JPS6369807A - Production of ethylene copolymer - Google Patents

Production of ethylene copolymer

Info

Publication number
JPS6369807A
JPS6369807A JP21563686A JP21563686A JPS6369807A JP S6369807 A JPS6369807 A JP S6369807A JP 21563686 A JP21563686 A JP 21563686A JP 21563686 A JP21563686 A JP 21563686A JP S6369807 A JPS6369807 A JP S6369807A
Authority
JP
Japan
Prior art keywords
olefin
compound
carbon atoms
formula
dialkylmagnesium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21563686A
Other languages
Japanese (ja)
Other versions
JPH0737492B2 (en
Inventor
Akinobu Sugawara
菅原 昭伸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Petrochemical Co Ltd
Original Assignee
Idemitsu Petrochemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Petrochemical Co Ltd filed Critical Idemitsu Petrochemical Co Ltd
Priority to JP21563686A priority Critical patent/JPH0737492B2/en
Publication of JPS6369807A publication Critical patent/JPS6369807A/en
Publication of JPH0737492B2 publication Critical patent/JPH0737492B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

PURPOSE:To obtain a polymer having excellent mechanical properties and moldability, etc., by copolymerizing ethylene with an alpha-olefin at a specific temperature in the presence of a catalyst derived from a Ti compound and a reaction product of a dialkylmagnesium and an organic Al compound. CONSTITUTION:Ethylene is made to react with a 5-6C alpha-olefin and a 8-18C alpha-olefin at >=155 deg.C in the presence of a catalyst derived from (A) a reaction product of a dialkylmagnesium of formula I (R<1> and R<2> are 1-18C alkyl or cycloalkyl) (e.g. dibutylmagnesium, butyloctylmagnesium, etc.) and an organic Al compound (e.g. ethylaluminum sesquichloride) and (B) a Ti compound of formula II (R<3> is 1-10C alkyl, cycloalkyl, aryl or aralkyl; X is halogen; 0<=n<=4) (e.g. TiCl4).

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、エチレンと炭素数5〜6のα−オレフィン
、たとえば、ペンテン−1、ヘキセン−1等と炭素数8
〜18のα−オレフィン、たとえば、オクテン−1等と
のエチレン共重合体の製造方法に関し、さらに詳しくは
、機械特性、成形性、透明性等に優れたポリマーを、重
合活性の高い触媒の存在下に、高い重合体収率で製造す
ることのできるエチレン共重合体の製造方法に関する。
Detailed Description of the Invention [Industrial Application Field] This invention relates to ethylene, α-olefins having 5 to 6 carbon atoms, such as pentene-1, hexene-1, etc., and carbon atoms having 8 carbon atoms.
Regarding the production method of ethylene copolymer with α-olefin of ~18, for example, octene-1, etc., in more detail, a polymer with excellent mechanical properties, moldability, transparency, etc., and the presence of a catalyst with high polymerization activity. The present invention relates below to a method for producing an ethylene copolymer that can be produced with a high polymer yield.

〔従来の技術およびその問題点〕[Conventional technology and its problems]

従来、直鎖状低密度ポリエチレン(LLDPE)等のエ
チレン共重合体の製造方法として、有機マグネシウム化
合物、チタン化合物および有機アルミニウム化合物から
得られる触媒の存在下に、高温溶液重合を行なう方法(
特公昭60−11925号公報、特開昭BO−4240
5号公報等)が知られている。
Conventionally, as a method for producing ethylene copolymers such as linear low-density polyethylene (LLDPE), a method of performing high-temperature solution polymerization in the presence of a catalyst obtained from an organomagnesium compound, a titanium compound, and an organoaluminum compound (
Japanese Patent Publication No. 60-11925, Japanese Patent Application Publication No. Sho BO-4240
No. 5, etc.) are known.

ところで、一般に溶液重合では2生成重合体が溶媒中に
溶解しており、重合系内の液粘度が高くなるため、装置
の運転」−より高温(155℃以F、)で重合すること
が望ましい。
By the way, in general, in solution polymerization, the two-product polymer is dissolved in the solvent, and the liquid viscosity in the polymerization system becomes high. .

しかし、従来の公知の方法で使用する触媒は、いずれも
155℃以上の温度下における活性が不充分であり、こ
れまでの高温溶液重合によって得られる共重合体の物性
が未だ満足すべきものでないという問題点がある。
However, all the catalysts used in conventional known methods have insufficient activity at temperatures above 155°C, and the physical properties of copolymers obtained by conventional high-temperature solution polymerization are still unsatisfactory. There is a problem.

〔発明の目的〕[Purpose of the invention]

この発明は前記事情に基いてなされたものである。 This invention has been made based on the above circumstances.

すなわち、この発明の目的は、触媒活性を高めることに
より機械的特性、成形性、透明性等の諸特性に優れたエ
チレン共重合体の製造方法を提供することである。
That is, an object of the present invention is to provide a method for producing an ethylene copolymer that has excellent properties such as mechanical properties, moldability, and transparency by increasing catalytic activity.

〔前記目的を達成するための手段〕[Means for achieving the above purpose]

前記目的を達成するために、この発明者が鋭意研究した
結果、マグネシウム化合物のうちジアルキルマグネシウ
ムを特に選定し、これと有機アルミニウム化合物および
チタン化合物を特定の順序で接触、反応させて得られる
触媒はその活性が高く、そのような触媒を使用してエチ
レンと炭素数5〜6のα−オレフィンと炭素数8〜18
のα−オレフィンとを共重合させると、得られる共重合
体がフィルム衝撃強度などの機械的特性、成形性。
In order to achieve the above object, as a result of intensive research by the present inventor, a catalyst obtained by specifically selecting dialkylmagnesium from among magnesium compounds and bringing it into contact with an organoaluminum compound and a titanium compound in a specific order is obtained. Its activity is high, and using such a catalyst, ethylene and α-olefins having 5 to 6 carbon atoms and 8 to 18 carbon atoms can be used.
When copolymerized with α-olefin, the resulting copolymer has excellent mechanical properties such as film impact strength and moldability.

透明性等の諸特性に優れていることを見出してこの発明
に到達した。
This invention was achieved by discovering that it has excellent properties such as transparency.

すなわち、前記目的を達成するためのこの発明の要旨は
、第(1)式で表わされるジアルキルマグネシウム H+H2Mg   ・・・・・・・・・・・・・・・ 
(1)(ただし、第(1)式中 1(+ 、 l(2は
それぞれ炭素数1−18のアルキル基およびシクロアル
キル基を示す。) と有機アルミニウム化合物との反応生成物および第(2
)式で示されるチタン化合物 Ti (OR3) n X a−n −−−−(2)(
ただし、第(2)式中、R3は炭素数1〜10のアルキ
ル基、シクロアルキル基、アリール基あるいはアラルキ
ル基を表わし、Xはハロゲン原子を表わし、nは0≦n
≦4を満たす実数である。)から得られる触媒の存在下
に、温度155℃以上の条件下でエチレンと炭素数5〜
6のα−オレフィンと炭素数8〜18のα−オレフィン
とを共重合させることを特徴とするエチレン共重合体の
製造方法である。
That is, the gist of the present invention for achieving the above object is that dialkylmagnesium H+H2Mg represented by the formula (1)...
(1) (However, in the formula (1), 1(+, l (2 represents an alkyl group having 1 to 18 carbon atoms and a cycloalkyl group, respectively) and an organoaluminum compound, and
) Titanium compound Ti (OR3) n X a-n -----(2)(
However, in formula (2), R3 represents an alkyl group, cycloalkyl group, aryl group, or aralkyl group having 1 to 10 carbon atoms, X represents a halogen atom, and n is 0≦n
It is a real number satisfying ≦4. ) in the presence of a catalyst obtained from
This is a method for producing an ethylene copolymer, which is characterized by copolymerizing an α-olefin of No. 6 and an α-olefin having 8 to 18 carbon atoms.

前記第(1)式で表わされるジアルキルマグネシウムの
具体例を示せば、ジエチルマグネシウム、ジブチルマグ
ネシウム、ブチルオクチルマグネシウム、シアミルマグ
ネシウム、ジヘキシルマグネシウム、ジオクチルマグネ
シウム、エチルブチルマグネシウム、ブチルイソプロピ
ルマグネシウム等を挙げることができ、これらの中でも
ジブチルマグネシウム、ジヘキシルマグネシウムおよび
ブチルオクチルマグネシウムなどが好ましい。また、こ
の発明では前記第(1)式で表わされるジアルキルマグ
ネシウム以外のマグネシウム化合物、たとえば塩化マグ
ネシウムを使用した場合には、充分な触媒活性が得られ
ない。
Specific examples of the dialkylmagnesium represented by the above formula (1) include diethylmagnesium, dibutylmagnesium, butyloctylmagnesium, cyamylmagnesium, dihexylmagnesium, dioctylmagnesium, ethylbutylmagnesium, butylisopropylmagnesium, etc. Among these, dibutylmagnesium, dihexylmagnesium, butyloctylmagnesium, etc. are preferred. Further, in the present invention, if a magnesium compound other than the dialkylmagnesium represented by formula (1), such as magnesium chloride, is used, sufficient catalytic activity cannot be obtained.

前記有機アルミニウム化合物としては、様々なものがあ
るが、通常は分子内に少なくとも1個のアルミニウムー
炭素結合を有する化合物が用いられ1例えば一般式R4
3Ai 、 R42Ai X2、R4AuX22、R’
2AiOR5,R4An (OR5)X2、R43AJ
L2X23  (りだし、式中、R4、R5はそれぞれ
炭素数1〜20のアルキル基またはアリール基を示し、
X?はl\ロゲン原子を示す。)で表わされる化合物が
挙げられる。この有機アルミニウムの好適例としテハ、
ジエチルアルミニウムモノクロライド、ジイソプロピル
アルミニウムモノクロライド、ジインブチルアルミニウ
ムモノクロライド、ジオクチルアルミニウムモノクロラ
イド、エチルアルミニウムジクロライド、イソプロピル
アルミニウムジクロライド、エチルアルミニウムセスキ
クロライド等を挙げることができ、これらの中でもR4
3AJL2 X23で示されるたとえばエチルアルミニ
ウムセスキクロライドおよびR’2AjLX2で示され
るたとえばジエチルアルミモノクロライドが好ましい。
There are various types of organoaluminum compounds, but compounds having at least one aluminum-carbon bond in the molecule are usually used.
3Ai, R42Ai X2, R4AuX22, R'
2AiOR5, R4An (OR5)X2, R43AJ
L2X23 (in the formula, R4 and R5 each represent an alkyl group or an aryl group having 1 to 20 carbon atoms,
X? indicates l\rogen atom. ) can be mentioned. A suitable example of this organic aluminum is Teha,
Examples include diethylaluminum monochloride, diisopropylaluminum monochloride, diimbutylaluminum monochloride, dioctylaluminum monochloride, ethylaluminum dichloride, isopropylaluminum dichloride, ethylaluminum sesquichloride, and among these, R4
Preferred are, for example, ethylaluminum sesquichloride, represented by 3AJL2 X23, and diethylaluminium monochloride, represented by R'2AjLX2.

この発明の製造方法においては、前記ジアルキルマグネ
シウムと前記有機アルミニウム化合物との反応生成物〔
以下、この反応生成物を(A)成分と略称することがあ
る。〕と前記第(2)式で表わされるチタン化合物〔以
下、このチタン化合物を(B)成分と略称することがあ
る。〕とから得られる触媒を使用する。
In the production method of the present invention, the reaction product of the dialkylmagnesium and the organoaluminum compound [
Hereinafter, this reaction product may be abbreviated as component (A). ] and a titanium compound represented by the above formula (2) [Hereinafter, this titanium compound may be abbreviated as component (B). ] Use a catalyst obtained from

前記(A)成分は、前記ジアルキルマグネシウムと前記
有機アルミニウムとを、不活性溶媒中に加え、たとえば
温度−40〜240℃で接触させることにより得られる
The component (A) can be obtained by adding the dialkylmagnesium and the organoaluminum into an inert solvent and bringing them into contact at, for example, a temperature of -40 to 240°C.

前記不活性溶媒としては、たとえば炭素数5〜16の脂
肪族炭化水素、脂環族炭化水素、芳香族炭化水素等が挙
げられ、具体的にはノルマル−あるいはイソ−ペンタン
、ヘキサン、ヘプタン、オクタン、ノナン、デカン、テ
トラデカンまたはシクロヘキサンさらにはベンゼン、ト
ルエン、キシレン等が挙げられる。また、この不活性溶
媒は、前記各種の炭化水素を単独で使用することができ
る。好ましい不活性溶媒としては、たとえばn−ヘキサ
ンを挙げることができる。
Examples of the inert solvent include aliphatic hydrocarbons having 5 to 16 carbon atoms, alicyclic hydrocarbons, aromatic hydrocarbons, etc., and specific examples include normal- or iso-pentane, hexane, heptane, and octane. , nonane, decane, tetradecane or cyclohexane, as well as benzene, toluene, xylene and the like. Moreover, the above-mentioned various hydrocarbons can be used alone as this inert solvent. Preferred inert solvents include, for example, n-hexane.

前記(B)成分の具体例としては、テトラメトキシチタ
ン、テトラエトキシチタン、テトラ−n −プロポキシ
チタン、テトライソプロポキシチタン、テトラ−n−ブ
トキシチタン、テトライソブトキシチタン、テトラシク
ロヘキソキシチタン、テトラフェノキシチタン等の一般
式Ti (OR3) aテ示されるテトラアルコキシチ
タン: TiC14,TiBr4. TiI4等の一般式TiX
nで示されるテトラハロゲン化チタン; (J:H30) Ti0文3 、 (02H50)Ti
Cu3、(G3 H70)TiCJ13. (n−C4
H9)TiCJL3、CG2 H5)TiBr3等のト
リハロゲン化アルコキシチタン: (CH30)zTic立?、(07H50)2 Tic
見2、(C3HrO)2Ti C12、(n−C4H9
0)2.7i(42、(02H50)?Ti 0文2等
のジハロゲン化チタン;(CH30)3TiC見、(0
2850)3 TiC立。
Specific examples of the component (B) include tetramethoxytitanium, tetraethoxytitanium, tetra-n-propoxytitanium, tetraisopropoxytitanium, tetra-n-butoxytitanium, tetraisobutoxytitanium, tetracyclohexoxytitanium, and tetraphenoxy titanium. Tetraalkoxytitanium represented by the general formula Ti (OR3) a such as titanium: TiC14, TiBr4. General formula TiX such as TiI4
Tetrahalogenated titanium represented by n; (J:H30)Ti0mon3, (02H50)Ti
Cu3, (G3 H70)TiCJ13. (n-C4
H9) TiCJL3, CG2 H5) Trihalogenated alkoxytitanium such as TiBr3: (CH30) zTic? , (07H50)2 Tic
2, (C3HrO)2Ti C12, (n-C4H9
0) 2.7i (42, (02H50)?Ti 0 sentence 2 etc. dihalogenated titanium; (CH30)3TiC, (0
2850) 3 TiC standing.

(03H2O)3Ti(41、Cn−C4H90)3T
ic1等のモノハロゲン化チタン等が挙げられる。
(03H2O)3Ti(41,Cn-C4H90)3T
Examples include monohalogenated titanium such as ic1.

これらの中でも、前記一般式Ti (OR3)aで示さ
れるテトラアルコキシチタンおよびTiXnで示される
テトラハロゲン化チタンが好ましく、特にテトラ−n−
ブトキシチタンおよびテトラクロロチタンが好ましい、
 これら各種のチタン化合物は、単独で使用しても良い
し、また、前記二種以上を混合して使用しても良い。
Among these, tetraalkoxytitanium represented by the general formula Ti (OR3)a and tetrahalogenated titanium represented by TiXn are preferred, particularly tetra-n-
Butoxytitanium and tetrachlorotitanium are preferred,
These various titanium compounds may be used alone, or two or more of the above may be used in combination.

この発明の方法における触媒は前記(A) 、 (B)
成分を主成分とするものである。すなわち、ジアルキル
マグネシウムと有機アルミニウム化合物との反応生成物
(A)とチタン化合物(B)とを主成分とするものであ
る。ここで予め」二記(A)成分を調製しておかずに、
例えば有機アルミニウム化合物とチタン化合物とを反応
させた後に、ジアルキルマグネシウムと接触させても、
得られる触媒の活性は向上しない。
The catalyst in the method of this invention is the above-mentioned (A) and (B).
The main ingredients are: That is, the main components are a reaction product (A) of dialkylmagnesium and an organoaluminum compound and a titanium compound (B). Here, without preparing the component (A) in Section 2 in advance,
For example, even if an organoaluminum compound and a titanium compound are reacted and then brought into contact with dialkylmagnesium,
The activity of the resulting catalyst is not improved.

前記(A)成分、(B) Ji分を混合して触媒を調製
するにあたっては、触媒中の各金属の割合が、マグネシ
ウム/チタン、原子比)−0,1〜30.好ましくは0
.5〜20、アルミニウム/チタン(原子比)=1〜1
20、好ましくは5〜80になるように調節するのが望
ましい。マグネシウム/チタンの原子比が前記範囲を外
れると、触媒活性の低下を生じることがある。また、ア
ルミニウム/チタンの原子比が1未満だと触媒の活性が
低く、逆に120を超えても添加量に相当する活性の向
上が認められない。さらに前記範囲外では、得られる共
重合体の物性、特にフィルム成形性が悪化する。
When preparing a catalyst by mixing component (A) and Ji component (B), the ratio of each metal in the catalyst is magnesium/titanium (atomic ratio) -0.1 to 30. Preferably 0
.. 5-20, aluminum/titanium (atomic ratio) = 1-1
It is desirable to adjust it to 20, preferably 5 to 80. If the atomic ratio of magnesium/titanium is out of the above range, the catalyst activity may decrease. Further, if the atomic ratio of aluminum/titanium is less than 1, the activity of the catalyst will be low, and conversely, if it exceeds 120, no improvement in activity corresponding to the amount added will be observed. Furthermore, outside the above range, the physical properties of the resulting copolymer, especially film formability, deteriorate.

この発明の方法によると、前記触媒の存在下で、かつ温
度155℃以上の条件下に、エチレンと炭素数5〜6の
α−オレフィンと炭素数8〜18のα−オレフィンとの
共重合が進行する。
According to the method of the present invention, copolymerization of ethylene, an α-olefin having 5 to 6 carbon atoms, and an α-olefin having 8 to 18 carbon atoms is carried out in the presence of the catalyst and at a temperature of 155°C or higher. proceed.

前記炭素数5〜6のα−オレフィンとしては、ペンテン
−11ヘキセン−1,3−メチルペンテン−1,4−メ
チルペンテン−1が挙げられる。
Examples of the α-olefin having 5 to 6 carbon atoms include pentene-11hexene-1,3-methylpentene-1,4-methylpentene-1.

この発明で4[素15[5〜6のα−オレフィンのいず
れか一種あるいは両方を同時に、使用することができる
In this invention, any one or both of the α-olefins 4[15[5 to 6] may be used simultaneously.

前記炭素数8〜18のα−オレフィンとしては、たとえ
ば、オクテン−1、ノネン−1、デセンー1、ウンデセ
ン−1、ドデセン−1等の直鎖モノオレフィン、2−エ
チル−ヘキセン−1、2,2,4−トリメチル−ペンテ
ン−2等の分岐千ノオレフィン、さらにスチレン等が挙
げられる。これらの中でも、特に前記直鎖モノオレフィ
ンが好ましい。
Examples of the α-olefin having 8 to 18 carbon atoms include linear monoolefins such as octene-1, nonene-1, decene-1, undecene-1, and dodecene-1, 2-ethyl-hexene-1, 2, Examples include branched olefins such as 2,4-trimethyl-pentene-2, and further styrene. Among these, the linear monoolefins mentioned above are particularly preferred.

この発明の反応に用いる原料上ツマ−として好適な組合
せは、エチレンとヘキセン−1とオクテン−1である。
A preferred combination of raw materials used in the reaction of this invention is ethylene, 1-hexene, and 1-octene.

エチレンと前記炭素数5〜6のα−オレフィンと前記炭
素数8〜18のα−オレフィンとを共重合するときは、
得られる直鎖状低密度ポリエチレンのエチレン単位含有
量が80〜99.2モル%、炭素数5〜6のα−オレフ
ィンの単位含有量が0.4〜9.6モル%、tJ 記M
e 素’Ik 8〜18のα−オレフィンの単位含有量
が0.4〜9.6モル%となるように原料上ツマー混合
物を供給すると、密度o、sto〜0.940 g/c
m3特に0.910〜0.938 g/cm3.溶融指
数(Ml)0.1〜10g/10分、特に0.5〜5g
/10分、溶融流れ比(MFR=流量/溶融指数) 1
8〜52、特に23〜48の直鎖状低密度ポリエチレン
を好適に製造することができる。なお、エチレン共重合
体としてはMIが0.1 g/10分より小さい場合や
MFRが18より小さい場合には成形加工性が悪化する
ことがある。またMIが10g /10分より大きい場
合やMFRが52より大きい場合にはフィルム衝撃強度
および透明性が悪化することがある。
When copolymerizing ethylene, the α-olefin having 5 to 6 carbon atoms, and the α-olefin having 8 to 18 carbon atoms,
The resulting linear low-density polyethylene has an ethylene unit content of 80 to 99.2 mol%, a C5-6 α-olefin unit content of 0.4 to 9.6 mol%, tJ
When the raw material mixture is supplied so that the unit content of α-olefins with e element Ik 8 to 18 is 0.4 to 9.6 mol%, the density o, sto ~ 0.940 g/c
m3 especially 0.910-0.938 g/cm3. Melt index (Ml) 0.1-10 g/10 min, especially 0.5-5 g
/10 minutes, melt flow ratio (MFR=flow rate/melt index) 1
Linear low density polyethylene having a molecular weight of 8 to 52, particularly 23 to 48, can be suitably produced. In addition, when the MI of the ethylene copolymer is less than 0.1 g/10 min or the MFR is less than 18, moldability may deteriorate. Furthermore, if the MI is greater than 10 g/10 min or the MFR is greater than 52, the film impact strength and transparency may deteriorate.

この発明における重合の条件としては、所望ポリマーの
物性、モノマーの種類等により一概に言うことができな
いが、通常、触媒濃度が、チタン濃度で0.001〜1
0ミリモル/立、好ましくは0.01〜1.0 ミリモ
ル/見である。反応温度は155℃以上、特に180〜
2200℃、すなわち生成ポリマー溶液の液粘度が低下
して装置運転」二に好ましい温度であり5反応圧力は1
0〜150 Kg/rn’、特に20〜7oKg/rn
”である、また、この重合反応は、不活性溶媒の存在下
または不存在下で行なってもよい。さらに重合反応系中
に水素等の分子量調節剤を存在させてもよい、なお、前
記不活性溶媒としては、前述の脂肪族炭化水素、脂環族
炭化水素、芳香族炭化水素等が挙げられる。
The polymerization conditions in this invention cannot be generalized depending on the physical properties of the desired polymer, the type of monomer, etc., but usually the catalyst concentration is 0.001 to 1 in terms of titanium concentration.
It is 0 mmol/vertical, preferably 0.01 to 1.0 mmol/vertical. The reaction temperature is 155°C or higher, especially 180~
2200°C, which is the most preferable temperature for device operation since the liquid viscosity of the produced polymer solution decreases, and the reaction pressure is 1.
0-150 Kg/rn', especially 20-7oKg/rn'
Furthermore, this polymerization reaction may be carried out in the presence or absence of an inert solvent. Furthermore, a molecular weight regulator such as hydrogen may be present in the polymerization reaction system. Examples of the active solvent include the aforementioned aliphatic hydrocarbons, alicyclic hydrocarbons, aromatic hydrocarbons, and the like.

〔発明の効果〕〔Effect of the invention〕

この発明の方法によれば、 (1)ジアルキルマグネシウムと有機アルミニウム化合
物とチタン化合物とを特定の順序で接触、反応させて得
た触媒を使用しているので、155℃以上の温度下にお
ける触媒活性が高く、その結果として、重合体収率を高
めることができ、(2)また、生成ポリマー溶液の液粘
度を低下させることができ、従って装置運転上に好まし
いとともに、 (3)得られる共重合体が、たとえばフィルム衝撃強度
などの機械的特性、成形性、透明性等の諸物件に優れて
いる、 等の種々の優れた利点を有するエチレン共重合体の製造
方法を提供することができる。
According to the method of the present invention, (1) Since a catalyst obtained by contacting and reacting a dialkylmagnesium, an organoaluminum compound, and a titanium compound in a specific order is used, the catalyst has catalytic activity at a temperature of 155°C or higher. As a result, the polymer yield can be increased; (2) the viscosity of the produced polymer solution can be lowered, which is favorable for equipment operation; and (3) the resulting copolymer It is possible to provide a method for producing an ethylene copolymer having various excellent advantages such as, for example, excellent mechanical properties such as film impact strength, moldability, and transparency.

〔実施例〕〔Example〕

次にこの発明の実施例および比較例を示してこの発明を
更に具体的に説明する。
Next, the present invention will be explained in more detail by showing examples and comparative examples of the present invention.

(実施例1〜8) 1Mの連続重合器内に、脱水したn−へキサンを7.4
Mj/時間、チタン化合物を0.25ミリモル/時間、
ジアルキルマグネシウム、有機アルミニウム化合物を第
1表に示した割合で、かつ第1図のように供給した。同
時に、エチレン1300g/時間、水素0.15g/時
間、コモノマーを第1表に示す割合で連続供給し、反応
温度175℃、反応圧カフ0Kg/m″Gの条件下で0
.11時間の重合反応を行ない、エチレン共重合体を得
た。結果を第1表に示す。
(Examples 1 to 8) In a 1M continuous polymerization vessel, 7.4 g of dehydrated n-hexane was added.
Mj/hour, titanium compound 0.25 mmol/hour,
Dialkylmagnesium and organoaluminum compounds were fed in the proportions shown in Table 1 and as shown in FIG. At the same time, 1300 g/hour of ethylene, 0.15 g/hour of hydrogen, and comonomer were continuously supplied at the rates shown in Table 1, and the reaction temperature was 175°C and the reaction pressure was 0 kg/m''G.
.. A polymerization reaction was carried out for 11 hours to obtain an ethylene copolymer. The results are shown in Table 1.

(比較例1) 前記実施例3において、各成分を別々に重合器に供給し
た外は前記実施例3と同様に実施した。
(Comparative Example 1) The same procedure as in Example 3 was carried out except that each component was separately supplied to the polymerization vessel.

結果を第1表に示す。The results are shown in Table 1.

(比較例2) 前記実施例3において、チタン化合物と有機アルミニウ
ム化合物とを反応させてからジアルキルマグネシウムと
接触させた外は前記実施例3と同様に実施した。結果を
第1表に示す。
(Comparative Example 2) The same procedure as in Example 3 was carried out except that the titanium compound and the organoaluminum compound were reacted and then brought into contact with the dialkylmagnesium. The results are shown in Table 1.

(比較例3) 前記実施例4において、各成分を別々に重合器に供給し
た外は前記実施例4と同様に実施した。
(Comparative Example 3) The same procedure as in Example 4 was carried out except that each component was separately supplied to the polymerization vessel.

結果を第1表に示す。The results are shown in Table 1.

(比較例4) 窒素気流中で無水塩化マグネシウム10モルを脱水n−
ヘキサン30交に懸濁させ、攪拌下でエタノール60モ
ルを滴下し、30℃で1時間、反応させた。その後、こ
れにジエチルアルミニウムクロライド27モルを滴下し
て攪拌し、四塩化チタン30モルを加え、80℃で3時
間、反応させて固体触媒成分を得た。
(Comparative Example 4) 10 mol of anhydrous magnesium chloride was dehydrated in a nitrogen stream.
The suspension was suspended in 30 g of hexane, 60 mol of ethanol was added dropwise under stirring, and the mixture was reacted at 30° C. for 1 hour. Thereafter, 27 mol of diethylaluminium chloride was added dropwise to the mixture and stirred, and 30 mol of titanium tetrachloride was added thereto, followed by reaction at 80° C. for 3 hours to obtain a solid catalyst component.

得られた固体触媒成分をチタン換算で0.25ミリモル
/時間、ジエチルアルミニウムクロライド16ミリモル
/時間を供給した。同時に、エチレン1300g/時間
、水素0.15g/時間、コモノマーを第1表に示す割
合で連続供給し、反応温度175℃、反応圧カフ0Kg
/rn”Gの条件下で0.11時間の重合反応を行ない
、エチレン共重合体を得た。結果を第1表に示す。
The obtained solid catalyst component was fed at 0.25 mmol/hour in terms of titanium, and diethylaluminum chloride at 16 mmol/hour. At the same time, 1300 g/hour of ethylene, 0.15 g/hour of hydrogen, and comonomer were continuously supplied at the rates shown in Table 1, reaction temperature was 175°C, and reaction pressure cuff was 0 kg.
/rn''G for 0.11 hours to obtain an ethylene copolymer. The results are shown in Table 1.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明のエチレン共重合体の製造力法におい
て使用する触媒の各成分の供給状態を示す説明図である
FIG. 1 is an explanatory diagram showing the state of supply of each component of the catalyst used in the ethylene copolymer production method of the present invention.

Claims (1)

【特許請求の範囲】[Claims] (1)第(1)式で表わされるジアルキルマグネシウム R^1R^2Mg……………(1) (ただし、第(1)式中、R^1、R^2はそれぞれ炭
素数1〜18のアルキル基およびシクロアルキル基を示
す。) と有機アルミニウム化合物との反応生成物および第(2
)式で示されるチタン化合物 Ti(OR^3)_nX_4_−_n…………(2)(
ただし、第(2)式中、R^3は炭素数1〜10のアル
キル基、シクロアルキル基、アリール基あるいはアラル
キル基を表わし、Xはハロゲン原子を表わし、nは0≦
n≦4を満たす実数である。)から得られる触媒の存在
下に、温度155℃以上の条件下でエチレンと炭素数5
〜6のα−オレフィンと炭素数8〜18のα−オレフィ
ンとを共重合させることを特徴とするエチレン共重合体
の製造方法。
(1) Dialkylmagnesium R^1R^2Mg represented by formula (1) (1) (However, in formula (1), R^1 and R^2 each have a carbon number of 1 to 18 ) and an organoaluminum compound and the reaction product of the
) Titanium compound Ti(OR^3)_nX_4_-_n…………(2)(
However, in formula (2), R^3 represents an alkyl group, cycloalkyl group, aryl group, or aralkyl group having 1 to 10 carbon atoms, X represents a halogen atom, and n is 0≦
It is a real number satisfying n≦4. ) in the presence of a catalyst obtained from
A method for producing an ethylene copolymer, which comprises copolymerizing an α-olefin having 6 to 6 carbon atoms and an α-olefin having 8 to 18 carbon atoms.
JP21563686A 1986-09-12 1986-09-12 Method for producing ethylene copolymer Expired - Fee Related JPH0737492B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21563686A JPH0737492B2 (en) 1986-09-12 1986-09-12 Method for producing ethylene copolymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21563686A JPH0737492B2 (en) 1986-09-12 1986-09-12 Method for producing ethylene copolymer

Publications (2)

Publication Number Publication Date
JPS6369807A true JPS6369807A (en) 1988-03-29
JPH0737492B2 JPH0737492B2 (en) 1995-04-26

Family

ID=16675684

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21563686A Expired - Fee Related JPH0737492B2 (en) 1986-09-12 1986-09-12 Method for producing ethylene copolymer

Country Status (1)

Country Link
JP (1) JPH0737492B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6197909B1 (en) * 1988-12-19 2001-03-06 Curwood, Inc. Heat shrinkable C2C4C6 terpolymer film
CN115926034A (en) * 2022-11-28 2023-04-07 浙江石油化工有限公司 Preparation method of high-strength waterproof polyethylene film

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6197909B1 (en) * 1988-12-19 2001-03-06 Curwood, Inc. Heat shrinkable C2C4C6 terpolymer film
CN115926034A (en) * 2022-11-28 2023-04-07 浙江石油化工有限公司 Preparation method of high-strength waterproof polyethylene film

Also Published As

Publication number Publication date
JPH0737492B2 (en) 1995-04-26

Similar Documents

Publication Publication Date Title
US4352915A (en) Process for the polymerization of ethylene
JP2557054B2 (en) Alpha-olefin polymerization catalyst composition
JPS61218606A (en) Production of alpha-olefin polymer
US6395669B1 (en) Catalyst component and system
JPS6118921B2 (en)
PL174151B1 (en) Prepolymerised titanium catalyst ingredient for use in ethylene polymerisation and copolymerisation processes and method of obtaining such ingredient
JPH01247406A (en) Catalyst composition for producing alpha-polyolefin narrow molecular weight distribution
JPS6124402B2 (en)
JP2774171B2 (en) Method for producing ethylene copolymer
JPH01247405A (en) Catalyst composition for production high density alpha-olefin polymer having wide molecular weight distribution
CN110312740A (en) Ziegler-Natta catalyst and preparation thereof
JPS6369807A (en) Production of ethylene copolymer
JP2767754B2 (en) Method for producing catalyst for olefin polymerization
JPS6330507A (en) Production of ehylene copolymer
JPH0118926B2 (en)
JPS6042404A (en) Polymerization of olefin
EP0518604A2 (en) High activity polyethylene catalysts prepared from oxidizing agents
JPS6330508A (en) Production of ethylene copolymer
JPH0455205B2 (en)
JPH02145609A (en) Production of ethylene-based polymer
JPH0344092B2 (en)
JPH07258326A (en) Manufacture of ethylene copolymer
JPH0338284B2 (en)
JPH0339082B2 (en)
JPH04285606A (en) Production of polyolefin

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees