JPH03290904A - Production of metallic magnetic powder - Google Patents

Production of metallic magnetic powder

Info

Publication number
JPH03290904A
JPH03290904A JP2091722A JP9172290A JPH03290904A JP H03290904 A JPH03290904 A JP H03290904A JP 2091722 A JP2091722 A JP 2091722A JP 9172290 A JP9172290 A JP 9172290A JP H03290904 A JPH03290904 A JP H03290904A
Authority
JP
Japan
Prior art keywords
magnetic powder
goethite
powder
dispersing
magnetite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2091722A
Other languages
Japanese (ja)
Inventor
Hirotsugu Ichikawa
裕嗣 市川
Yoshinori Hama
浜 良典
Katsuo Kojima
克夫 小島
Shiyuuhei Arikita
有北 周平
Yoshio Aoki
青木 由郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP2091722A priority Critical patent/JPH03290904A/en
Publication of JPH03290904A publication Critical patent/JPH03290904A/en
Pending legal-status Critical Current

Links

Landscapes

  • Hard Magnetic Materials (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To prepare fine metallic magnetic powder superior in dispersibility by carrying out a shape holding processing of the metallic magnetic powder while dispersing the powder using a dispersing apparatus in the process of preparing the metallic magnetic powder, wherein needle goethite, or the like is used as raw material, wherein the shape holding processing is applied to the metallic magnetic powder, followed by reduction of the powder. CONSTITUTION:In the process of preparing the metallic magnetic powder, wherein a needle goethite or a needle goethite modified using metal other than iron is used as raw material, wherein the shape holding processing is applied to the metallic magnetic powder, followed by reduction thereof, and then the shape holding processing is carried out while dispersing the powder using a dispersing apparatus. As such, although metallic magnetic powder superior in dispersibility is obtained by reducing the processed powder after the shape holding processing is carried out while dispersing the powder using a dispersing apparatus, when the reduction is interrupted during the step of producing magnetite and then the shape holding processing is again carried out while dispersing it using a dispersing apparatus, more effective dispersibility is obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は磁気記録に用いられる金属磁性粉末の製造方法
ム二関し、特に比表面積が大きく、高保磁力を有し分散
性の優れた金属磁性粉末の製造方法に関するものである
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for producing metal magnetic powder used for magnetic recording, and particularly relates to a method for manufacturing metal magnetic powder used for magnetic recording, and in particular, metal magnetic powder having a large specific surface area, high coercive force, and excellent dispersibility. This invention relates to a method for producing powder.

〔従来の技術及び発明が解決しようとする課題〕近年、
各種の記録方式の発展は著しいものがあるが、中でも磁
気記録再生装置の小型軽量化の進歩は顕著である。これ
につれて磁気テープ・磁気ディスク等の磁気記録媒体に
対する高性能化の要求が大きくなってきている。
[Problems to be solved by conventional techniques and inventions] In recent years,
There have been remarkable developments in various recording methods, and among them, the progress in making magnetic recording and reproducing devices smaller and lighter has been remarkable. Along with this, there is an increasing demand for higher performance in magnetic recording media such as magnetic tapes and magnetic disks.

磁気記録に対するこのような要求を満足するためには高
い保持力と高い飽和磁化を有する磁性粉末が必要である
。従来、磁気記録用の磁性粉末として一般には針状のマ
グネタイトやマグネタイト又はこれらの磁性酸化鉄粉末
をコバルトで変性したいわゆるコバルト含有酸化鉄が用
いられているが、より高出力の媒体を得るためにはより
高い保磁力・飽和磁化を持つ強磁性金属粉末いわゆるメ
タル磁性粉が用いられ始めている。
In order to satisfy these requirements for magnetic recording, magnetic powders with high coercivity and high saturation magnetization are required. Conventionally, acicular magnetite or magnetite or these magnetic iron oxide powders modified with cobalt, so-called cobalt-containing iron oxides, have been used as magnetic powders for magnetic recording, but in order to obtain higher output media, Ferromagnetic metal powders with higher coercive force and saturation magnetization, so-called metal magnetic powders, are beginning to be used.

メタル磁性粉の製造方法としては種々の方法が提案され
ているが、経済的な優位性から一般的には、針状のゲー
サイトまたはこれを加熱脱水して得られる酸化鉄粒子を
水素等の還元性ガス雰囲気中で加熱して金属鉄にまで還
元する方法が用いられている。
Various methods have been proposed for producing metal magnetic powder, but generally speaking, due to its economical advantages, acicular goethite or iron oxide particles obtained by heating and dehydrating it are processed using hydrogen, etc. A method is used in which iron is heated in a reducing gas atmosphere to reduce it to metallic iron.

ところがこの方法では還元を高温で行なうため、粒子の
融着、形状の崩壊等を生じ易く充分に満足できる性能が
得られないため種々の提案がなされている。その−例は
、ゲーサイトに水ガラス処理後、焼成して還元を行なう
もの(特公昭63−49722号)、ゲーサイトを加熱
脱水した後その表面に珪素化合物を付着処理して加熱還
元を行なうもの(特開昭59−80901号)、ゲーサ
イトに燐酸アルミニウムを被着処理して加熱還元を行な
うもの(特開昭63−67705号)等である。
However, since reduction is carried out at high temperatures in this method, it is easy to cause particle fusion and shape collapse, making it impossible to obtain fully satisfactory performance.Therefore, various proposals have been made. Examples include one in which goethite is treated with water glass and then reduced by firing (Japanese Patent Publication No. 63-49722), and one in which goethite is dehydrated by heating and then a silicon compound is attached to its surface and then reduced by heating. (Japanese Unexamined Patent Publication No. 59-80901), and one in which goethite is coated with aluminum phosphate and subjected to thermal reduction (Japanese Unexamined Patent Publication No. 63-67705).

しかし、これらの提案で問題を解決できるのは比較的粒
子径の大きな場合に限られ、最近の高密度記録に対応す
る60m”/gに近い比表面積を有する微粒子メタル磁
性粉の場合には満足できるものではない。
However, these proposals can only solve the problem when the particle size is relatively large, and are not satisfactory in the case of fine metal magnetic powder with a specific surface area close to 60 m''/g, which corresponds to recent high-density recording. It's not possible.

本発明はこのような微粒子メタル磁性粉の製造段階にお
ける粒子同志の焼結を防止し、分散性に優れたメタル磁
性粉の製造法を提供しようとするものである。
The present invention aims to provide a method for producing metal magnetic powder with excellent dispersibility by preventing particles from sintering together during the production stage of such fine-grained metal magnetic powder.

〔課題を解決するための手段〕[Means to solve the problem]

本発明者らは、ゲーサイトから金属磁性粉末(メタル磁
性粉)を得る過程について検討を行った結果、還元の途
中で生じるマグネタイトの段階で還元を中断し、このマ
グネタイトに形状維持処理を行なうと、還元時の焼結防
止、形状維持が容易であることを見出し特許出願済みで
あるが(特願平1−119134号)、さらに検討を重
ねた結果、特定の条件で形状維持処理を行なうことによ
り分散性がいっそう優れることを見出し本発明の完成に
至った。
As a result of studying the process of obtaining metal magnetic powder from goethite, the present inventors found that reduction was interrupted at the stage of magnetite produced during reduction, and the magnetite was subjected to shape-maintaining treatment. , found that it is easy to prevent sintering during reduction and maintain the shape, and has filed a patent application (Japanese Patent Application No. 1-119134). However, as a result of further study, it was decided that the shape-maintaining treatment should be carried out under specific conditions. The present inventors have discovered that the dispersibility is even more excellent.

即ち、本発明は、針状ゲーサイトまたは鉄以外の金属で
変性された針状ゲーサイトを原料とし、形状維持処理を
行なった後、これを還元し金属磁性粉末を製造するに際
し、分散機による分散を行ないながら形状維持処理を行
なうことを特徴とする分散性の優れた微細な金属磁性粉
末の製造方法に係わるものである。
That is, the present invention uses acicular goethite or acicular goethite modified with a metal other than iron as a raw material, performs shape maintenance treatment, and then reduces it to produce metal magnetic powder. The present invention relates to a method for producing fine metal magnetic powder with excellent dispersibility, which is characterized by carrying out shape maintenance treatment while dispersing.

本発明の方法のように分散機による分散を行ないながら
形状維持処理をした後、還元することにより分散性の優
れた金属磁性粉末が得られるが、マグネタイトの段階で
還元を中断し、再び分散機による分散を行ないながら形
状維持処理を行なうとより優れた効果が発揮される。
As in the method of the present invention, metal magnetic powder with excellent dispersibility can be obtained by performing shape maintenance treatment while dispersing with a disperser and then reducing, but the reduction is interrupted at the magnetite stage and the disperser is used again. Even better effects can be achieved if the shape maintenance treatment is performed while dispersing the particles.

分散機による分散を行ないながら形状維持処理を行なう
とメタル粉の性能が向上する理由は明らかでないが、分
散力の存在下で形状維持処理を行なうことにより処理剤
がより均一に付着し有効に作用し易くなることがその理
由のひとつであろうと推定される。
It is not clear why the performance of metal powder improves when shape maintenance treatment is performed while dispersing with a dispersion machine, but by performing shape maintenance treatment in the presence of dispersion force, the treatment agent adheres more uniformly and works more effectively. It is assumed that one of the reasons for this is that it is easier to do so.

一般に、粉末を液体と混合しスラリーを調製する場合、
分散・混合・撹拌等の語で表わされる粉末を液体と均一
化する操作が行なわれるが、本発明で言う°′分散機に
よる分散”とは単なる混合・撹拌を指すのではなく、ス
ラリーの単位液量当り一定値以上の動力を付与すること
をさしている。すなわち、通常用いられる分散・混合・
撹拌ではスラリーの単位液量当りの撹拌動力(P/V値
)は0.1〜10kW/1T:あるノニ対し、“分散機
による分散”ではP/VはI XIO’ kh/−以上
、好ましくはI XIO” k賀/va”以上の値であ
る。
Generally, when preparing a slurry by mixing a powder with a liquid,
Operations to homogenize powder and liquid, expressed by terms such as dispersion, mixing, and stirring, are performed, but in the present invention, ``dispersion by a dispersing machine'' does not simply refer to mixing and stirring, but rather refers to slurry units. It refers to the application of power above a certain value per liquid volume.In other words, it refers to the application of power above a certain value per liquid volume.
In stirring, the stirring power (P/V value) per unit liquid volume of slurry is 0.1 to 10 kW/1T: For some noni, in "dispersion using a disperser", P/V is preferably IXIO' kh/- or more. is a value greater than or equal to IXIO"kga/va".

ここで、P:撹拌機、分散機等の撹拌動力(kW)v:
撹拌については槽内液量〔−〕、 分散については分散部のホール ドアツブ量〔1〕である。
Here, P: stirring power (kW) of stirrer, disperser, etc. v:
For stirring, the amount of liquid in the tank is [-], and for dispersion, it is the amount of hold-up in the dispersion section [1].

本発明に用いられる分散機としては高速回転で生しる剪
断力による分散機構を有するもので十分であるが、剪断
力に加え超音波による分散@構を有するものであればさ
らに好ましい。また、分散機は反応槽内に設置できるが
、反応層の外部に循環ラインを設けこのラインの途中に
分散機を設置するとより効率的である。
It is sufficient for the dispersing machine used in the present invention to have a dispersion mechanism using shearing force generated by high-speed rotation, but it is more preferable if it has a dispersion mechanism using ultrasonic waves in addition to shearing force. Further, although the dispersing machine can be installed within the reaction tank, it is more efficient to provide a circulation line outside the reaction layer and installing the dispersing machine in the middle of this line.

本発明に用いられる針状ゲーサイトの軸比、大きさは一
数的番こ金属磁性粉末の原料として用いられるものであ
れば良いが、粒子径の小さいものに於て本発明の効果が
顕著になる。
The axial ratio and size of the acicular goethite used in the present invention may be as long as it can be used as a raw material for a numerically sized metal magnetic powder, but the effect of the present invention is most noticeable when the particle size is small. become.

本発明で言うゲーサイトは一般式Fe00Hで表わされ
る水和酸化鉄を主とした粉末であり、面間隔4.18±
0.05.2.69±0.05.2.45±0.05オ
ングストロームに相当する位置にX線回折の主要ピーク
を有し、大気中の加熱により約12%の重量減少を生じ
、ヘマタイトを生成するものを指しており、若干量の鉄
以外の金属元素を含有しても差し支えない。また、本発
明で言うマグネタイトとは酸化鉄を主とした酸化物であ
り、面間隔2.97±0.05.2.53±0.05.
2.10±0.05オングストロームに相当する位置に
X線回折の主要ピークを有し、大気中での加熱により2
.5%以上の重量増加を生しるものを言い、X&!回折
で実質的にゲーサイトあるいはへマタイトおよび金属鉄
に相当する回折ピークが認められない状態をさしている
The goethite referred to in the present invention is a powder mainly composed of hydrated iron oxide represented by the general formula Fe00H, and has a lattice spacing of 4.18±
It has a main peak of X-ray diffraction at a position corresponding to 0.05.2.69 ± 0.05.2.45 ± 0.05 angstroms, and a weight loss of approximately 12% occurs when heated in the atmosphere, and hematite This refers to those that produce iron, and may contain a small amount of metal elements other than iron. In addition, the magnetite referred to in the present invention is an oxide mainly composed of iron oxide, and the interplanar spacing is 2.97±0.05.2.53±0.05.
It has a main peak of X-ray diffraction at a position corresponding to 2.10 ± 0.05 angstroms, and when heated in the atmosphere,
.. X&! means something that causes a weight increase of 5% or more This refers to a state in which substantially no diffraction peaks corresponding to goethite, hematite, or metallic iron are observed in diffraction.

これらの典型的な粉末のX線回折パターンを図1に示し
た。図1に於て、(A)はゲーサイト、(B)はマグネ
タイト、(C)は金属鉄の回折パターン図である。
The X-ray diffraction patterns of these typical powders are shown in FIG. In FIG. 1, (A) is a diffraction pattern diagram of goethite, (B) is a diffraction pattern diagram of magnetite, and (C) is a diffraction pattern diagram of metallic iron.

本発明で言うゲーサイトおよびマグネタイトへの形状維
持処理とはゲーサイトをマグネタイトや金属鉄に還元す
るとき、さらにはマグネタイトを金属鉄に還元するとき
に生しる融着や形状崩壊を防止するための処理を総称す
るものであり、焼結防止処理、融着防止処理とも言われ
るものである。
Shape maintenance treatment for goethite and magnetite as used in the present invention is to prevent fusion and shape collapse that occur when goethite is reduced to magnetite or metallic iron, and further when magnetite is reduced to metallic iron. It is a general term for the treatments described above, and is also referred to as sintering prevention treatment or fusion prevention treatment.

針状ゲーサイトへの形状維持処理としてはSi+AL 
Zr、 Ti、 Sn+ Mg、 Ca+ B+ P等
の化合物の単独あるいは混合による処理が用いられ、溶
液状態からの不溶物の析出、コロイド状化合物の沈着等
により行なわれる。その具体例としてはゲーサイトのス
ラリーに水ガラス、アル業ン酸ソーダ、硫酸マグネシウ
ム等の水溶性化合物水溶液を加えた後、系のpHを調節
することにより不溶性水酸化物を析出させる方法、燐酸
塩、はう酸塩等の不溶性塩を析出させる方法や、ゲーサ
イトスラリーにトリイソプロポキシアルミニウム、テト
ラエトキシシラン、テトライソプロポキシチタン等の金
属アルコキシドを加え加水分解物を析出させる方法等が
用いられる。また、Si化合物としてはシリコン樹脂、
シリコンオイルを用いることもできる。
Si+AL is used to maintain the shape of acicular goethite.
Treatment using compounds such as Zr, Ti, Sn+ Mg, Ca+ B+ P, etc. alone or in combination is used, and is carried out by precipitation of insoluble matter from a solution state, deposition of colloidal compounds, etc. Specific examples include a method in which insoluble hydroxides are precipitated by adding an aqueous solution of water-soluble compounds such as water glass, sodium alkyl phosphate, and magnesium sulfate to a slurry of goethite, and then adjusting the pH of the system; The methods used include precipitating insoluble salts such as salts and balates, and adding metal alkoxides such as triisopropoxyaluminum, tetraethoxysilane, and tetraisopropoxytitanium to goethite slurry to precipitate hydrolysates. . In addition, as the Si compound, silicon resin,
Silicone oil can also be used.

ゲーサイトからマグネタイトや金属鉄への還元は形状維
持処理後のゲーサイトを例えば水素気流中で250〜5
50″Cに保つことに依って行われる。この時、形状維
持処理や還元に先立って空気中で加熱脱水を行ってもよ
いが、還元雰囲気で加熱脱水を行った方が最終的に得ら
れる金属磁性粉末の磁気特性が良好となる。
To reduce goethite to magnetite or metallic iron, goethite after shape maintenance treatment is reduced to 250 to 50% in a hydrogen stream, for example.
This is done by maintaining the temperature at 50"C. At this time, heating and dehydration may be performed in air prior to shape maintenance treatment and reduction, but the final result is better if heating and dehydration is performed in a reducing atmosphere. The magnetic properties of the metal magnetic powder become better.

マグネタイトへの形状維持処理としてはSi。Si is used to maintain the shape of magnetite.

AI、 Zr、 Ti、 Sn、 Mg、 Ca+ B
等の化合物による処理の他に、フェノール樹脂、フラン
樹脂等の熱硬化性樹脂による処理も有効である。Si、
 AlZr、 Ti+ Sn、 F!Ig、 Ca、 
B等の化合物による処理はゲーサイトに対すると同様の
方法が用いられ、熱硬イヒ性樹脂による処理の例として
はこれらの樹脂の水溶性有機溶剤(アセトン、エタノー
ル等)溶液をマグネタイトのスラリーに加え不溶化する
ことに依って行なわれる。勿論、これらの処理剤は単独
で用いてもよく、組み合わせて用いてもよい。
AI, Zr, Ti, Sn, Mg, Ca+ B
In addition to treatments with compounds such as, treatments with thermosetting resins such as phenol resins and furan resins are also effective. Si,
AlZr, Ti+ Sn, F! Ig, Ca,
For treatment with compounds such as B, the same method as for goethite is used, and an example of treatment with a thermosetting resin is to add a solution of these resins in a water-soluble organic solvent (acetone, ethanol, etc.) to a slurry of magnetite. This is done by making it insoluble. Of course, these processing agents may be used alone or in combination.

形状維持処理後のマグネタイトの金属磁性粉末への還元
も水素気流中で300〜550°Cに保てば良い。
The reduction of magnetite to metal magnetic powder after the shape maintenance treatment may also be maintained at 300 to 550°C in a hydrogen stream.

[実施例] 以下、実施例により本発明を更に詳細に説明するが、本
発明はこれらの実施例に限定されるものではない。
[Examples] Hereinafter, the present invention will be explained in more detail with reference to Examples, but the present invention is not limited to these Examples.

実施例1 図2に示すように、反応槽1の外部にパイプライン製分
散機マイルダ−2(荏原製作所製)を設置した循環ライ
ンを設けた装置を用い、ゲーサイト(長軸径; 0.1
8m、軸比;8)1kgを、ポイズ530(花王■製ポ
リカルボン酸系オリゴマー)の3%溶液11に約1時間
分散した後3号ケイソー(SiOz分29%)70gを
加え、更に1時間分散を続けた。さらに分散を続けなが
ら希硝酸を加え、系のpHを6.5に下げ1時間分散を
行なった後、濾過・洗浄・乾燥してケイ素化合物層を有
するゲーサイトを得た。
Example 1 As shown in FIG. 2, an apparatus having a circulation line with a pipeline dispersion machine Milder 2 (manufactured by Ebara Corporation) installed outside the reaction tank 1 was used to collect goethite (major axis diameter: 0. 1
8 m, axial ratio: 8) After dispersing 1 kg in 3% solution 11 of Poise 530 (polycarboxylic acid oligomer manufactured by Kao ■) for about 1 hour, 70 g of No. 3 Keiso (SiOz content 29%) was added, and for another 1 hour. continued to disperse. Further, while continuing dispersion, dilute nitric acid was added to lower the pH of the system to 6.5, and dispersion was continued for 1 hour, followed by filtration, washing, and drying to obtain goethite having a silicon compound layer.

尚、図2において、3は滴下槽、4は滴下ポンプである
In addition, in FIG. 2, 3 is a dripping tank, and 4 is a dripping pump.

このケイ素化合物処理ゲーサイトをレトルト炉(内容積
301)で、水素/窒素=1/1混合ガスを501/分
で流しながら2.5°C/分で300°Cまで昇温した
後300 ’Cに保ち、X線回折でゲーサイト、ヘマタ
イトのピークが見られなくなるまで還元を行ないマグネ
タイトを得た。このマグネタイトを再び先の装置で分散
しながら、3号ケイソー60gを加え1時間、希硝酸を
加え系のpHを6.5とした後さらに1時間分散した。
This silicon compound-treated goethite was heated to 300°C at 2.5°C/min in a retort furnace (inner volume 301) while flowing hydrogen/nitrogen = 1/1 mixed gas at 501/min. C, and reduction was carried out until the peaks of goethite and hematite were no longer seen in X-ray diffraction to obtain magnetite. While this magnetite was being dispersed again using the above device, 60 g of Keiso No. 3 was added for 1 hour, dilute nitric acid was added to bring the pH of the system to 6.5, and the mixture was further dispersed for 1 hour.

その後、濾過・洗浄・乾燥し、新たにケイ素化合物層を
形成したマグネタイトを得た。このマグネタイトをレト
ルト炉で水素気流中350″Cで還元し、メタル粉1を
得た。
Thereafter, it was filtered, washed, and dried to obtain magnetite with a new silicon compound layer formed thereon. This magnetite was reduced in a retort furnace at 350''C in a hydrogen stream to obtain metal powder 1.

メタル粉の形状を透過型電子顕微鏡(以下TEMと略記
)により観察したところ原料ゲーサイトの針状が維持さ
れていた。メタル粉1の磁気特性を他の例とともに表1
に示す。
When the shape of the metal powder was observed using a transmission electron microscope (hereinafter abbreviated as TEM), it was found that the acicular shape of the raw goethite was maintained. Table 1 shows the magnetic properties of metal powder 1 along with other examples.
Shown below.

次いで、下記塗料配合の配合物をバ・ンチ式サンドミル
で6時間混合後、混合物にコロネートしく日本ポリウレ
タン工業■製)2.5重量部を添加し、さらに15分間
混合を行った後、濾過してガラスピーズを分離し、磁性
塗料を調製した。
Next, the following paint composition was mixed for 6 hours in a Bunch type sand mill, 2.5 parts by weight of Coronate (manufactured by Nippon Polyurethane Industries) was added to the mixture, and after further mixing for 15 minutes, it was filtered. The glass beads were separated and a magnetic paint was prepared.

この塗料を10μ厚のPE↑フィルム上に乾燥膜厚が3
−になるように塗布し、磁場配向処理後乾燥してPET
フィルム上に磁性層を形成した。次いで、カレンダー処
理により鏡面加工して塗膜1を得た。
Apply this paint to a 10μ thick PE↑ film with a dry film thickness of 3
PET
A magnetic layer was formed on the film. Next, a mirror finish was obtained by calendering to obtain a coating film 1.

得られた塗膜の静磁気特性を他の例とともに表2に示す
The magnetostatic properties of the obtained coating films are shown in Table 2 along with other examples.

く塗料配合〉 メタル粉1100重量部 レシチン         2 〃 カーボンブラック     3 〃 γ−アルごす      5 〃 VAGH”          15  〃ニラポラン
2304”2    10 〃メチルエチルケトン  
 150重量部トルエン         50〃 シクロヘキサノン     75〃 (註) ml :ユニオンカーバイド社製塩化ビニル/
酢酸ビニル/ポリビニルアルコー ル共重合体 ゛ *2二日本ポリウレタン工業株製のポリウレタン樹脂 実施例2 実施例1と同じ操作で得たケイ素化合物層含有ゲーサイ
トを還元してマグネタイトを得た。
Paint formulation> Metal powder 1100 parts by weight Lecithin 2 Carbon black 3 γ-Algos 5 VAGH" 15 Niraporan 2304" 2 10 Methyl ethyl ketone
150 parts by weight Toluene 50 Cyclohexanone 75 (Note) ml: Union Carbide vinyl chloride/
Vinyl acetate/polyvinyl alcohol copolymer *2 Polyurethane resin manufactured by Nippon Polyurethane Kogyo Co., Ltd. Example 2 Goethite containing a silicon compound layer obtained in the same manner as in Example 1 was reduced to obtain magnetite.

このマグネタイトを再びボイズ530の3%溶液で1時
間分散した。このスラリーにレジンM(丸善石油化学■
製のフェノール樹脂)50gをエタノール0.31に溶
かした溶液を滴下した後1時間撹拌後、濾過・洗浄・乾
燥し、フェノール樹脂で被覆したマグネタイトを得た。
This magnetite was again dispersed in a 3% solution of Boyds 530 for 1 hour. Add Resin M (Maruzen Petrochemical ■) to this slurry.
A solution prepared by dissolving 50 g of a phenolic resin (manufactured by the company) in 0.31 g of ethanol was added dropwise and stirred for 1 hour, followed by filtration, washing, and drying to obtain magnetite coated with a phenol resin.

このマグネタイトをレトルト炉で水素気流中350℃で
還元し、メタル粉2、および塗膜2を得た。
This magnetite was reduced in a retort furnace at 350° C. in a hydrogen stream to obtain metal powder 2 and coating film 2.

TEMによる観察では針状性はよく保持されていた。Observation by TEM showed that the acicularity was well maintained.

比較例1 実施例1で用いたゲーサイトIkgを、ボイズ530の
3%溶液10ffiに分散し、TKホモミキサーSL型
(特殊機化工業■製)で約1時間分散・撹拌した後、3
号ケイソー(Si(h分29%)70gを加え、更に1
時間分散を続けた。その後、希硝酸を加え、系のpHを
6.5に下げ、1時間撹拌後、濾過・洗浄・乾燥してケ
イ素化合物層を有するゲーサイトを得た。
Comparative Example 1 Ikg of goethite used in Example 1 was dispersed in 10ffi of a 3% solution of Boyz 530, and after dispersing and stirring for about 1 hour using a TK homomixer SL model (manufactured by Tokushu Kika Kogyo ■),
Add 70g of No. Keiso (Si (h content 29%) and add 1
Continued time distribution. Thereafter, dilute nitric acid was added to lower the pH of the system to 6.5, and after stirring for 1 hour, the mixture was filtered, washed, and dried to obtain goethite having a silicon compound layer.

このケイ素化合物処理ゲーサイトを実施例1と同様に還
元しマグネタイトを得た。このマグネタイトを再びボイ
ズ530の3%溶液に分散し、3号ケイソー60gを加
え1時間分散した後、希硝酸を加え、系のpHを6.5
とし、1時間撹拌後濾過・洗浄・乾燥し、新たにケイ素
化合物層を形成したマグネタイトを得、実施例1と同様
に還元しメタル粉11を得た。TEHによる観察では粒
子の融着、形状の崩壊も観られなかった。
This silicon compound-treated goethite was reduced in the same manner as in Example 1 to obtain magnetite. This magnetite was again dispersed in a 3% solution of Boyds 530, 60 g of No. 3 Keiso was added and dispersed for 1 hour, and then dilute nitric acid was added to adjust the pH of the system to 6.5.
After stirring for 1 hour, the mixture was filtered, washed and dried to obtain magnetite with a new silicon compound layer formed thereon, and reduced in the same manner as in Example 1 to obtain metal powder 11. In observation by TEH, neither particle fusion nor shape collapse was observed.

更に、このメタル粉11を用い実施例1と同様の操作に
より塗811を得た。
Furthermore, coating 811 was obtained using this metal powder 11 in the same manner as in Example 1.

実施例3 実施例1における3号ケイソー、希硝酸に変えて、硫酸
バンド水溶液(AI□03分2.1%)6f、アンモニ
ア水溶液を用い系のpHを7.0とすること以外は実施
例1と同様にしてアルミニウム化合物層を有するゲーサ
イトを得た。ついで、実施例1と同様にレトルト炉で還
元しマグネタイトとした後、実施例1と同様の処理によ
りケイ素化合物層を形成したマグネタイトとした後、実
施例1と同様に還元し、メタル粉3および塗膜3を得た
Example 3 Example except that in place of the No. 3 diaphragm and dilute nitric acid in Example 1, an aqueous sulfuric acid solution (AI□03 min 2.1%) 6f and an ammonia aqueous solution were used to adjust the pH of the system to 7.0. Goethite having an aluminum compound layer was obtained in the same manner as in Example 1. Next, it was reduced in a retort furnace to form magnetite in the same manner as in Example 1, and then processed in the same manner as in Example 1 to form magnetite with a silicon compound layer formed thereon, and then reduced in the same manner as in Example 1 to obtain metal powder 3 and Coating film 3 was obtained.

比較例2 比較例1における3号ケイソー、希硝酸に変えて、硫酸
バンド水溶液(Al□03分2.1%)6ff、アンモ
ニウム水溶液を用い系のpHを7.0 とすること以外
は比較例1と同様にしてアルミニウム化合物層を有する
ゲーサイトを得た後、ついで、比較例1と同様にレトル
ト炉で還元しマグネタイトとした後、比較例1と同様の
処理によりケイ素化合物層を形成したマグネタイトとし
た後、比較例1と同様に還元し、メタル粉12および塗
膜12を得た。
Comparative Example 2 Comparative Example except that in place of No. 3 Keiso and dilute nitric acid in Comparative Example 1, 6ff of sulfuric acid band aqueous solution (Al□03 min 2.1%) and ammonium aqueous solution were used to adjust the pH of the system to 7.0. After obtaining goethite having an aluminum compound layer in the same manner as in Comparative Example 1, the magnetite was reduced to magnetite in a retort furnace in the same manner as in Comparative Example 1, and then a silicon compound layer was formed by the same treatment as in Comparative Example 1. After that, it was reduced in the same manner as in Comparative Example 1 to obtain metal powder 12 and coating film 12.

実施例1〜3及び比較例1〜2で得られたメタル粉及び
塗膜の磁気特性をそれぞれ表1及び表2に示す。
The magnetic properties of the metal powders and coating films obtained in Examples 1 to 3 and Comparative Examples 1 to 2 are shown in Tables 1 and 2, respectively.

表  1 表2 PSTable 1 Table 2 P.S.

【図面の簡単な説明】[Brief explanation of drawings]

図1はゲーサイト、マグネタイト及び金属鉄のx1回折
パターン図であり、(A) はゲーサイト、(B)はマ
グネタイト、(C)は金属鉄の回折パターン図を示す。 図2は実施例1で用いた分散機付きの循環ラインの略示
図である。 1:反応槽 2:マイルダー 3:滴下槽 4:滴下ポンプ
FIG. 1 shows the x1 diffraction patterns of goethite, magnetite, and metallic iron; (A) shows the diffraction pattern of goethite, (B) shows the diffraction pattern of magnetite, and (C) shows the diffraction pattern of metallic iron. FIG. 2 is a schematic diagram of a circulation line with a disperser used in Example 1. 1: Reaction tank 2: Milder 3: Dripping tank 4: Dripping pump

Claims (2)

【特許請求の範囲】[Claims] 1.針状ゲーサイトまたは鉄以外の金属で変性された針
状ゲーサイトを原料とし、形状維持処理を行なった後、
これを還元し金属磁性粉末を製造するに際し、分散機に
よる分散を行ないながら形状維持処理を行なうことを特
徴とする金属磁性粉末の製造方法。
1. The raw material is acicular goethite or acicular goethite modified with metals other than iron, and after undergoing shape maintenance treatment,
A method for manufacturing metal magnetic powder, which comprises performing shape maintenance treatment while dispersing the metal magnetic powder using a disperser when reducing the metal magnetic powder.
2.分散機による分散を行ないながら形状維持処理を行
なったゲーサイトをマグネタイトとした後、再び分散機
による分散を行ないながら形状維持処理を行ない還元す
ることを特徴とする請求項1記載の金属磁性粉末の製造
方法。
2. The metal magnetic powder according to claim 1, characterized in that the goethite that has been subjected to a shape-maintaining treatment while being dispersed with a disperser is turned into magnetite, and then the metal magnetic powder is reduced by performing a shape-maintaining treatment while being dispersed with a disperser again. Production method.
JP2091722A 1990-04-06 1990-04-06 Production of metallic magnetic powder Pending JPH03290904A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2091722A JPH03290904A (en) 1990-04-06 1990-04-06 Production of metallic magnetic powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2091722A JPH03290904A (en) 1990-04-06 1990-04-06 Production of metallic magnetic powder

Publications (1)

Publication Number Publication Date
JPH03290904A true JPH03290904A (en) 1991-12-20

Family

ID=14034399

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2091722A Pending JPH03290904A (en) 1990-04-06 1990-04-06 Production of metallic magnetic powder

Country Status (1)

Country Link
JP (1) JPH03290904A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59143004A (en) * 1983-02-04 1984-08-16 Nissan Chem Ind Ltd Production of magnetic alloy powder
JPS60187003A (en) * 1984-03-07 1985-09-24 Mitsui Toatsu Chem Inc Manufacture of magnetic powder

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59143004A (en) * 1983-02-04 1984-08-16 Nissan Chem Ind Ltd Production of magnetic alloy powder
JPS60187003A (en) * 1984-03-07 1985-09-24 Mitsui Toatsu Chem Inc Manufacture of magnetic powder

Similar Documents

Publication Publication Date Title
US5645652A (en) Spindle-shaped magnetic iron-based alloy particles containing cobalt and iron as the main ingredients and process for producing the same
JP2918619B2 (en) Method for producing metal magnetic powder and coating film for magnetic recording medium
WO2019189468A1 (en) Magnetic powder production method and magnetic recording medium production method
JPH03290904A (en) Production of metallic magnetic powder
JP5418754B2 (en) Ferromagnetic metal particle powder, method for producing the same, and magnetic recording medium
JP2937211B2 (en) Method for producing acicular magnetic iron oxide particles
JPH02298004A (en) Manufacture of metal magnetic powder
JPH06151139A (en) Powder of magnetic particles for magnetic recording and manufacture thereof
JP2843124B2 (en) Method for producing metal magnetic powder
US20100035087A1 (en) Process for producing ferromagnetic metal particles and magnetic recording medium
JP3049373B2 (en) Method for producing acicular cobalt-containing iron oxide magnetic powder
JP2807540B2 (en) Method for producing metal magnetic powder
JP2744641B2 (en) Method for producing ferromagnetic metal powder
JPH0461302A (en) Metal magnetic particle powder mainly made of spindle type iron
JPH04184903A (en) Manufacture of magnetic particle power for magnetic recording
JP2970699B2 (en) Method for producing acicular magnetic iron oxide particles
JP3049374B2 (en) Method for producing acicular oxide magnetic powder
JP3087808B2 (en) Manufacturing method of magnetic particle powder for magnetic recording
JPH0693313A (en) Production of magnetic metal powder
JP3055308B2 (en) Method for producing acicular magnetic iron oxide particles
JPH03123003A (en) Magnetic metal powder, manufacture thereof, and film for magnetic recording medium using the magnetic powder
JPS6367705A (en) Manufacture of magnetic iron powder
JPS6367704A (en) Manufacture of highly dispersive magnetic iron powder
JPH0696922A (en) Manufacture of metallic magnetic powder and film for magnetic recording medium
JPH08104908A (en) Production of metallic magnetic powder