め下方に
延びる接触部1bとからなり、これにより該接触部1b
を液晶基板25上の回路パターン番二当接さセたときの
寸法誤差を吸収する自己弾性を有する形状となっている
。また、上記取付部1aは検査装置の基台6の縁部に嵌
着されており、これにより該各ビンプローブ1は基台6
に所定ピッチごとに配置固定されている。なお、該各ビ
ンプローブ1の取付ピンチは、上記回路パターンの配設
ピッチに対応している。
In the figure, reference numeral 1 denotes a pin probe, which consists of a mounting part 1a bent into a U-shape and a contact part 1b extending diagonally downward.
It has a self-elastic shape that absorbs dimensional errors when it comes into contact with the circuit pattern number 2 on the liquid crystal substrate 25. Further, the mounting portion 1a is fitted onto the edge of the base 6 of the inspection device, so that each of the bin probes 1 can be attached to the base 6.
are arranged and fixed at predetermined pitches. Note that the mounting pinch of each bottle probe 1 corresponds to the arrangement pitch of the circuit pattern.

また、上記各ピンプローブ1は、低炭素二相組maから
なる線径120μm以下の極細線2の表面に下地として
Niめっき皮1lI3を形成し、該皮膜3の表面に貴金
属めっき層4を被覆形成したものである。なお、7は上
記取付部1aの端部を図示しない測定機器に接続するリ
ード線である。
In addition, each of the pin probes 1 has a Ni plating film 1lI3 formed as a base on the surface of an ultrafine wire 2 made of low carbon two-phase ma with a wire diameter of 120 μm or less, and a noble metal plating layer 4 is coated on the surface of the film 3. It was formed. Note that 7 is a lead wire that connects the end of the mounting portion 1a to a measuring device (not shown).

ここで上記低炭素二相組織鋼からなる極細線2は、本件
出願人が先に提案したものである。これは、FeFe−
C−5i−系鉄基合金で、かつ針状マルテンサイト、ベ
イナイト又はこれらの混合&ll織からなる低温変態生
成相がフェライト相中に均一に分散されてなる複合金属
組織を有する鋼線材、例えば重量%でC: 0.01〜
0.50%、Si:3゜0%以下、Mn:5.0%以下
、残部Fe及び不可避的不純物からなる線径3.0〜6
.0 mの線材を一次熱処理及び−次冷間伸線、二次熱
処理及び二次冷間伸線により線径120μm以下に強加
工して製造されたものである。この金属極細wA2は上
記フェライト相と低温変態生成相とが複合してなる複合
組織(二相組織)が一方向に延びる均一な繊維状微細金
属組織を有しており、加工セルの大きさ。
Here, the ultrafine wire 2 made of the low carbon dual-phase steel was previously proposed by the applicant of the present invention. This is FeFe-
A steel wire rod made of a C-5i-based iron-based alloy and having a composite metal structure in which a low-temperature transformation phase consisting of acicular martensite, bainite, or a mixture thereof is uniformly dispersed in a ferrite phase, e.g. C in %: 0.01~
0.50%, Si: 3° or less, Mn: 5.0% or less, balance Fe and inevitable impurities, wire diameter 3.0-6
.. 0 m wire rod was strongly worked to a wire diameter of 120 μm or less by primary heat treatment, secondary cold wire drawing, secondary heat treatment, and secondary cold wire drawing. This ultra-fine metal wA2 has a uniform fibrous fine metal structure in which a composite structure (two-phase structure) formed by combining the ferrite phase and the phase produced by low-temperature transformation extends in one direction, and has a processing cell size.

繊維間隔はそれぞれ5〜100人、50−1000人で
あり、さらに引張強度は300〜600 kff/m”
である。
The fiber spacing is 5-100 and 50-1000, respectively, and the tensile strength is 300-600 kff/m"
It is.

なお、かかる製造方法は、特開昭62−20824号公
報に記載されている。
Incidentally, such a manufacturing method is described in Japanese Patent Application Laid-Open No. 62-20824.

次に上記ビンプローブ1を本発明の一実施例方法によっ
て製造する場合について、第1図ないし第4図を参照し
ながら説明する。
Next, a case in which the bottle probe 1 is manufactured by a method according to an embodiment of the present invention will be described with reference to FIGS. 1 to 4.

■、まず、上記成分組成を有する線径3.0〜6゜On
の鋼線材の表面に膜厚4μ−程度のNiめっき皮膜を形
成し、これを上述の一次、二次熱処理。
■, First, wire diameter 3.0~6°On having the above component composition.
A Ni plating film with a thickness of approximately 4 μm is formed on the surface of the steel wire rod, and this is subjected to the above-mentioned primary and secondary heat treatments.

及び−次、二次冷間伸線によって例えば線径100μ蒙
の極細線に伸線加工する(第1工程)。ここで上記Ni
めっき皮膜は、冷間伸線時の線材とダイスとの摩擦を軽
減し、かつ所定形状への成形性を高める自己潤滑性を与
えている。また、上記Niめっき皮膜は上記伸線加工に
よって1μ−程度に引き延ばされており、従ってこの引
き延ばされたNiめっき皮膜3は伸線加工による加工歪
を有している。
Then, the wire is drawn into an ultra-fine wire having a wire diameter of 100 μm by secondary cold wire drawing (first step). Here, the above Ni
The plating film reduces friction between the wire rod and die during cold wire drawing, and provides self-lubricating properties that improve formability into a predetermined shape. Further, the Ni plating film is elongated to about 1 μm by the wire drawing process, and therefore, the elongated Ni plating film 3 has processing strain due to the wire drawing process.

■、そして上記線径100μ−の極細線に、引張荷重を
加えながら焼鈍処理を施す(第2工程)。
(2) Then, the ultrafine wire with a wire diameter of 100 μm is annealed while applying a tensile load (second step).

この引張荷重の大きさ、及びヒートパターンについては
、上記第1工程を終了した時点での極細索線の引張強度
が約1〜2割程度低下する処理条件で行うのが好ましい
、具体的には例えば第6図に示すように、線径100μ
−の場合、張力350F処理温度400〜520℃とす
る。
Regarding the magnitude of this tensile load and the heat pattern, it is preferable to carry out the treatment under conditions that reduce the tensile strength of the ultra-fine cable wire by about 10 to 20% at the time the first step is completed. For example, as shown in Figure 6, the wire diameter is 100μ.
- In the case of -, the tension is 350F and the treatment temperature is 400 to 520C.

■0次に上記焼鈍処理の終了した極細線2のNiめっき
皮M3を覆うように貴金属めっき被覆層4を形成する。
(2) Next, a noble metal plating coating layer 4 is formed so as to cover the Ni plating skin M3 of the ultrafine wire 2 which has been annealed.

そしてこのめっきされた極細線2を、コ字状の屈曲部1
aを有する形状に折り曲げ成形する(第3工程)。
Then, the plated ultra-fine wire 2 is connected to the U-shaped bent part 1.
It is bent and formed into a shape having a (third step).

■、最後に上記折り曲げ加工された極細線2に、例えば
360℃×1時間の歪をり焼鈍を施す(第4工程)、こ
れにより第3図に示す形状のビンプローブ1が形成され
る。
(2) Finally, the bent ultrafine wire 2 is subjected to strain annealing at, for example, 360° C. for 1 hour (fourth step), thereby forming the bottle probe 1 having the shape shown in FIG. 3.

このように本実施例では、線材を金属極細線2に伸線加
工した後、該極細線2に引張荷重をかけながら焼鈍処理
を施したので、該極細線2の真直度が極めて高くなる。
As described above, in this example, after the wire material was drawn into the ultra-fine metal wire 2, the ultra-fine wire 2 was annealed while applying a tensile load, so the straightness of the ultra-fine wire 2 was extremely high.

そのため次工程での成形加工における成形精度が高くな
り、ビンプローブ1の面歪を軽減できる。その結果、隣
接するビンプローブ同士が干渉することがなく、その配
役ピンチを小さくでき、上述の回路パターンの高密度化
に対応できる。
Therefore, the molding accuracy in the molding process in the next step is increased, and the surface distortion of the bottle probe 1 can be reduced. As a result, adjacent bin probes do not interfere with each other, the placement pinch can be reduced, and it is possible to cope with the above-mentioned high density circuit pattern.

また上記実施例では、まず線材にNiめっき皮膜を形成
し、これを極細線に伸線加工するようにしたので、線材
とダイスとの摩擦を軽減でき、かつビンプローブへの成
形性を向上できる自己潤滑性が得られる。
In addition, in the above example, a Ni plating film is first formed on the wire and then this is drawn into an ultra-fine wire, which reduces friction between the wire and the die and improves formability into the bottle probe. Provides self-lubricating properties.

また上記Ni めっき皮膜3が望性加工による加工歪を
有しているので、貴金属めっき被覆層4の密着性を向上
できる。めっき処理しただけのNiめっき皮膜は、無数
のピンホールを有するポーラス状になっており、そのた
めめっき処理工程時に発生する水素がNi皮膜内に吸蔵
され、あるいは上記ポーラス内に空気が残留することと
なる。そしてこの吸蔵された水素7残留空気が貴金属め
っきの密着性に悪影響を与えていることが考えられる。
Furthermore, since the Ni plating film 3 has processing strain due to desirability processing, the adhesion of the noble metal plating coating layer 4 can be improved. The Ni plating film that has just been plated is porous with countless pinholes, so hydrogen generated during the plating process may be occluded within the Ni film, or air may remain in the porous film. Become. It is considered that this occluded hydrogen 7 residual air has an adverse effect on the adhesion of the noble metal plating.

これに対して本実施例ではNiめっき皮膜に伸線加工に
より加工歪を付与したので、上記ピンホールが潰されて
無くなり、また吸蔵されていた水素や残留空気が伸線時
の加工熱によって放出されることから水素等をほとんど
含まないNiめっき皮膜3が得られる。その結果、水素
等による悪影響を回避できる。
In contrast, in this example, processing strain was applied to the Ni plating film by wire drawing, so the pinholes were crushed and disappeared, and the occluded hydrogen and residual air were released by the processing heat during wire drawing. As a result, a Ni plating film 3 containing almost no hydrogen or the like can be obtained. As a result, the adverse effects of hydrogen and the like can be avoided.

第5図は、本発明方法によって製造されたビンプローブ
の変形例を示す図である。
FIG. 5 is a diagram showing a modification of the bottle probe manufactured by the method of the present invention.

このビンプローブ10は、その中央部を鋭角状に折り曲
げてくちばし状の接触部10bを形成し、これの両端部
10aを基台12内に挿入固定した構造のものである。
This bottle probe 10 has a structure in which its central portion is bent at an acute angle to form a beak-shaped contact portion 10b, and both ends 10a of this are inserted and fixed into a base 12.

この変形例の場合も上記実施例と同様に、ビンプローブ
10の面歪を減少でき、その配設ピンチを狭小化できる
In the case of this modification, as in the above embodiment, the surface distortion of the bottle probe 10 can be reduced, and the pinch in its arrangement can be narrowed.

ここで第1表は、本発明方法による素線段階での真直度
の向上、成形品熱処理後の面歪の減少効果を説明するた
めの実験条件及び結果を示す。
Here, Table 1 shows experimental conditions and results for explaining the effect of improving straightness at the strand stage and reducing surface distortion after heat treatment of molded products by the method of the present invention.

この実験では、径100 pm ?1m同一形状のピン
を各々100本成形し、興なる条件でストレッチリリー
フ処理を行い、成形後の面歪(成形寸法精度)を測定し
た。同表からも明らかなように、本発明方法によれば、
面歪が極めて小さくなっていることがわかる。
In this experiment, the diameter was 100 pm? 100 1 m long pins of the same shape were each molded, stretch relief treatment was performed under various conditions, and the surface distortion (forming dimensional accuracy) after molding was measured. As is clear from the table, according to the method of the present invention,
It can be seen that the surface strain is extremely small.

なお上記実施例では、金属極細線成形品の例としてピン
プローブを説明したが、本発明方法はこれ以外の、例え
ば微細ばね、補強ワイヤ、釣り糸等あらゆる金属極細線
成形品の製造方法に適用できる。
In the above embodiment, a pin probe was explained as an example of a metal ultrafine wire molded product, but the method of the present invention can be applied to a method for manufacturing any metal ultrafine wire molded product, such as fine springs, reinforcing wires, fishing lines, etc. .

〔発明の効果〕〔Effect of the invention〕

以上のように本発明に係る金属極細線成形品の製造方法
によれば、伸線加工された金属極細線に、引張荷重を加
えながら焼鈍処理を施し、しかる後成形加工を行うよう
にしたので、金属極細線の素線段階での真直度を向上で
き、そのため成形品の面歪が小さくなり、成形精度を向
上できる効果がある。
As described above, according to the method for manufacturing an ultra-fine metal wire molded product according to the present invention, the drawn ultra-fine metal wire is annealed while applying a tensile load, and then formed. This has the effect of improving the straightness of the ultra-fine metal wire at the strand stage, thereby reducing surface distortion of the molded product and improving molding accuracy.

第 表No. table

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例方法を説明するため工程図、
第2図ないし第4図は上記実施例方法により製造された
ピンプローブを説明するための図であり、第2図はピン
プローブの取付状態を示す斜視図、第3図はその断面側
面図、第4図はピンプローブの断面図、第5図はピンプ
ローブの変形例を示す図、第6図はストレッチリリーフ
処理条件を示す図である。 図において、1.10は金属極細線成形品、2は金属極
細線である。
FIG. 1 is a process diagram for explaining an embodiment of the method of the present invention.
2 to 4 are diagrams for explaining the pin probe manufactured by the method of the above embodiment, in which FIG. 2 is a perspective view showing the attached state of the pin probe, FIG. 3 is a cross-sectional side view thereof, FIG. 4 is a sectional view of the pin probe, FIG. 5 is a diagram showing a modified example of the pin probe, and FIG. 6 is a diagram showing stretch relief processing conditions. In the figure, 1.10 is a metal ultrafine wire molded product, and 2 is a metal ultrafine wire.

Claims (1)

【特許請求の範囲】[Claims] (1)金属線材を所定直径の極細線に伸線加工する第1
工程と、上記極細線を引張荷重を加えながら焼鈍処理す
る第2工程と、該第2工程を経た極細線を所定形状に成
形加工する、又はさらにめっき加工を施す第3工程と、
該所定形状の極細線に歪取り焼鈍処理を施す第4工程と
を有することを特徴とする金属極細線成形品の製造方法
(1) The first step is to draw the metal wire into an ultra-fine wire with a predetermined diameter.
a second step of annealing the ultra-fine wire while applying a tensile load; and a third step of forming the ultra-fine wire after the second step into a predetermined shape or further plating it.
A method for manufacturing an ultra-fine metal wire molded product, comprising a fourth step of subjecting the ultra-fine wire of a predetermined shape to strain relief annealing treatment.
JP9468490A 1990-04-09 1990-04-09 Production of formed part of metallic extra fine wire Pending JPH03291328A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9468490A JPH03291328A (en) 1990-04-09 1990-04-09 Production of formed part of metallic extra fine wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9468490A JPH03291328A (en) 1990-04-09 1990-04-09 Production of formed part of metallic extra fine wire

Publications (1)

Publication Number Publication Date
JPH03291328A true JPH03291328A (en) 1991-12-20

Family

ID=14117036

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9468490A Pending JPH03291328A (en) 1990-04-09 1990-04-09 Production of formed part of metallic extra fine wire

Country Status (1)

Country Link
JP (1) JPH03291328A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002157919A (en) * 2000-11-21 2002-05-31 Hitachi Metals Ltd Composite metal core wire, manufacturing method for it, and insulated wire using composite metal core wire
JP2002317388A (en) * 2001-04-19 2002-10-31 Nippon Steel Corp Plated strand steel wire having high corrosion resistance and method for producing the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5773134A (en) * 1980-10-25 1982-05-07 Nachi Fujikoshi Corp Method and device for starightening and heat treatment of wire rod
JPS6220824A (en) * 1985-07-20 1987-01-29 Kobe Steel Ltd Production of extra fine wire
JPS62109925A (en) * 1985-11-06 1987-05-21 Kobe Steel Ltd Manufacture of ultrathin steel wire

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5773134A (en) * 1980-10-25 1982-05-07 Nachi Fujikoshi Corp Method and device for starightening and heat treatment of wire rod
JPS6220824A (en) * 1985-07-20 1987-01-29 Kobe Steel Ltd Production of extra fine wire
JPS62109925A (en) * 1985-11-06 1987-05-21 Kobe Steel Ltd Manufacture of ultrathin steel wire

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002157919A (en) * 2000-11-21 2002-05-31 Hitachi Metals Ltd Composite metal core wire, manufacturing method for it, and insulated wire using composite metal core wire
JP2002317388A (en) * 2001-04-19 2002-10-31 Nippon Steel Corp Plated strand steel wire having high corrosion resistance and method for producing the same

Similar Documents

Publication Publication Date Title
KR950004618B1 (en) Inspection probe
US11118258B2 (en) Deposition mask, method of manufacturing deposition mask and metal plate
JPWO2011052644A1 (en) Aluminum alloy wire
KR20100013329A (en) Bonding wire for semiconductor devices
JP2002162415A (en) Probe for probe card
US20180277799A1 (en) Deposition mask, method of manufacturing deposition mask and metal plate
JP2001516812A (en) Method for producing a structure with improved material properties by mildly heat treating a metal coating
EP1412549B1 (en) Bundle drawn stainless steel fibers
JPH03291328A (en) Production of formed part of metallic extra fine wire
GB2118211A (en) Aluminized steel support for a planographic plate
KR102185586B1 (en) Cu-Ni-Si-based copper alloy bath
JPH03180769A (en) Probe for examination
JP3612081B2 (en) Conductive connector and high strength spring
JP2006169621A (en) Stainless steel wire for spring having excellent formability, and its manufacturing method
JPH06249880A (en) Probe unit
Mak et al. Annealing Behavior of Fine‐Grained Electroless Copper Deposits
JPH01274319A (en) Manufacture of fiber dispersion type superconductive wire
JPH06222080A (en) Probe unit and manufacture thereof
CN113966539B (en) Copper-clad steel wire, twisted wire, insulated wire, and cable
WO2023204036A1 (en) Wire, stranded wire, cable, and method for producing wire
JPH06127164A (en) Wire for metal mesh
JPH06249879A (en) Manufacture of probe unit
JPH09157810A (en) Production of high strength and corrosion resistant ni base alloy thin sheet
JP2527614B2 (en) Manufacturing method of steel wire for outer casing of control cable
JP2013151748A (en) Ultrafine conductor material, ultrafine conductor, method for preparing ultrafine conductor, and ultrafine electrical wire