JPH03290961A - Complementary type gate array - Google Patents

Complementary type gate array

Info

Publication number
JPH03290961A
JPH03290961A JP2091620A JP9162090A JPH03290961A JP H03290961 A JPH03290961 A JP H03290961A JP 2091620 A JP2091620 A JP 2091620A JP 9162090 A JP9162090 A JP 9162090A JP H03290961 A JPH03290961 A JP H03290961A
Authority
JP
Japan
Prior art keywords
groove
oxide film
silicon oxide
film
element isolation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2091620A
Other languages
Japanese (ja)
Inventor
Shiyuuji Toyoda
豊田 修至
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2091620A priority Critical patent/JPH03290961A/en
Publication of JPH03290961A publication Critical patent/JPH03290961A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/10Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration
    • H01L27/118Masterslice integrated circuits
    • H01L27/11803Masterslice integrated circuits using field effect technology
    • H01L27/11807CMOS gate arrays

Abstract

PURPOSE:To enable prevention of latch-up and attainment of high component density by providing a groove isolation structure for isolating elements in a complementary gate array using P channel and N channel MOS transistors as the elements. CONSTITUTION:An N-type well 2 is formed at a prescribed position in a P-type silicon substrate 1 and an element isolation groove 14 is formed by etching in a place necessitating isolation between elements. Next, a gate insulation film 6 and a gate electrode 7 are formed and, with the electrode 7 used as a mask, an N-type diffusion layer 9 and a P-type diffusion layer 10 are formed by ion implantation. Next, thermal oxidation is applied thinly on the whole surface to form a silicon oxide film B, and thereafter a silicon oxide film 15 is made to grow as an insulating film on the whole surface so as to fill up the groove 14. Then, the film 15 is left only in the groove 14 by applying anisotropic etching to the whole. A silicon oxide film 11 as an interlayer insulation film is formed, a contact hole 12 made therein and an aluminum wiring 13 is formed. According to this method, it is possible to prevent latch-up, to make an element isolation region minute and also to attain high integration.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は相補型ゲートアレーに利用する。[Detailed description of the invention] [Industrial application field] The present invention is utilized in complementary gate arrays.

〔概要〕〔overview〕

本発明は、CMOSゲートアレーにおいて、素子間分離
に溝分離を用いることにより、ラッチアップの防止と高
集積化とを図ったものである。
The present invention aims to prevent latch-up and increase integration by using trench isolation for element isolation in a CMOS gate array.

〔従来の技術〕[Conventional technology]

従来、相補型ゲートアレー(以下、CMOSゲートアレ
ーという。)においては、第3図に示すように、Nチャ
ネルMOSトランジスタ(以下、NMOSトランジスタ
という。)とPチャネルMOSトランジスタ (以下、
PMOSトランジスタという。)の素子分離は、LOC
O3法(酸化膜分離法)によるフィールド酸化膜5によ
り行っている。また、ラッチアップを防止する方法とし
て、チャネルストッパー4、ならびにN型ウェル2およ
びP型ウェル3からなるダブルウェルを用いている。
Conventionally, in a complementary gate array (hereinafter referred to as CMOS gate array), as shown in FIG. 3, an N-channel MOS transistor (hereinafter referred to as NMOS transistor) and a P-channel MOS transistor (hereinafter referred to as
It is called a PMOS transistor. ) element isolation is LOC
The field oxide film 5 is formed using the O3 method (oxide film separation method). Further, as a method for preventing latch-up, a channel stopper 4 and a double well consisting of an N-type well 2 and a P-type well 3 are used.

また、NMOSトランジスタとNMOSトランジスタ、
およびPMOSトランジスタとPMOSトランジスタの
素子分離も同様にLOCO3法によるフィールド酸化膜
5で行っている。
In addition, NMOS transistors and NMOS transistors,
Element isolation between the PMOS transistors is also performed using a field oxide film 5 using the LOCO3 method.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

近年、ゲートアレーでは、高集積化が必要不可欠となっ
ている。高集積化の手段としては、トランジスタや配線
の超微細化も重要であるが、効率的に大きな期待はでき
ない。むしろ、不活性領域である素子分離領域を微細化
することで、大幅な高集積化が可能となる。
In recent years, high integration has become essential for gate arrays. Ultra-miniaturization of transistors and wiring is also important as a means of achieving high integration, but it does not hold much promise for efficiency. Rather, by miniaturizing the element isolation region, which is an inactive region, it becomes possible to achieve a significantly higher degree of integration.

しかし、前述した従来の構造では素子分離をLocos
法により行っているため、ある程度の微細化が進むとウ
ェル濃度を濃くしても、第3図で示すN型拡散層9とN
型ウェル2の間や、P型拡散層10とP型ウェル3の間
の耐圧が小さくなる等、いわゆるラッチアップ耐性は著
しく劣化する欠点がある。
However, in the conventional structure mentioned above, element isolation is
Because this is done by the method, even if the well concentration is increased once the miniaturization progresses to a certain degree, the N-type diffusion layer 9 and the N-type diffusion layer 9 shown in FIG.
There is a drawback that the so-called latch-up resistance is significantly deteriorated, such as the breakdown voltage between the type wells 2 and between the P-type diffusion layer 10 and the P-type well 3 being reduced.

また同様に、NMOSトランジスタとNMOSトランジ
スタもしくは2MOSトランジスタと2MOSトランジ
スタが隣りあった所では、前記Locos法では、ある
程度の微細化によりN型拡散層間隔もしくはP型拡赦層
間隔が縮まると耐圧が劣化し、寄生トランジスタ特性を
生じてしまう欠点がある。
Similarly, in the case where an NMOS transistor and an NMOS transistor or a 2MOS transistor and a 2MOS transistor are placed next to each other, in the Locos method, as the N-type diffusion layer spacing or the P-type relaxation layer spacing decreases due to a certain degree of miniaturization, the withstand voltage deteriorates. However, it has the disadvantage of causing parasitic transistor characteristics.

本発明の目的は、前記の欠点を除去することにより、ラ
ッチアップを防止でき、かつ高集積度が可能であるCM
OSゲートアレーを提供することにある。
An object of the present invention is to provide a CM that can prevent latch-up and enable high integration by eliminating the above-mentioned drawbacks.
The purpose is to provide an OS gate array.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、PチャネルMOSトランジスタとNチャネル
MOSトランジスタとを素子とする相補型ゲートアレー
において、前記素子間の分離を行うための溝分離構造を
設けたことを特徴とする。
The present invention is characterized in that a complementary gate array including P-channel MOS transistors and N-channel MOS transistors as elements is provided with a groove isolation structure for isolating the elements.

〔作用〕[Effect]

溝分離は、微細な溝を形成し、溝内を例えばシリコン酸
化物で埋めて完全な絶縁分離を達成できる。
In trench isolation, complete insulation isolation can be achieved by forming a fine trench and filling the trench with, for example, silicon oxide.

従って、素子分離領域を小さくでき、高集積化が可能に
なるとともに、隣り合う領域は完全に絶縁分離されラッ
チアップの発生を防止することが可能となる。
Therefore, the element isolation region can be made smaller, higher integration is possible, and adjacent regions are completely insulated, thereby preventing latch-up.

〔実施例〕〔Example〕

以下、本発明の実施例について図面を参照して説明する
Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明の第一実施例を示す模式的縦断面図であ
る。
FIG. 1 is a schematic vertical sectional view showing a first embodiment of the present invention.

本箱−実施例は、2MOSトランジスタとNMOSトラ
ンジスタとを含むCMOSゲートアレーにおいて、 本発明の特徴とするところの、素子間分離のための、内
部がシリコン酸化膜15で埋め込まれた素子分離溝14
が設けられている。
This embodiment is a CMOS gate array including 2 MOS transistors and an NMOS transistor, in which an element isolation trench 14 whose inside is filled with a silicon oxide film 15 for isolation between elements, which is a feature of the present invention, is used.
is provided.

次に、本箱−実施例の製造方法について簡単に説明する
Next, the manufacturing method of the bookcase--Example will be briefly explained.

P型シリコン基板1内の所定の位置にN型ウェル2を形
成する。
An N-type well 2 is formed at a predetermined position within a P-type silicon substrate 1.

次に、各々の素子間で分離を要する箇所にエツチングに
より、例えば、輻約1μm1深さ約5μm程度の素子分
離溝14を形成する。
Next, an element isolation groove 14 having a diameter of about 1 .mu.m and a depth of about 5 .mu.m, for example, is formed by etching at a location where isolation is required between each element.

次に、ゲート絶縁膜6およびゲート電極7を形成し、ゲ
ート電極7をマスクとしてイオン注入により、N型拡散
層9およびP型拡散層1oを形成する。
Next, a gate insulating film 6 and a gate electrode 7 are formed, and an N-type diffusion layer 9 and a P-type diffusion layer 1o are formed by ion implantation using the gate electrode 7 as a mask.

次に、全面を薄く熱酸化しシリコン酸化膜8を形成した
後、素子分離溝14を埋めるために、全面に絶縁膜例え
ばBPSG等のシリコン酸化膜I5を成長し、さらに平
坦性をよくするために全体を異方性エツチングし、素子
分離溝14のみにシリコン酸化膜15を残す。
Next, after thermally oxidizing the entire surface thinly to form a silicon oxide film 8, an insulating film, for example, a silicon oxide film I5 such as BPSG, is grown on the entire surface in order to fill the element isolation trench 14, and to further improve the flatness. Then, the entire structure is anisotropically etched, leaving the silicon oxide film 15 only in the element isolation groove 14.

次に、既存の方法により、層間絶縁膜としてのシリコン
酸化膜11を形成し、それにコンタクト孔12をあけ、
アルミニウム配線13を形成することにより、本箱−実
施例のCMOSゲートアレーを得る。
Next, a silicon oxide film 11 is formed as an interlayer insulating film by an existing method, and a contact hole 12 is formed in it.
By forming the aluminum wiring 13, the CMOS gate array of the bookcase-embodiment is obtained.

第2図は本発明の第二実施例を示す模式的縦断面図で、
素子分離溝内にシリコン酸化膜を埋め込む方法を変えた
場合を示す。
FIG. 2 is a schematic vertical sectional view showing a second embodiment of the present invention,
A case is shown in which the method of burying the silicon oxide film in the element isolation trench is changed.

前述した第一実施例では、素子分離溝14をトランジス
タ形成前に開孔したが、第2図に示すように、素子分離
溝14をトランジスタ形成後に開孔することも可能であ
る。
In the first embodiment described above, the element isolation trench 14 was opened before the transistor was formed, but as shown in FIG. 2, it is also possible to open the element isolation trench 14 after the transistor was formed.

この場合、素子分離溝14に埋め込むシリコン酸化膜1
5をゲート電極7とアルミニウム配線13の間のシリコ
ン酸化膜11と同時に形成できる。
In this case, the silicon oxide film 1 buried in the element isolation trench 14 is
5 can be formed simultaneously with the silicon oxide film 11 between the gate electrode 7 and the aluminum wiring 13.

なお、本発明による構造は、実施例に述べた材料および
トランジスタ構造に限られるものではない。
Note that the structure according to the present invention is not limited to the materials and transistor structure described in the examples.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、ラッチアップを
生じることなしに素子分離領域を微細化でき、同時に大
幅な高集積化が可能となり、その効果は大である。また
、本発明による構造では、例えば、P型シリコン基板を
用いる場合は、PMO8形成領域にN型ウェルを形成す
るだけでよく、微細化を行ってもダブルウェルとしての
P型ウェルの形成は不要となる効果も得られる。
As described above, according to the present invention, it is possible to miniaturize the element isolation region without causing latch-up, and at the same time, it is possible to significantly increase the degree of integration, which has great effects. Furthermore, in the structure according to the present invention, for example, when using a P-type silicon substrate, it is only necessary to form an N-type well in the PMO8 formation region, and even if miniaturization is performed, there is no need to form a P-type well as a double well. You can also obtain the following effect.

極、8.11.15・・・シリコン酸化膜、9・・・N
型拡散層、10・・・P型拡散層、12・・・コンタク
ト孔、13・・・アルミニウム配線、14・・・素子分
離溝。
Pole, 8.11.15...Silicon oxide film, 9...N
type diffusion layer, 10...P type diffusion layer, 12...contact hole, 13...aluminum wiring, 14...element isolation groove.

Claims (1)

【特許請求の範囲】 1、PチャネルMOSトランジスタとNチャネルMOS
トランジスタとを素子とする相補型ゲートアレーにおい
て、 前記素子間の分離を行うための溝分離構造を設けた ことを特徴とする相補型ゲートアレー。
[Claims] 1. P-channel MOS transistor and N-channel MOS
A complementary gate array having transistors as elements, characterized in that a trench isolation structure is provided for isolating the elements.
JP2091620A 1990-04-06 1990-04-06 Complementary type gate array Pending JPH03290961A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2091620A JPH03290961A (en) 1990-04-06 1990-04-06 Complementary type gate array

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2091620A JPH03290961A (en) 1990-04-06 1990-04-06 Complementary type gate array

Publications (1)

Publication Number Publication Date
JPH03290961A true JPH03290961A (en) 1991-12-20

Family

ID=14031617

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2091620A Pending JPH03290961A (en) 1990-04-06 1990-04-06 Complementary type gate array

Country Status (1)

Country Link
JP (1) JPH03290961A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08203994A (en) * 1995-01-24 1996-08-09 Nec Corp Semiconductor device and its manufacturing method
US6087705A (en) * 1997-12-19 2000-07-11 Advanced Micro Devices, Inc. Trench isolation structure partially bound between a pair of low K dielectric structures
US6140691A (en) * 1997-12-19 2000-10-31 Advanced Micro Devices, Inc. Trench isolation structure having a low K dielectric material isolated from a silicon-based substrate
US6194772B1 (en) * 1999-05-12 2001-02-27 United Microelectronics Corp. High-voltage semiconductor device with trench structure

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08203994A (en) * 1995-01-24 1996-08-09 Nec Corp Semiconductor device and its manufacturing method
US5966598A (en) * 1995-01-24 1999-10-12 Nec Corporation Semiconductor device having an improved trench isolation and method for forming the same
US6087705A (en) * 1997-12-19 2000-07-11 Advanced Micro Devices, Inc. Trench isolation structure partially bound between a pair of low K dielectric structures
US6140691A (en) * 1997-12-19 2000-10-31 Advanced Micro Devices, Inc. Trench isolation structure having a low K dielectric material isolated from a silicon-based substrate
US6194772B1 (en) * 1999-05-12 2001-02-27 United Microelectronics Corp. High-voltage semiconductor device with trench structure

Similar Documents

Publication Publication Date Title
KR100340395B1 (en) Semiconductor device and manufacturing method thereof
KR20060110702A (en) Semiconductor device having multi-channel and method of manufacturing the same
JPH05129429A (en) Semiconductor device and manufacture thereof
US5726476A (en) Semiconductor device having a particular CMOS structure
JPH0687500B2 (en) Semiconductor memory device and manufacturing method thereof
US6815794B2 (en) Semiconductor devices with multiple isolation structure and methods for fabricating the same
US5179038A (en) High density trench isolation for MOS circuits
JP4813757B2 (en) Semiconductor device
JPH10199968A (en) Semiconductor device and method of forming element separating trenches for semiconductor device
JPH03290961A (en) Complementary type gate array
KR20040009681A (en) Method for fabricating shallow well of semiconductor device by low energy implantation
JPH0387069A (en) Semiconductor device and manufacture thereof
JP2006237448A (en) Method for manufacturing complementary field-effect transistor
JP4381745B2 (en) Manufacturing method of semiconductor device
JPS5984572A (en) Semiconductor device
US5145796A (en) Method for manufacturing a semiconductor apparatus
JPH11111639A (en) Semiconductor device and manufacture thereof
JP2770484B2 (en) Method for manufacturing semiconductor device
JPH05299498A (en) Semiconductor device
JP2001007219A (en) Semiconductor device and manufacture thereof
JPH079974B2 (en) Manufacturing method of complementary semiconductor device
JPH0481339B2 (en)
JP2578757B2 (en) Semiconductor device
JPH02105576A (en) Field effect transistor
JPH01138745A (en) Semiconductor device