JPH03290409A - Polymerization of ethylene - Google Patents

Polymerization of ethylene

Info

Publication number
JPH03290409A
JPH03290409A JP9013990A JP9013990A JPH03290409A JP H03290409 A JPH03290409 A JP H03290409A JP 9013990 A JP9013990 A JP 9013990A JP 9013990 A JP9013990 A JP 9013990A JP H03290409 A JPH03290409 A JP H03290409A
Authority
JP
Japan
Prior art keywords
component
formula
ethylene
polymerization
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9013990A
Other languages
Japanese (ja)
Inventor
Takefumi Yano
武文 矢野
Masanori Tamura
雅範 田村
Yasuhisa Sakakibara
榊原 康久
Toru Takaoka
亨 高岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP9013990A priority Critical patent/JPH03290409A/en
Publication of JPH03290409A publication Critical patent/JPH03290409A/en
Pending legal-status Critical Current

Links

Landscapes

  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Abstract

PURPOSE:To obtain an ethylene polymer without causing activity dropoff and coloration by polymerization at high-temperatures and pressures of ethylene or its mixture with an alpha-olefin using a catalyst made from an Al compound, organosilicon compound, Ti compound, Grignard reagent and organoaluminum compound. CONSTITUTION:The objective polymer can be obtained by polymerization at >=125 deg.C under a pressure of >=200kg/cm<2> of ethylene or its mixture with a >=3C alpha-olefin using a catalytic system made up of (A) a solid catalytic component prepared by reaction of (1) a Grignard reagent of formula III (R<3> is 1-8C alkyl; X<2> is halogen) with a reaction product from (2) an aluminum halide of formula l (X<1> is chlorine, bromine, etc.) and (3) an organosilicon compound of formula II (R<1> and R<2> are each 1-8C alkyl or phenyl; n is 0-3) and bringing a titanium halide into contact with the resulting solid, (B) an organoaluminum compound of formula IV (R<4> is 2-6C alkyl; X<3> is halogen; m is 1-3), and (C) the component (3).

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、高温、高圧下でエチレンを重合、あるいはエ
チレンと炭素数3以上のα−オレフィンとを共重合させ
る方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for polymerizing ethylene or copolymerizing ethylene and an α-olefin having 3 or more carbon atoms under high temperature and high pressure.

〔従来の技術及びその問題点] これまで、チーグラー型の触媒の存在下、125゛C以
上の温度、200kg/c+f1以上の圧力でエチレン
を重合またはエチレンと炭素数3以上のα−オレフィン
を共重合させる種々の方法が提案されている。
[Prior art and its problems] Until now, ethylene has been polymerized in the presence of a Ziegler type catalyst at a temperature of 125°C or higher and a pressure of 200kg/c+f1 or higher, or ethylene and an α-olefin having 3 or more carbon atoms have been co-polymerized. Various methods of polymerization have been proposed.

例えば、三塩化チタンまたはマグネシウム化合物に担持
したチタン化合物と有機アルミニウムとの組合せからな
る触媒が提案されている(特開昭4997087号、同
56−18607号、同57−190009号、同59
−58012号、同59−89306号)。
For example, a catalyst consisting of a combination of a titanium compound supported on titanium trichloride or a magnesium compound and an organic aluminum has been proposed (JP-A-4997087, JP-A No. 56-18607, JP-A No. 57-190009, JP-A No. 59
-58012, 59-89306).

上記の重合方法において、通常共触媒としては、モノマ
ーやコモノマーなどの重合反応中での水添反応を避ける
ために、ハロゲンを含有する有機アルミニウム、例えば
、ジエチルアルミニウムモノクロリド、ジブチルアルご
ニウムモノクロリド、エチルアルミニウムセスキクロリ
ドなどが使用される。
In the above polymerization method, the cocatalyst is usually halogen-containing organoaluminium, such as diethylaluminum monochloride, dibutylalgonium monochloride, or Ethylaluminum sesquichloride and the like are used.

上記の提案されている触媒系を使用して、高温高圧下で
エチレンとα−オレフィンを共重合して、溶融粘度指数
(MFR)の比較的大きい線型低密度ポリエチレン(L
LDPE)を製造することは可能であるが、MFHの比
較的小さいLLDPEを製造することは必ずしも容易で
ない。特に、炭素数3以上のα−オレフィン含有量の多
い超低密度ポリエチレン(VLDPE)などの製造にお
いては、これまでに提案されている触媒系を使用した場
合、MFRの小さい領域のポリマーを得ることは極めて
困難である。
Using the above proposed catalyst system, ethylene and α-olefin are copolymerized under high temperature and pressure, resulting in linear low density polyethylene (L) with a relatively large melt viscosity index (MFR).
However, it is not always easy to produce LLDPE with a relatively small MFH. In particular, in the production of very low density polyethylene (VLDPE) with a high content of α-olefins having 3 or more carbon atoms, it is difficult to obtain polymers with a small MFR when using the catalyst systems proposed so far. is extremely difficult.

これらの問題点を解決するために、触媒系に各種の電子
供与体を添加する方法が提案されている。
In order to solve these problems, methods have been proposed in which various electron donors are added to the catalyst system.

例えば、三級アルコール(特開昭63−317503号
)、エーテル類、ケトン類、エステル類(特開昭62−
109805号)、B−0−C結合を有する化合物(特
開昭62−84107号)、C−OまたはC−N結合を
有する電子供与体化合物(特開昭61−276804号
) 、P−0−C結合を有する化合物(特開昭61−2
76803号)Nまたは0を含有する複素環化合物(特
開昭61−207405号)を触媒系に添加することに
よって、生成するポリマーのMFRを制御する方法が開
示されている。
For example, tertiary alcohols (JP-A-63-317503), ethers, ketones, esters (JP-A-62-317503), ethers, ketones, esters (JP-A-62-317503)
109805), a compound having a B-0-C bond (JP-A No. 62-84107), an electron donor compound having a C-O or C-N bond (JP-A No. 61-276804), P-0 -Compounds having a C bond (JP-A-61-2
No. 76803) discloses a method of controlling the MFR of the resulting polymer by adding a heterocyclic compound containing N or O (Japanese Patent Application Laid-Open No. 207405/1986) to the catalyst system.

上記の方法でMFHの小さいポリマーを製造することが
可能であるが、一般に重合活性の著しい低下を伴い、添
加剤の種類によっては製品が着色あるいは着臭する場合
がある。
Although it is possible to produce a polymer with a low MFH by the above method, it is generally accompanied by a significant decrease in polymerization activity, and depending on the type of additive, the product may be colored or smelled.

〔問題点解決のための技術的手段〕[Technical means to solve problems]

本発明は、高温、高圧下でのエチレン重合あるいはエチ
レンと炭素数3以上のα−オレフィンとの共重合におい
て、溶融粘度指数(MFR)の小さいポリマーを製造す
る方法を提供するものである。
The present invention provides a method for producing a polymer having a small melt viscosity index (MFR) in ethylene polymerization or copolymerization of ethylene and an α-olefin having 3 or more carbon atoms under high temperature and high pressure.

本発明は、エチレン又はエチレンと炭素数3以上のα−
オレフィンとの混合物を、下記の成分I及びHの反応生
成物に成分IIIを反応して生成する固体にハロゲン化
チタン化合物を接触させて得られる触媒固体成分、成分
■及び成分■からなる触媒系において、200 kg/
 cil[以上の圧力、125℃以上の温度で重合させ
ることを特徴とするエチレンの重合及び共重合方法に関
する。
The present invention provides ethylene or ethylene and α-
A catalyst system consisting of a catalytic solid component, component (1) and component (2) obtained by contacting a halogenated titanium compound with a solid produced by reacting a mixture with an olefin with component III and the reaction product of components I and H below. 200 kg/
This invention relates to a method for polymerizing and copolymerizing ethylene, characterized in that the polymerization is carried out at a pressure of 125° C. or higher and a temperature of 125° C. or higher.

成分l;式、AIX’!で表されるハロゲン化アルミニ
ウム。(式中、XIは塩素原子、臭素原子または沃素原
子を示す。) 成分II;式、RIaS>(OR”)n−nで表される
有機珪素化合物。(式中、R1およびRtは、それぞれ
、炭素数1〜8のアルキルまたはフェニル基を示し、n
はO〜3の整数である。) 成分III;式、R”?igX”で表されるグリニヤー
ル化合物。(式中、R3は炭素数1〜8のアルキル基を
示し、x2はハロゲン原子を示す。)成分■:式、Al
R4mX’、、で表される有機アルミニウム。(式中、
R4は炭素数2〜6のアルキル基を示し、x3はハロゲ
ン原子を示す。mは1〜3の整数である。) 本発明で使用される成分Iとしてのハロゲン化アルミニ
ウムは吸湿性であり、完全に無水のものを用いることが
困難であるため、本発明においては少量の水分を含有す
るハロゲン化アルミニウムも使用することができる。具
体例としては、三塩化アルミニウム、三臭化アルミニウ
ム、三沃化アルミニウムを挙げることができ、特に無水
の塩化アルミニウムが好ましい。
Component l; formula, AIX'! Aluminum halide represented by. (In the formula, XI represents a chlorine atom, a bromine atom, or an iodine atom.) Component II: An organosilicon compound represented by the formula, RIaS>(OR")nn. (In the formula, R1 and Rt are each , represents an alkyl or phenyl group having 1 to 8 carbon atoms, and n
is an integer from O to 3. ) Component III: Grignard compound represented by the formula R"?igX". (In the formula, R3 represents an alkyl group having 1 to 8 carbon atoms, and x2 represents a halogen atom.) Component ■: Formula, Al
An organoaluminum represented by R4mX'. (In the formula,
R4 represents an alkyl group having 2 to 6 carbon atoms, and x3 represents a halogen atom. m is an integer from 1 to 3. ) The aluminum halide used as component I in the present invention is hygroscopic and it is difficult to use a completely anhydrous one, so in the present invention aluminum halide containing a small amount of water is also used. be able to. Specific examples include aluminum trichloride, aluminum tribromide, and aluminum triiodide, with anhydrous aluminum chloride being particularly preferred.

本発明で使用される成分■としての有機珪素化合物の具
体例としては、テトラメトキシシラン、テトラエトキシ
シラン、テトラブトキシシラン、メチルトリエトキシシ
ラン、エチルトリブトキシシラン、フェニルトリメトキ
シシラン、フェニルトリエトキシシラン、フェニルトリ
ブトキシシラン、ジメチルジェトキシシラン、ジフェニ
ルジメトキシシラン、ジフェニルジェトキシシラン、ト
リメチルエトキシシラン、トリメチルブトキシシランを
挙げることができる。特にテトラエトキシシラン、メチ
ルトリエトキシシラン、フェニルトリメトキシシラン、
フェニルトリエトキシシラン、ジメチルジェトキシシラ
ンが好ましい。
Specific examples of the organosilicon compound as component (2) used in the present invention include tetramethoxysilane, tetraethoxysilane, tetrabutoxysilane, methyltriethoxysilane, ethyltributoxysilane, phenyltrimethoxysilane, and phenyltriethoxysilane. , phenyltributoxysilane, dimethyljethoxysilane, diphenyldimethoxysilane, diphenyljethoxysilane, trimethylethoxysilane, and trimethylbutoxysilane. Especially tetraethoxysilane, methyltriethoxysilane, phenyltrimethoxysilane,
Phenyltriethoxysilane and dimethyljethoxysilane are preferred.

成分Iと■との反応において使用される成分■及びII
のモル比(1/II)は通常0.4〜1.5、好ましく
は0.7〜1.3の範囲であり、両者を反応するに際し
ヘキサン、トルエンなどの不活性溶媒を使用することが
出来る。反応温度は通常10〜100℃、好ましくは2
0〜80℃であり、反応時間は通常0.2〜5時間、好
ましくは0.5〜3時間である。
Components ■ and II used in the reaction of components I and ■
The molar ratio (1/II) is usually in the range of 0.4 to 1.5, preferably 0.7 to 1.3, and an inert solvent such as hexane or toluene may be used when reacting the two. I can do it. The reaction temperature is usually 10 to 100°C, preferably 2
The temperature is 0 to 80°C, and the reaction time is usually 0.2 to 5 hours, preferably 0.5 to 3 hours.

本発明で使用される成分■としてのグリニヤール化合物
としては、例えば、エチルマグネシウムクロライド、プ
ロピルマグネシウムクロライド、ブチルマグネシウムブ
ロマイド、エチルマグネシウムブロマイド、プロピルマ
グネシウムブロマイド、ブチルマグネシウムブロマイド
、エチルマグネシウムアイオダイド、フェニルマグネシ
ウムクロライド、ヘキシルマグネシウムクロライド、オ
クチルマグネシウムクロライドなどを挙げることができ
る。上記グリニヤール化合物の溶媒としては、ジエチル
エーテル、ジブチルエーテル、ジイソプロピルエーテル
、ジイソアミルエーテル等の脂肪族エーテル、テトラヒ
ドロフランなどの脂肪族環状エーテルを挙げることがで
きる。
Examples of the Grignard compound as component (2) used in the present invention include ethylmagnesium chloride, propylmagnesium chloride, butylmagnesium bromide, ethylmagnesium bromide, propylmagnesium bromide, butylmagnesium bromide, ethylmagnesium iodide, phenylmagnesium chloride, Examples include hexylmagnesium chloride and octylmagnesium chloride. Examples of the solvent for the Grignard compound include aliphatic ethers such as diethyl ether, dibutyl ether, diisopropyl ether, and diisoamyl ether, and aliphatic cyclic ethers such as tetrahydrofuran.

成分■と■との反応生成物の溶液と成分■とを反応する
。成分■の使用量は、前記反応生成物の調製に使用した
成分Iに対してモル比(I[[/I)で通常0.5〜3
、好ましくは1.5〜2.3である。
A solution of the reaction product of components (2) and (2) is reacted with component (2). The amount of component (1) to be used is usually 0.5 to 3 in molar ratio (I [[/I)] to component I used in the preparation of the reaction product.
, preferably 1.5 to 2.3.

反応温度は通常−50〜100℃、好ましくは一20〜
50″Cである。反応時間は通常0.2〜5時間、好ま
しくは0.5〜3時間である。
The reaction temperature is usually -50 to 100°C, preferably -20 to
50''C. The reaction time is usually 0.2 to 5 hours, preferably 0.5 to 3 hours.

本発明では上記反応で得られた白色系の固体を不活性溶
媒で充分洗浄した後、ハロゲン化チタン化合物と接触処
理する。接触処理は、従来よく知られた方法が採用でき
る0例えば、ハロゲン化チタン化合物を溶解した不活性
溶媒中に固体を分散させる、または溶媒を使用せずに液
状ハロゲン化チタン化合物中に固体を分散させる。この
固体とハロゲン化チタン化合物との接触処理を攪拌下、
温度は通常50〜150℃、特に制限はないが接触時間
は通常0.2〜5時間で行うことができる。また、この
接触処理を複数回行うこともできる。
In the present invention, the white solid obtained in the above reaction is thoroughly washed with an inert solvent and then brought into contact with a halogenated titanium compound. For the contact treatment, conventionally well-known methods can be adopted. For example, the solid is dispersed in an inert solvent in which a titanium halide compound is dissolved, or the solid is dispersed in a liquid titanium halide compound without using a solvent. let Contact treatment of this solid with a halogenated titanium compound is carried out under stirring.
The temperature is usually 50 to 150°C, and the contact time is usually 0.2 to 5 hours, although there is no particular restriction. Moreover, this contact treatment can also be performed multiple times.

接触処理に使用できるハロゲン化チタン化合物トシテは
、式Tt(OR)p X4−P(+)はO〜3の整数で
あり、Xはハロゲン原子を示す。)で示される。具体例
としては、テトラクロロチタン、テトラブロモチタン、
トリクロロモノブトキシチタン、トリブロモエトキシチ
タン、トリクロロモノイソプロポキシチタン、ジクロロ
ジェトキシチタン、ジクロロジブトキシチタン、モノク
ロロトリエトキシチタン、モノクロロトリブトキシチタ
ンを挙げることができる。特に好ましいものは、テトラ
クロロチタン、トリクロロモノブトキシチタンである。
The halogenated titanium compound Toshite that can be used in the contact treatment has the formula Tt(OR)p, where X4-P(+) is an integer of O to 3, and X represents a halogen atom. ). Specific examples include tetrachlorotitanium, tetrabromotitanium,
Mention may be made of trichloromonobutoxytitanium, tribromoethoxytitanium, trichloromonoisopropoxytitanium, dichlorojethoxytitanium, dichlorodibutoxytitanium, monochlorotriethoxytitanium, and monochlorotributoxytitanium. Particularly preferred are tetrachlorotitanium and trichloromonobutoxytitanium.

上記接触処理の後に、一般には処理固体を処理混合物か
ら分離し、不活性溶剤で充分洗浄する。
After the contact treatment, the treated solids are generally separated from the treatment mixture and thoroughly washed with an inert solvent.

本発明で使用される成分■としての有機アルミニウムの
具体例として、トリメチルアルミニウム、トリエチルア
ルミニウム、トリオクチルアルミニウム、ジメチルアル
ミニウムクロライド、ジエチルアルミニウムフロラライ
ド、ジメチルアルミニウムクロライド、エチルアルミニ
ウムセスキクロライド、ブチルアルミニウムセスキクロ
ライド、エチルアルミニウムジクロライドを挙げること
ができる。
Specific examples of organoaluminum as component (2) used in the present invention include trimethylaluminum, triethylaluminum, trioctylaluminum, dimethylaluminum chloride, diethylaluminum fluoride, dimethylaluminum chloride, ethylaluminum sesquichloride, butylaluminum sesquichloride, Mention may be made of ethylaluminum dichloride.

重合に用いる触媒固体成分中のTi@分と成分■のモル
比(AI/Ti)は通常0.l〜50、好ましくは0.
5〜30の範囲である。
The molar ratio (AI/Ti) between Ti@ and component (2) in the catalyst solid component used for polymerization is usually 0. l to 50, preferably 0.
It ranges from 5 to 30.

触媒固体成分及び成分■と共に重合に用いる成分■とし
ての有機珪素化合物は、成分■との反応に用いられる有
機珪素化合物と同様なもの、あるいは異なったものを用
いることができる。重合に用いる成分■と成分■のモル
比(n/AI)は通常0.05〜1.0、好ましくは0
.1〜0.8の範囲である。
The organosilicon compound used as component (2) in the polymerization together with the catalyst solid component and component (2) can be the same as or different from the organosilicon compound used in the reaction with component (2). The molar ratio (n/AI) of component (1) and component (2) used in the polymerization is usually 0.05 to 1.0, preferably 0.
.. It is in the range of 1 to 0.8.

触媒固体成分、成分■及び成分IIの添加順序には特に
制限はないが、例えば予め溶媒で希釈し、または希釈す
ることなく成分■と成分■との混合溶液を調製して用い
ることができる。この場合、混合溶液を加熱処理するこ
ともできる。
There is no particular restriction on the order of addition of the catalyst solid component, component (1), and component II, but for example, a mixed solution of components (1) and (2) may be prepared and used by diluting with a solvent in advance, or without diluting. In this case, the mixed solution can also be heat-treated.

本発明で用いられるエチレンと共重合させる炭素数3以
上のα−オレフィンとしては、1−ブテン、1−ヘキセ
ン、4−メチルペンテン−1、l−オクテンなどが挙げ
られる。
Examples of the α-olefin having 3 or more carbon atoms to be copolymerized with ethylene used in the present invention include 1-butene, 1-hexene, 4-methylpentene-1, and 1-octene.

本発明における重合条件は、重合圧力が200kg/d
以上、通常200〜3000kg/ clll、好まし
くは500〜2000kg/ c4.重合温度が125
℃以上、通常125〜300℃である。反応器としては
、オートクレーブ反応器、管式反応器など従来知られて
いるものが使用できる。重合時間は特に制限はないが通
常10〜1200秒、好ましくは20〜600秒である
The polymerization conditions in the present invention include a polymerization pressure of 200 kg/d.
Above, usually 200-3000kg/cll, preferably 500-2000kg/c4. Polymerization temperature is 125
℃ or higher, usually 125 to 300℃. As the reactor, conventionally known reactors such as autoclave reactors and tubular reactors can be used. The polymerization time is not particularly limited, but is usually 10 to 1200 seconds, preferably 20 to 600 seconds.

〔実施例〕〔Example〕

以下本発明の詳細な説明する。 The present invention will be explained in detail below.

実施例において、「重合活性」とは、触媒固体成分中の
チタンIg当たりの生成ポリマーの収量(kg)であり
、rMFRJとは、ASTM D1238に従って2、
16kgの荷重下に190℃で測定した生成ポリマーの
溶融指数である。
In the examples, "polymerization activity" is the yield (kg) of polymer produced per Ig of titanium in the catalyst solid component, and rMFRJ is 2, according to ASTM D1238.
Melt index of the resulting polymer measured at 190° C. under a load of 16 kg.

実施例1 (1)  触媒固体成分の台底 無水塩化アルミニウム150モルをトルエン4001に
添加し、次いで、テトラエトキシシラン150モルを攪
拌下に滴下し、滴下終了後25℃で5時間反応させた。
Example 1 (1) 150 moles of anhydrous aluminum chloride at the bottom of the catalyst solid component were added to 4001 toluene, and then 150 moles of tetraethoxysilane were added dropwise with stirring, and after the dropwise addition was completed, the reaction was carried out at 25° C. for 5 hours.

反応生成混合物を一10’Cに冷却した後、攪拌下にブ
チルマグネシウムクロライド300モルを含むジイソア
くルエーテル2501を5時間で、反応生成混合物に滴
下した。反応系の温度は一10〜0℃の範囲内に保った
。滴下終了後−10℃で1時間反応を続けた。析出した
固体を濾別し、トルエン、次いでn−へブタンで洗浄し
た。
After the reaction mixture was cooled to -10'C, diisoacryl ether 2501 containing 300 moles of butylmagnesium chloride was added dropwise to the reaction mixture over a period of 5 hours while stirring. The temperature of the reaction system was maintained within the range of -10 to 0°C. After the dropwise addition was completed, the reaction was continued at -10°C for 1 hour. The precipitated solid was filtered off and washed with toluene and then with n-hebutane.

この固体をトルエン2501に懸濁させ、この懸濁液に
四塩化チタン1500モルを添加し、攪拌下に90℃で
3時間、固体と四塩化チタンとを接触させた。同温度で
処理固体を濾別し、トルエン、次いでn−へブタンで洗
浄した。得られた触媒固体成分のチタン含有率は4.8
重量%であった。
This solid was suspended in toluene 2501, 1500 mol of titanium tetrachloride was added to this suspension, and the solid and titanium tetrachloride were brought into contact with each other at 90° C. for 3 hours while stirring. At the same temperature, the treated solid was filtered off and washed with toluene and then with n-hebutane. The titanium content of the obtained catalyst solid component was 4.8
% by weight.

上記で得られた触媒固体成分28kgをミネラルオイル
1850 fに懸濁させ、触媒固体成分のミネラルオイ
ルスラリーを調製した。
28 kg of the catalyst solid component obtained above was suspended in 1850 f of mineral oil to prepare a mineral oil slurry of the catalyst solid component.

(2)  エチレンと1−ブテンとの共重合全長400
mの管式反応器に、エチレン07wolX、 1−ブテ
ン38moHからなるモノマー混合物全量に対し、0.
2 mo1%の水素を連続的に供給した。同時にメチル
トリエトキシシラン(MTES)のミネラルオイル溶液
、ジエチルアルミニウムクロライド(DEAC)、及び
触媒固体成分のミネラルオイルスラリーを、それぞれ5
1/時間、4.21時間、及び14.542/時間の注
入速度で順に反応管に設けられている注入口から連続的
に供給した。この時、Si/^lのモル比は1/4 、
AI/Tiのモル比は2/1であった。
(2) Total length of copolymerization of ethylene and 1-butene: 400
m tubular reactor, 0.7 wol.
2 mo1% hydrogen was continuously supplied. At the same time, a mineral oil solution of methyltriethoxysilane (MTES), diethylaluminium chloride (DEAC), and a mineral oil slurry of catalyst solid components were added at 50% each.
It was continuously supplied from the injection port provided in the reaction tube at an injection rate of 1/hour, 4.21 hours, and 14.542 hours/hour. At this time, the molar ratio of Si/^l is 1/4,
The AI/Ti molar ratio was 2/1.

反応管の入口温度を140℃、最高温度を250℃に保
ち、1500kg/ailの加圧下にエチレンと1−ブ
テンとを共重合させた。
The inlet temperature of the reaction tube was maintained at 140°C and the maximum temperature was maintained at 250°C, and ethylene and 1-butene were copolymerized under a pressure of 1500 kg/ail.

上記の条件で連続運転を5時間行った結果を第1表に示
す。
Table 1 shows the results of continuous operation for 5 hours under the above conditions.

比較例1 重合時にメチルトリエトキシシランを使用しない以外は
実施例1を繰り返した。重合結果をを第1表に示す。
Comparative Example 1 Example 1 was repeated except that methyltriethoxysilane was not used during the polymerization. The polymerization results are shown in Table 1.

実施例2〜4 重合時のメチルトリエトキシシランとジエチルアルミニ
ウムクロライドのモル比(Si/^l)ヲ1/10(実
施例2)、115(実施例3) 、1/3 (実施例4
)と変更した以外は実施例1を繰り返した。重合結果を
第1表に示す。
Examples 2 to 4 The molar ratio (Si/^l) of methyltriethoxysilane and diethylaluminium chloride during polymerization was 1/10 (Example 2), 115 (Example 3), 1/3 (Example 4)
) Example 1 was repeated with the following changes. The polymerization results are shown in Table 1.

実施例5〜10 重合時にメチルトリエトキシシランの代わりにテトラエ
トキシシラン(TES)(実施例5)、テトラブトキシ
シラン(TBS) (実施例6)、フェニルトリエトキ
シシラン(PTES) (実施例7)、フェニルトリメ
トキシシラン(PTl’lS) (実施例8)、ブチル
トリエトキシシラン(BTES) (実施例9)、ジメ
チルジェトキシシラン(DMDBS) (実施例10)
を使用した以外は実施例1を繰り返した。重合結果を第
1表に示す。
Examples 5 to 10 Tetraethoxysilane (TES) (Example 5), tetrabutoxysilane (TBS) (Example 6), phenyltriethoxysilane (PTES) (Example 7) instead of methyltriethoxysilane during polymerization , phenyltrimethoxysilane (PTl'lS) (Example 8), butyltriethoxysilane (BTES) (Example 9), dimethyljethoxysilane (DMDBS) (Example 10)
Example 1 was repeated except that . The polymerization results are shown in Table 1.

実施例11 (1)  触媒固体成分の合成 無水塩化アルミニウム150モルをトルエン4001中
に添加し、次いで、メチルトリエトキシシラン150モ
ルを攪拌下に滴下し、滴下終了後25℃で5時間反応さ
せた。反応生成混合物を一10℃に冷却した後、攪拌下
にブチルマグネシウムクロライド300モルを含むジイ
ソアミルエーテル2501!、を5時間で、反応生成混
合物に滴下した。反応系の温度を一10〜0℃の範囲内
に保った。滴下終了後−10℃で1時間反応を続けた。
Example 11 (1) Synthesis of catalyst solid component 150 mol of anhydrous aluminum chloride was added to toluene 4001, then 150 mol of methyltriethoxysilane was added dropwise with stirring, and after the dropwise addition was completed, the reaction was carried out at 25°C for 5 hours. . After cooling the reaction mixture to -10°C, diisoamyl ether 2501 containing 300 mol of butylmagnesium chloride was stirred. was added dropwise to the reaction product mixture over a period of 5 hours. The temperature of the reaction system was maintained within the range of -10 to 0°C. After the dropwise addition was completed, the reaction was continued at -10°C for 1 hour.

析出した固体を濾別し、トルエン、次いでn−へブタン
で洗浄した。
The precipitated solid was filtered off and washed with toluene and then with n-hebutane.

この固体をトルエン2501に懸濁させ、この懸濁液に
四塩化チタン1500モルを添加し、攪拌下に90℃で
3時間、固体と四塩化チタンとを接触させた。同温度で
固体成分を濾別し、トルエンで洗浄した。ついでもう−
度、固体成分をトルエン2501に懸濁させ、この懸濁
液に四塩化チタン1500モルを添加し、攪拌下に90
’Cで3時間、固体と四塩化チタンとを接触させた後、
同温度で触媒固体成分を濾別し、トルエン、次いでヘプ
タンで洗浄した。得られた触媒固体成分のチタン含有率
は4.2重量%であった。この触媒固体成分26kgを
ミネラルオイル1720fに懸濁させ、触媒固体成分の
ミネラルオイルスラリーを調製した。
This solid was suspended in toluene 2501, 1500 mol of titanium tetrachloride was added to this suspension, and the solid and titanium tetrachloride were brought into contact with each other at 90° C. for 3 hours while stirring. Solid components were filtered off at the same temperature and washed with toluene. By the way-
The solid component was suspended in 2,501 mol of toluene, 1,500 mol of titanium tetrachloride was added to this suspension, and 90 mol of titanium tetrachloride was added under stirring.
After contacting the solid with titanium tetrachloride for 3 hours at 'C,
The catalyst solid component was filtered off at the same temperature and washed with toluene and then with heptane. The titanium content of the obtained catalyst solid component was 4.2% by weight. 26 kg of this catalyst solid component was suspended in 1720f of mineral oil to prepare a mineral oil slurry of the catalyst solid component.

(2)エチレンと1−ブテンとの共重合全長400mの
管式反応器に、エチレン52mol!、 1ブテン38
mo lχからなるモノマー混合物全量に対し0.20
+01χの水素を連続的に供給した。同時にエチルトリ
エトキシシランのミネラルオイル溶液、ジエチルアルミ
ニウムクロライド、及び触媒固体成分のミネラルオイル
スラリーを、それぞれ51/時間、4.21.7時間、
及び14.5nノ時間の注入速度で順に反応管に設けら
れている注入口から連続的に供給した。この時、Si/
Alのモル比は1/4、AI/Tiのモル比は2/1で
あった。反応管の入口温度を140℃1最高温度を25
0℃に保ち、1500kg/dの加圧下にエチレンと1
−ブテンとを共重合させた。
(2) Copolymerization of ethylene and 1-butene 52 mol of ethylene was placed in a tubular reactor with a total length of 400 m! , 1 butene 38
0.20 for the total amount of monomer mixture consisting of molχ
+01χ hydrogen was continuously supplied. At the same time, a mineral oil solution of ethyltriethoxysilane, diethylaluminum chloride, and a mineral oil slurry of the catalyst solid component were added for 51/hour and 4.21.7 hours, respectively.
and 14.5 n hours of continuous feeding from the injection port provided in the reaction tube. At this time, Si/
The molar ratio of Al was 1/4, and the molar ratio of AI/Ti was 2/1. The inlet temperature of the reaction tube is 140℃ 1 The maximum temperature is 25℃
Maintained at 0°C, ethylene and 1
- Copolymerized with butene.

上記の条件で連続運転を5時間行った結果を第2表に示
す。
Table 2 shows the results of continuous operation for 5 hours under the above conditions.

実施例12.13 ジエチルアルミニウムクロリドの代わりにトリエチルア
ルミニウム(TEA)(実施例12)、ジエチルアルミ
ニウムクロライドとエチルアルごニウムセスキクロライ
ド(EASC)の混合物(1/1)(実施例13)を使
用した以外は実施例11を繰り返した。
Example 12.13 Except that triethylaluminum (TEA) (Example 12) and a mixture (1/1) of diethylaluminium chloride and ethylalgonium sesquichloride (EASC) (Example 13) were used instead of diethylaluminum chloride. Example 11 was repeated.

重合結果を第2表に示す。The polymerization results are shown in Table 2.

実施例14 ジエチルアルミニウムクロライドをメチルトリエトキシ
シランで下記のように予め加熱処理したものを9.51
7時間の注入速度で反応器に注入した以外は実施例11
を繰り返した。重合結果を第2表に示す。
Example 14 Diethylaluminium chloride was preheat-treated with methyltriethoxysilane as shown below to give 9.51
Example 11 except that the reactor was injected at an injection rate of 7 hours.
repeated. The polymerization results are shown in Table 2.

[ジエチルアルミニウムクロライドのメチルトリエトキ
シシランによる加熱処理] ジエチルアルミニウムクロライド(4モル/2のミネラ
ルオイル溶液1501にメチルトリエトキシシラン10
0モルを室温で攪拌下に4時間かけて滴下した。発熱す
るので冷却し40゛Cに保持した。滴下終了後、100
″Cで1時間反応させた。ミネラルオイルで希釈して重
合に供した。
[Heat treatment of diethylaluminum chloride with methyltriethoxysilane] Diethylaluminum chloride (10% of methyltriethoxysilane in 1501% of 4 mol/2 mineral oil solution)
0 mol was added dropwise at room temperature over 4 hours with stirring. Since it generated heat, it was cooled and maintained at 40°C. After completion of dripping, 100
The reaction mixture was reacted for 1 hour at "C". The mixture was diluted with mineral oil and subjected to polymerization.

実施例15.16 1−ブテンを65モルχ及びエチレンを35モル2(実
施例15) 、4−メチルペンテン−1を62モルχ及
びエチレンを38モル2 (実施例16)にモノマー組
成を変えた以外は実施例11を繰り返した。重合結果を
第3表に示す。
Example 15.16 The monomer composition was changed to 65 mol χ of 1-butene and 35 mol 2 of ethylene (Example 15), 62 mol χ of 4-methylpentene-1 and 38 mol 2 of ethylene (Example 16) Example 11 was repeated except that. The polymerization results are shown in Table 3.

第1表 成分IIの Si/AI密度  MFR重合有機珪素 
モル        活性 実施例 化合物  比  g/ci  g/10分 k
g/gTiTES TES TES TES ES BS TES TMS TES MDES 1/4 1/10 15 1/3 1/4 1/4 1/4 1/4 1/4 1/4 0.924 0.923 0.923 0.928 0.926 0.924 0.924 0.925 0.923 0.923 0.922 0.9 2.2 1.6 0.5 0.6 0.8 0.9 0.9 1.0 1.3 0 58 72 66 57 35 40 70 68 60 68 80
Table 1 Component II Si/AI density MFR polymerized organosilicon
Mol Activity Examples Compound Ratio g/ci g/10 min k
g/gTiTES TES TES TES ES BS TES TMS TES MDES 1/4 1/10 15 1/3 1/4 1/4 1/4 1/4 1/4 1/4 0.924 0.923 0.923 0 .928 0.926 0.924 0.924 0.925 0.923 0.923 0.922 0.9 2.2 1.6 0.5 0.6 0.8 0.9 0.9 1.0 1.3 0 58 72 66 57 35 40 70 68 60 68 80

Claims (1)

【特許請求の範囲】 エチレン又はエチレンと炭素数3以上のα−オレフィン
との混合物を、下記の成分 I 及びIIの反応生成物に成
分IIIを反応して生成する固体にハロゲン化チタン化合
物を接触させて得られる触媒固体成分、成分IV及び成分
Vからなる触媒系において、200kg/cm^2以上
の圧力、125℃以上の温度で重合させることを特徴と
するエチレンの重合及び共重合方法。 成分 I ;式、AlX^1_3で表されるハロゲン化ア
ルミニウム。(式中、X^1は塩素原子、臭素原子また
は沃素原子を示す。) 成分II;式、R^1_nSi(OR^2)_4_−_n
で表される有機珪素化合物。(式中、R^1およびR^
2は、それぞれ、炭素数1〜8のアルキルまたはフェニ
ル基を示し、nは0〜3の整数である。) 成分III;式、R^3MgX^2で表されるグリニヤー
ル化合物。(式中、R^3は炭素数1〜8のアルキル基
を示し、X^2はハロゲン原子を示す。) 成分IV;式、AlR^4_mX^3_3_−_mで表さ
れる有機アルミニウム。(式中、R^4は炭素数2〜6
のアルキル基を示し、X^3はハロゲン原子を示す。m
は1〜3の整数である。)
[Claims] A halogenated titanium compound is contacted with a solid produced by reacting ethylene or a mixture of ethylene and an α-olefin having 3 or more carbon atoms with a reaction product of components I and II below and component III. A method for polymerizing and copolymerizing ethylene, characterized in that the polymerization is carried out at a pressure of 200 kg/cm^2 or more and a temperature of 125° C. or more in a catalyst system consisting of a catalyst solid component, component IV, and component V obtained by the above method. Component I: Aluminum halide represented by the formula AlX^1_3. (In the formula, X^1 represents a chlorine atom, a bromine atom, or an iodine atom.) Component II; Formula, R^1_nSi(OR^2)_4_-_n
Organosilicon compound represented by (In the formula, R^1 and R^
2 each represents an alkyl group having 1 to 8 carbon atoms or a phenyl group, and n is an integer of 0 to 3. ) Component III: Grignard compound represented by the formula R^3MgX^2. (In the formula, R^3 represents an alkyl group having 1 to 8 carbon atoms, and X^2 represents a halogen atom.) Component IV: Organoaluminum represented by the formula, AlR^4_mX^3_3_-_m. (In the formula, R^4 is a carbon number of 2 to 6
represents an alkyl group, and X^3 represents a halogen atom. m
is an integer from 1 to 3. )
JP9013990A 1990-04-06 1990-04-06 Polymerization of ethylene Pending JPH03290409A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9013990A JPH03290409A (en) 1990-04-06 1990-04-06 Polymerization of ethylene

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9013990A JPH03290409A (en) 1990-04-06 1990-04-06 Polymerization of ethylene

Publications (1)

Publication Number Publication Date
JPH03290409A true JPH03290409A (en) 1991-12-20

Family

ID=13990179

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9013990A Pending JPH03290409A (en) 1990-04-06 1990-04-06 Polymerization of ethylene

Country Status (1)

Country Link
JP (1) JPH03290409A (en)

Similar Documents

Publication Publication Date Title
RU2098428C1 (en) Titanium-containing component of catalyst for ethylene polymerization, a catalyst for ethylene polymerization and a method of ethylene polymerization using this catalyst
JPS61218606A (en) Production of alpha-olefin polymer
EP3109261B1 (en) Process for producing lldpe resins
JPS61238804A (en) Manufacture of catalyst for olefin polymerization
JPS58138709A (en) Polymerization of olefin
JPS58138710A (en) Polymerization of olefin
JPH03290409A (en) Polymerization of ethylene
JPS63301209A (en) Manufacture of ethylene polymer
JPH0125768B2 (en)
JPH0446286B2 (en)
RU2682163C1 (en) Method for preparation of vanadium magnesium polymerization catalyst of ethylene and copolimerization of ethylene with alpha olefines
US20100113715A1 (en) Olefin polymerization process
US6015768A (en) Process for preparation of a heterogeneous catalyst useful for preparation of super high molecular weight polymers of alpha-olefin
KR100377288B1 (en) A method for propylene polymerization or copolymerization
JPS5912684B2 (en) Method for producing highly crystalline olefin polymer
JP3192997B2 (en) Olefin polymerization catalyst and method for producing polyolefin
JPS5817522B2 (en) Method for producing α↓-olefin polymer
JPH03259903A (en) Polymerization and copolymerization of ethylene
JP4097518B2 (en) Olefin polymerization catalyst and polymerization method
JPH0455205B2 (en)
JP3531304B2 (en) Olefin (co) polymerization catalyst and method for producing olefin (co) polymer
JPH03124710A (en) Production of polyethylene copolymer
RU2570645C1 (en) Method of producing catalyst for polymerisation of ethylene and copolymerisation of ethylene with alpha-olefins
JPH10204116A (en) Olefin polymerization catalyst and production of polyolefin
JPS6369807A (en) Production of ethylene copolymer