JPH03290392A - Single crystal production device - Google Patents

Single crystal production device

Info

Publication number
JPH03290392A
JPH03290392A JP8869190A JP8869190A JPH03290392A JP H03290392 A JPH03290392 A JP H03290392A JP 8869190 A JP8869190 A JP 8869190A JP 8869190 A JP8869190 A JP 8869190A JP H03290392 A JPH03290392 A JP H03290392A
Authority
JP
Japan
Prior art keywords
raw material
single crystal
crucible
gutter
storage cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8869190A
Other languages
Japanese (ja)
Inventor
Yoshio Mori
毛利 吉男
Kenji Araki
健治 荒木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP8869190A priority Critical patent/JPH03290392A/en
Publication of JPH03290392A publication Critical patent/JPH03290392A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To continuously and stably charge a raw material of non-uniform lumps from the storage cylinder of the raw material into a crucible by disposing a measuring chute on the downstream side of the storage cylinder in a finely shaking state. CONSTITUTION:The single crystal production device is composed of a crucible 2, a heating means 8 for heating the crucible 2, devices 10, 13 for lifting the single crystal 12 from the melted liquid 5, a dividing member 6 having a hole 7 for the passage of the melted liquid 5 and a raw material-feeding device 20. The crucible 2 holds the melted liquid of the crystal raw material 30 and is rotate about a vertical shaft 4. The dividing member 6 divides an outside raw material melting section from an inside crystal-growing section each disposed in the crucible 2. The raw material-feeding device 20 is formed of a storage cylinder 22 for storing the raw material, a measuring chute 24 and a weight-measuring meter 26 attached to the measuring chute 22. The measuring chute 24 is disposed in a finely shakable state.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、塊状原料を供給しながら単結晶を育成する
シリコン単結晶の製造装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a silicon single crystal manufacturing apparatus for growing a single crystal while supplying bulk raw material.

[従来の技術] 原料を坩堝内に連続的に供給しながら、単結晶の連続育
成を行うシリコン単結晶の製造方法(以下、cc−cz
法と略す、 Continuous ChargeCz
ocbralski )の開発が盛んに行われている。
[Prior art] A method for manufacturing a silicon single crystal (hereinafter referred to as cc-cz) in which a single crystal is continuously grown while continuously supplying raw materials into a crucible.
Continuous ChargeCz
ocbralski) is currently under active development.

−例として、特公昭61−17537がある。- An example is Japanese Patent Publication No. 61-17537.

しかし、いずれもシリコン原料の供給量を高精度に制御
する必要があること、および貯蔵容器からの原料の切り
出しが容易であることから、原料シリコンの形状は粒状
のものに限定されている。この粒状原料の形状は球形で
、直径は0.2乃至5ミリメートルである。
However, in both cases, the shape of the raw material silicon is limited to granular ones because it is necessary to control the supply amount of the silicon raw material with high precision and because it is easy to cut out the raw material from the storage container. The shape of this granular raw material is spherical, and the diameter is 0.2 to 5 mm.

[発明が解決しようとする課題] しかしながら、上記の粒状シリコン原料は、広くは使わ
れていない、cc−cz法が広く普及するには、−数的
に使われている原料を使用できるような結晶育成技術で
なければならない、汎用的に使用されている原料は、氷
あるいは硝子を破砕したような不定形な塊である。また
、その寸法も10乃至50ミリメートルと大きく、かつ
、ばらつきがある、このような塊状原料は、貯蔵容器か
らの切り出しおよび坩堝内への供給量制御がきわめて困
麹である。従って、塊状原料を用いたCC−C2法はま
だ実用化されていない。
[Problems to be Solved by the Invention] However, the above-mentioned granular silicon raw materials are not widely used, and in order for the cc-cz method to become widely used, - it is necessary to use raw materials that are numerically used. The commonly used raw material required for crystal growth technology is an amorphous mass such as crushed ice or glass. In addition, it is extremely difficult to cut out such a lumpy raw material from a storage container and control the amount supplied into a crucible because the size of the raw material is large, ranging from 10 to 50 mm, and varies widely. Therefore, the CC-C2 method using bulk raw materials has not yet been put into practical use.

上記の塊状原料供給装置が満たさなければならない要件
は、下記の通りである。
The requirements that the above bulk raw material supply device must meet are as follows.

■多量の原料(50〜200kgf)を貯蔵する貯蔵部
より、安定して原料を切り出せること。
- Raw materials can be stably cut out from a storage section that stores a large amount of raw materials (50 to 200 kgf).

■微量供給< 30〜100 g/win )ができ、
かつ、供給量が高精度(目標値±10%)に制御できる
こと。
■Minor amount supply < 30-100 g/win) is possible,
In addition, the supply amount can be controlled with high precision (target value ±10%).

■原料の汚染のないこと、このためには、シリコン、石
英またはテフロンで装置を製作できる程度に、簡単な構
造であることが望ましい。
- No contamination of raw materials.To this end, it is desirable that the structure be simple enough that the device can be manufactured from silicon, quartz, or Teflon.

本願の分野以外の分野では、きわめて多種の塊状物体の
搬送方法が実用化されているが、これらの中には上記の
要件を満たすようなものはない。
Although a wide variety of methods for conveying bulk objects have been put into practice in fields other than the field of the present application, none of these methods satisfies the above requirements.

本発明はかかる事情に鑑みてなされたもので、本発明の
目的は、塊状原料を連続的に、かつ、供給量を高精度に
制御して、供給できる原料供給装置を備えた、単結晶製
造装置を提供することである。
The present invention has been made in view of the above circumstances, and an object of the present invention is to manufacture a single crystal, which is equipped with a raw material supply device capable of supplying bulk raw materials continuously and controlling the supply amount with high precision. The purpose is to provide equipment.

[課題を解決するための手段〕 本発明による単結晶製造装置は、結晶原料の融液を収容
し、鉛直軸の回りに回転する坩堝と、該坩堝の周囲に設
けられ、該坩堝を加熱する電気抵抗式の加熱手段と、該
融液から単結晶を引き上げる引き上げ装置と、該融液の
貫通孔を有し、該坩堝内に設けられ外側の原料溶解部と
内側の結晶育成部に区分する仕切りと、該原料溶解部に
結晶原料を供給する原料供給装置とを有し、塊状原料を
供給しながら単結晶を育成するシリコン単結晶の製造装
置において、 該塊状原料を保持し、中心軸がほぼ水平で、該中心軸の
回りに回転可能に設けられた貯蔵筒と、塊状原料の出口
となる端部が入口となる端部より高さが低くなるように
傾斜され、微小振動可能に、貯蔵筒の下流側に設けられ
た計量樋と、該計量樋を通過する塊状原料の重量を計測
するため該計量樋に取り付けた荷重計とを有する原料供
給装置を設けたことを特徴とする。
[Means for Solving the Problems] A single crystal production apparatus according to the present invention includes a crucible that accommodates a melt of a crystal raw material and rotates around a vertical axis, and a crucible that is provided around the crucible and heats the crucible. It has an electric resistance type heating means, a pulling device for pulling up a single crystal from the melt, and a through hole for the melt, and is provided in the crucible and divided into an outer raw material melting section and an inner crystal growth section. A silicon single crystal production device that has a partition and a raw material supply device that supplies crystal raw materials to the raw material melting section, and grows a single crystal while supplying the raw raw materials, wherein the raw raw materials are held in the raw materials, and the central axis is A storage cylinder that is substantially horizontal and rotatable around the central axis, and is inclined so that the end that serves as the outlet for the lumpy raw material is lower in height than the end that serves as the inlet, and is capable of minute vibrations. The present invention is characterized in that it is provided with a raw material supply device having a weighing gutter provided on the downstream side of the storage cylinder and a load meter attached to the weighing gutter for measuring the weight of the bulk raw material passing through the measuring gutter.

[作用] 中心軸がほぼ水平な貯蔵筒内に保持された塊状原料は、
該貯蔵筒の中心軸回りの回転運動によって、該貯蔵筒の
一方の開口した端部より排出される。この切り出し方法
は、原料がきわめて異形で、大きく、かつ、寸法のばら
つきが大きいにもかかわらず、原料を無理なく切り出せ
る。さらに、構造も簡単である。切り出し量の調節は、
貯蔵筒の回転数を調節することにより行われる。または
、貯蔵筒の中心軸の傾斜角度を調節する方法でもよい、
あるいは、それらを組み合わせた方法でもよい、貯蔵筒
より切り出された原料は計量樋内に送り込まれる。
[Operation] The bulk raw material held in the storage cylinder whose central axis is almost horizontal is
Rotational movement about the central axis of the storage cylinder causes the storage cylinder to be discharged from one open end. This cutting method allows the raw material to be cut out without difficulty even though the raw material is extremely irregularly shaped, large, and has large variations in size. Furthermore, the structure is simple. To adjust the cutting amount,
This is done by adjusting the rotation speed of the storage cylinder. Alternatively, a method may be used in which the inclination angle of the central axis of the storage cylinder is adjusted.
Alternatively, a combination of these methods may be used.The raw material cut out from the storage cylinder is fed into the measuring gutter.

該計量樋は、前記貯蔵筒から排出された塊状原料の入口
となる端部が他方の出口となる端部より高さが高くなる
ように傾斜して設けられている。
The measuring gutter is provided so as to be inclined such that the end serving as the inlet for the raw material discharged from the storage cylinder is higher than the other end serving as the outlet.

従って、前記貯蔵筒から排出された塊状原料は、前記計
量樋の微小振動によって、計量樋内を滑りながら入口側
端部より出口側端部に向かって移動する。移動にともな
い、原料は一列に配列する。
Therefore, the lumpy raw material discharged from the storage cylinder moves from the inlet side end toward the outlet side end while sliding inside the metering gutter due to the minute vibrations of the measuring gutter. As they move, the raw materials are arranged in a line.

そして、最終的には出口側端部より一個づつ排出される
。排出量の調節は、計量樋の振動強度(振幅、S動数)
を調節することにより行われる。あるいは、計量樋の長
手方向に並行な軸の傾斜角度を調節する方法、または、
それらを組み合わせた方法でもよい、計量樋の形状とし
ては、舟底形状が望ましい、この理由は、塊状原料が移
動にともない、−列に並びやすいからである。
Finally, they are discharged one by one from the outlet side end. The amount of discharge can be adjusted by the vibration intensity (amplitude, S frequency) of the measuring gutter.
This is done by adjusting the Alternatively, a method of adjusting the inclination angle of the axis parallel to the longitudinal direction of the metering gutter, or
A combination of these methods may also be used. The shape of the metering gutter is preferably a boat-bottom shape, because the lumpy raw materials tend to line up in rows as they move.

前記計量樋には荷重計が取り付けられており、計量樋よ
り排出された塊状原料の重量が計量される。計量方法と
しては、前記荷重計にかける前記計量樋荷重のかけかた
によって、以下の2通りが考えられる。
A load meter is attached to the weighing gutter, and the weight of the lumpy raw material discharged from the gutter is measured. As for the weighing method, the following two methods can be considered depending on how the weighing gutter load is applied to the load cell.

■前記計量樋の原料入口に近いところを軸支し、出口に
い近ところで荷重計に前記計量樋の荷重をかける方法。
■A method in which the measuring gutter is pivoted near the raw material inlet and the load of the measuring gutter is applied to a load cell near the outlet.

■前記計量樋の全荷重を荷重計にかける方法、が考えら
れる。前記■、■の方法に対応した荷重計の作用は次の
通りである。
(2) A possible method is to apply the entire load of the weighing gutter to a load meter. The function of the load cell corresponding to the methods (1) and (2) above is as follows.

01個の塊状原料が排出された瞬間、排出端近傍に配置
されている荷重計の指示が急激に低下する6個々の原料
塊が排出されるたびに、荷重計の指示の急激な低下がお
こる。この指示の低下量の所定時間内の累計が排出lに
相当する。
0 At the moment when one raw material lump is discharged, the indication on the load cell placed near the discharge end sharply drops.6 Every time an individual raw material lump is discharged, the reading on the load cell suddenly drops. . The cumulative total of the amount of decrease in this instruction within a predetermined period of time corresponds to discharge l.

■原料塊を計量樋に間欠的に装入する1個々の原料塊が
排出されるたびに、計量樋全体を支持している荷重計の
指示が低下する。原料塊の装入が停止している間の荷重
計の指示の低下量の所定時間内の累計が排出量に相当す
る。
■Intermittently charging raw material lumps into the measuring gutter 1 Each time an individual raw material lump is discharged, the reading on the load cell that supports the entire measuring gutter decreases. The cumulative total of the amount of decrease in the load cell indication during a predetermined period of time while charging of the raw material block is stopped corresponds to the discharge amount.

シリコン塊状原料の坩堝内への供給量の調節は、前記荷
重針の計測重量に基づき計量樋の振動強度または長手方
向に並行な軸の傾斜角度を制御することにより行われる
The amount of silicon block raw material supplied into the crucible is adjusted by controlling the vibration intensity of the measuring gutter or the inclination angle of the axis parallel to the longitudinal direction based on the weight measured by the loading needle.

この計量方法は、原料がきわめて異形で、かつ、寸法の
ばらつきも大きいにもかかわらず、原料を無理なく移送
でき、従って、供給量を高精度に計測、制御できる。さ
らに、構造も簡単である。
This measuring method allows raw materials to be transferred without difficulty even though the raw materials are extremely irregularly shaped and have large variations in size, and therefore the supply amount can be measured and controlled with high precision. Furthermore, the structure is simple.

以上のような原料供給装置は構造が簡単であるので、不
純物の混入を低減させるため、シリコン原料と接触する
部材をテフロン、石英またはシリコンで製作することが
できる。
Since the raw material supply device as described above has a simple structure, the members that come into contact with the silicon raw material can be made of Teflon, quartz, or silicon in order to reduce the contamination of impurities.

[実施例] 本発明の実施例を添付の図面を参照しながら詳細に説明
する。第1図は本実施例の単結晶製造装置の縦断面図で
ある。
[Examples] Examples of the present invention will be described in detail with reference to the accompanying drawings. FIG. 1 is a longitudinal sectional view of the single crystal manufacturing apparatus of this embodiment.

1は中心部に坩堝2が設けられたチャンバで、1aはそ
の蓋である。チャンバ1の中に、黒鉛坩堝3を回転およ
び上下動可能に支持する支持軸4、加熱手段としてヒー
タ8とその周りに設けられた断熱材9が配置されている
。前記坩堝2は石英製で、黒鉛坩堝3内にセットされて
いる。6は坩堝2内のシリコン融液5を外側の原料溶解
部と内側の結晶育成部に区分する仕切りである。仕切り
6には貫通孔7が設けられている。12は種結晶11に
より成長し、シリコン融液5から引き上げられた柱状の
シリコン単結晶である。
1 is a chamber in which a crucible 2 is provided in the center, and 1a is a lid thereof. In the chamber 1, a support shaft 4 that supports the graphite crucible 3 in a rotatable and vertically movable manner, a heater 8 serving as a heating means, and a heat insulating material 9 provided around the heater are arranged. The crucible 2 is made of quartz and is set within a graphite crucible 3. Reference numeral 6 denotes a partition that divides the silicon melt 5 in the crucible 2 into an outer raw material melting section and an inner crystal growth section. A through hole 7 is provided in the partition 6. Reference numeral 12 denotes a columnar silicon single crystal grown by the seed crystal 11 and pulled from the silicon melt 5.

40は引き上げ装置で、引き上げチャンバ1b、シード
チャックを介して種結晶11が取り付けられたワイヤ1
0、前記ワイヤが巻回されたワイヤ巻取装置13および
ゲートバルブ14で構成されている。
40 is a pulling device, which includes a pulling chamber 1b and a wire 1 to which a seed crystal 11 is attached via a seed chuck.
0, it is composed of a wire winding device 13 around which the wire is wound, and a gate valve 14.

20は原料供給装置である。チャンバ1の上部にチャン
バ1内と連通する箱体21が設けられている。この箱体
21の上部にはシリコン塊状原料30を補充する際の開
閉用1231が設けられており、シール用の○リング3
2を介して箱体21にボルト締めされている。22は箱
体21の内部に設けられ、図示しない駆動@横により中
心軸周りの回転運動が可能であるとともに、傾簡軸23
を中心として中心軸の傾斜角度を調節可能とした貯蔵筒
である。24はシリコン塊状原料30の入口側端部が、
出口側端部より高さが高くなるように傾斜して設けられ
、図示しない駆動機構により微小振動運動を可能とした
計量樋である。
20 is a raw material supply device. A box body 21 that communicates with the inside of the chamber 1 is provided at the top of the chamber 1 . At the top of this box body 21, there is provided an opening/closing ring 1231 for replenishing the bulk silicon raw material 30, and a ○ ring 3 for sealing.
It is bolted to the box body 21 via 2. 22 is provided inside the box body 21, and is capable of rotational movement around the central axis by a drive (not shown), as well as a tilting shaft 23.
This is a storage cylinder whose inclination angle of the central axis can be adjusted around . 24, the inlet side end of the silicon bulk raw material 30 is
This is a metering gutter that is tilted so that the height is higher than the outlet side end, and allows minute vibration movement by a drive mechanism (not shown).

貯蔵筒22の出口部分と計量樋24の入口側端部の間に
は貯蔵筒22より排出されたシリコン塊状原料30を計
量@24に導くシュート25が設けられている。計量樋
24にはシリコン塊状原料30の重量を計測する荷重計
26が取り付けられている。計量樋24よりシリコン塊
状原料30が排出された瞬間に、排出されたシリコン塊
状原料30の重量分だけ計測値が低下するので、前記荷
型針26により所定時間内におけるこの低下量の累計侭
を演算して、シリコン塊状原料30の坩堝2への供給量
を計量することができる。27は計重機出口の下方に設
けられた第1の案内管である。28はゲートバルブ29
を介し原料溶解部のシリコン融液に原料を供給する第2
の案内管である。
A chute 25 is provided between the outlet of the storage cylinder 22 and the inlet end of the metering gutter 24 for guiding the silicon block raw material 30 discharged from the storage cylinder 22 to the metering channel @24. A load cell 26 for measuring the weight of the silicon lump raw material 30 is attached to the weighing gutter 24 . The moment the silicon block raw material 30 is discharged from the measuring gutter 24, the measured value decreases by the weight of the discharged silicon block raw material 30, so the bag shape needle 26 measures the cumulative amount of this decrease within a predetermined period of time. By calculation, the amount of silicon bulk raw material 30 to be supplied to the crucible 2 can be measured. 27 is a first guide pipe provided below the weighing machine outlet. 28 is the gate valve 29
A second supplying the raw material to the silicon melt in the raw material melting section through the
It is a guide tube.

次に、上記のように構成された本実施例の作用を説明す
る。シリコン単結晶12の育成中は、原料供給装置20
により仕切り6で区分された外側の原料溶解部のシリコ
ン融液5に、第2の案内管28を通してシリコン塊状原
料30が投入される。そのlは単結晶の育成量と同等で
ある。
Next, the operation of this embodiment configured as described above will be explained. During the growth of the silicon single crystal 12, the raw material supply device 20
A silicon lump raw material 30 is introduced into the silicon melt 5 in the outer raw material melting section divided by the partition 6 through the second guide pipe 28. The l is equivalent to the amount of single crystal growth.

貯蔵筒22内に装入されたシリコン塊状原料30は、該
貯蔵筒22の回転運動によって貯蔵何22の開口部より
排出される。ついでシュート25を経て計重機24に供
給される。計重機24の入口側端部は出口側端部より高
さが高くなるように設けられているので、計重機24の
入口側端部に供給されたシリコン塊状原料30は、計重
機24の微小振動運動によって計量樋内を高さの低い出
口側端部に向かって軸方向に移動する。
The silicon lump raw material 30 charged into the storage tube 22 is discharged from the opening of the storage tube 22 by the rotational movement of the storage tube 22 . It is then supplied to a weighing machine 24 via a chute 25. Since the inlet side end of the weighing machine 24 is provided so as to be higher than the outlet side end, the silicon lump raw material 30 supplied to the inlet side end of the weighing machine 24 is The oscillatory movement causes it to move axially within the metering trough towards the lower outlet end.

計重機24の出口側端部から排出されたシリコン塊状原
料30は、第1の案内管27および第2の案内管28を
経て、坩堝2の原料溶解部のシリコン融液5に投入され
る。シリコン塊状原料30のシリコン融液面への投入量
は、計重機24内のシリコン塊状原料30が該計量機内
を軸方向に移動する速度によって決まる。また、原料の
該計量樋内移動速度は計重機の振動強度(振幅、振動数
)によって調整することができる。従って、計重機24
に取り付けた荷重計26の計測値を監視しながら、計量
ai24の振動強度を調節することにより投入量が調節
される。
The bulk silicon raw material 30 discharged from the exit end of the weighing machine 24 passes through the first guide pipe 27 and the second guide pipe 28 and is introduced into the silicon melt 5 in the raw material melting section of the crucible 2 . The amount of the silicon lump raw material 30 charged to the silicon melt surface is determined by the speed at which the silicon lump raw material 30 in the weighing machine 24 moves in the axial direction within the weighing machine. Further, the moving speed of the raw material in the weighing gutter can be adjusted by the vibration intensity (amplitude, frequency) of the weighing machine. Therefore, weighing machine 24
The input amount is adjusted by adjusting the vibration intensity of the weighing ai 24 while monitoring the measured value of the load meter 26 attached to the meter.

貯蔵筒22内にシリコン塊状WF130を補充する際は
、ゲートバルブ29を閉じ、傾筒軸23を中心として貯
蔵筒22の中心軸が垂直になるように貯蔵筒を回転する
。ついで、箱体21上部の開閉用!31を開けてシリコ
ン塊状原料30を補充する。
When replenishing the silicon block WF130 into the storage cylinder 22, the gate valve 29 is closed and the storage cylinder is rotated about the tilting cylinder shaft 23 so that the central axis of the storage cylinder 22 becomes vertical. Next, for opening and closing the upper part of the box body 21! 31 is opened and silicon lump raw material 30 is replenished.

また、本発明に係る、原料供給装置20において、シリ
コン塊状原料30が接触する貯蔵筒22、計重機24、
シュート25、第1の案内管27、第2の案内管28等
を、テフロン、石英またはシリコンで構成すれば、不純
物が混入することを防止することができる。
Further, in the raw material supply device 20 according to the present invention, the storage cylinder 22 with which the silicon lump raw material 30 comes into contact, the weighing machine 24,
If the chute 25, the first guide tube 27, the second guide tube 28, etc. are made of Teflon, quartz, or silicon, it is possible to prevent contamination by impurities.

[発明の効果] 本発明の単結晶製造装置によれば、原料の貯蔵筒、前記
貯蔵筒から原料を受けて坩堝に供給する計重機および計
量樋内の原料の坩堝への供給量を計量する荷重計が設け
られであるので、単結晶の育成に一般に広く使用されて
いるシリコン塊状原料を坩堝内に連続的に供給しながら
シリコン単結晶を育成することが可能となる。
[Effects of the Invention] According to the single crystal manufacturing apparatus of the present invention, a raw material storage cylinder, a weighing machine that receives the raw material from the storage cylinder and supplies it to the crucible, and a weighing gutter measure the amount of the raw material supplied to the crucible. Since a load meter is provided, it becomes possible to grow a silicon single crystal while continuously supplying a bulk silicon raw material, which is generally widely used for growing single crystals, into the crucible.

き上げチャンバ、2・・・坩堝、3・・黒鉛坩堝、4・
・・支持軸、5・・・シリコン融液、6・・仕切り、7
・・貫通孔、8・・・ヒータ、9・・・断熱材、10・
・弓き上げワイヤ、11・・種結晶、12・シリコン単
結晶、13・・・ワイヤ巻取装置、14.29・・ゲト
バルブ、20・・・原料供給装置、21 ・箱体、22
・・貯蔵筒、23・・・傾筒軸、24 ・計重機、25
・・・シュート、26・・・荷重計、27・・第1の案
内管、28・第2の案内管、3o・・・シリコン塊状原
料、31・・・開閉用蓋、32・・○リング、40・引
き上げ装置。
Lifting chamber, 2... Crucible, 3... Graphite crucible, 4...
...Support shaft, 5...Silicon melt, 6...Partition, 7
...Through hole, 8...Heater, 9...Insulating material, 10.
- Bow raising wire, 11... Seed crystal, 12 - Silicon single crystal, 13... Wire winding device, 14.29... Gate valve, 20... Raw material supply device, 21 - Box body, 22
・・Storage cylinder, 23 ・・Tilting cylinder shaft, 24 ・Weighing machine, 25
Chute, 26 Load cell, 27 First guide tube, 28 Second guide tube, 3o Silicon block raw material, 31 Opening/closing lid, 32 ○ ring , 40・Lifting device.

Claims (3)

【特許請求の範囲】[Claims] (1)結晶原料の融液を保持し、鉛直軸の回りに回転す
る坩堝と、該坩堝の周囲に設けられ、該坩堝を加熱する
電気抵抗式の加熱手段と、該融液から単結晶を引き上げ
る引き上げ装置と、該融液の貫通孔を有し、該坩堝内に
設けられ外側の原料溶解部と内側の結晶育成部に区分す
る仕切りと、該原料溶解部に結晶原料を供給する原料供
給装置とを有し、塊状原料を供給しながら単結晶を育成
するシリコン単結晶の製造装置において、 該塊状原料を保持し、中心軸がほぼ水平で、該中心軸の
回りに回転可能に設けられた貯蔵筒と、塊状原料の出口
となる端部が入口となる端部より高さが低くなるように
傾斜され、微小振動可能に、貯蔵筒の下流側に設けられ
た計量樋と、該計量樋を通過する塊状原料の重量を計測
するため該計量樋に取り付けた荷重計と、を有する原料
供給装置を設けたことを特徴とする単結晶製造装置。
(1) A crucible that holds a melt of crystal raw material and rotates around a vertical axis, an electric resistance heating means provided around the crucible to heat the crucible, and a single crystal from the melt. a pulling device, a partition having a through hole for the melt and provided in the crucible to divide it into an outer raw material melting section and an inner crystal growth section, and a raw material supply supplying the crystal raw material to the raw material melting section. In a silicon single crystal production device that grows a single crystal while supplying a lumpy raw material, the silicon single crystal manufacturing device has a device that holds the lumpy raw material, has a substantially horizontal central axis, and is rotatable around the central axis. a measuring gutter provided on the downstream side of the storage cylinder, which is inclined so that the end that serves as the outlet for the bulk raw material is lower than the end that serves as the inlet, and is capable of microvibration; 1. A single crystal manufacturing apparatus comprising a raw material supply device having a load meter attached to a weighing gutter for measuring the weight of a lumpy raw material passing through the gutter.
(2)前記貯蔵筒の形状が円筒形であり、かつ前記計量
樋の形状が舟底形であることを特徴とする特許請求範囲
第1項に示す単結晶製造装置。
(2) The single crystal manufacturing apparatus according to claim 1, wherein the storage cylinder has a cylindrical shape, and the measuring gutter has a boat bottom shape.
(3)前記貯蔵筒と前記計量樋の材質をテフロン、石英
またはシリコンで構成したことを特徴とする特許請求範
囲第1項および第2項に示す単結晶製造装置。
(3) The single crystal manufacturing apparatus as set forth in claims 1 and 2, wherein the material of the storage cylinder and the measuring gutter is Teflon, quartz, or silicon.
JP8869190A 1990-04-03 1990-04-03 Single crystal production device Pending JPH03290392A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8869190A JPH03290392A (en) 1990-04-03 1990-04-03 Single crystal production device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8869190A JPH03290392A (en) 1990-04-03 1990-04-03 Single crystal production device

Publications (1)

Publication Number Publication Date
JPH03290392A true JPH03290392A (en) 1991-12-20

Family

ID=13949868

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8869190A Pending JPH03290392A (en) 1990-04-03 1990-04-03 Single crystal production device

Country Status (1)

Country Link
JP (1) JPH03290392A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999055940A1 (en) * 1998-04-29 1999-11-04 Memc Electronic Materials, Inc. Method and system for supplying semi-conductor source material
WO2008087949A1 (en) * 2007-01-15 2008-07-24 Sharp Kabushiki Kaisha Solid raw material supply device, molten raw material supply device, and crystal production apparatus
JP2008195601A (en) * 2007-01-15 2008-08-28 Sharp Corp Solid raw material supply device, molten raw material supply device, and crystal production apparatus
CN102051670A (en) * 2010-11-29 2011-05-11 奥特斯维能源(太仓)有限公司 Continuous discharging device without valve control
JP2013129551A (en) * 2011-12-20 2013-07-04 Shin Etsu Handotai Co Ltd Apparatus and method for producing single crystal
WO2022091635A1 (en) * 2020-10-28 2022-05-05 株式会社Sumco Single crystal production device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999055940A1 (en) * 1998-04-29 1999-11-04 Memc Electronic Materials, Inc. Method and system for supplying semi-conductor source material
US6089285A (en) * 1998-04-29 2000-07-18 Memc Electronics Materials, Inc. Method and system for supplying semiconductor source material
WO2008087949A1 (en) * 2007-01-15 2008-07-24 Sharp Kabushiki Kaisha Solid raw material supply device, molten raw material supply device, and crystal production apparatus
JP2008195601A (en) * 2007-01-15 2008-08-28 Sharp Corp Solid raw material supply device, molten raw material supply device, and crystal production apparatus
CN102051670A (en) * 2010-11-29 2011-05-11 奥特斯维能源(太仓)有限公司 Continuous discharging device without valve control
JP2013129551A (en) * 2011-12-20 2013-07-04 Shin Etsu Handotai Co Ltd Apparatus and method for producing single crystal
WO2022091635A1 (en) * 2020-10-28 2022-05-05 株式会社Sumco Single crystal production device

Similar Documents

Publication Publication Date Title
EP0537988B1 (en) An apparatus for supplying granular raw material for a semiconductor single crystal pulling apparatus
EP2699716B1 (en) Side feed system for czochralski growth of silicon ingots
KR950003431B1 (en) Continuous liquid silicon recharging process in czochralski crucible pulling
JPS5919913B2 (en) Continuous semiconductor crystal growth equipment
JPS6337313B2 (en)
JPH03290392A (en) Single crystal production device
US20230366123A1 (en) Continuous ingot growth apparatus and control method thereof
KR101243579B1 (en) Upper-docking type raw material supply apparatus for continuous growing single crystals
JP2617197B2 (en) Powder supply unit
JPH03252386A (en) Device for producing single crystal
US11499245B2 (en) Additive feed systems, ingot puller apparatus and methods for forming a single crystal silicon ingot with use of such additive feed systems
KR20120122563A (en) Meterial feeder
JPH03290391A (en) Single crystal production device
JP3551242B2 (en) Method and apparatus for producing oxide single crystal
US6488181B1 (en) Device for metering powder
WO2002000967A1 (en) Crucible supporting device, and method and device for filling material
JP2577259B2 (en) Granular silicon supply device
JPH01286987A (en) Production of single crystal and apparatus therefor
KR20120003223A (en) Side-docking type raw material supply apparatus for continuous growing single crystals
CN209197867U (en) A kind of adjustable dosage bucket
JPH061688A (en) Method and device for feeding granular dopant
CN109943883A (en) Bavin can Laski grower conversion accessory
JPH0333092A (en) Granular silicon feeder
KR100797585B1 (en) Silicon Ingot Growing Apparatus
JPH07126095A (en) Single crystal growing device