JPH03290268A - Thermal head - Google Patents

Thermal head

Info

Publication number
JPH03290268A
JPH03290268A JP9287790A JP9287790A JPH03290268A JP H03290268 A JPH03290268 A JP H03290268A JP 9287790 A JP9287790 A JP 9287790A JP 9287790 A JP9287790 A JP 9287790A JP H03290268 A JPH03290268 A JP H03290268A
Authority
JP
Japan
Prior art keywords
protective layer
thermal conductivity
heat
thermal
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9287790A
Other languages
Japanese (ja)
Other versions
JP2651496B2 (en
Inventor
Sadazumi Shiraishi
白石 貞純
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP9287790A priority Critical patent/JP2651496B2/en
Publication of JPH03290268A publication Critical patent/JPH03290268A/en
Application granted granted Critical
Publication of JP2651496B2 publication Critical patent/JP2651496B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electronic Switches (AREA)

Abstract

PURPOSE:To unify heating temperature distribution of the heating part by a method wherein the title thermal head has a protective layer which is formed by a first part to covet a heating resistor, second parts formed on both sides of the first part and third parts placed outside of the first and second parts, and thermal conductivity for each protective layer is specified. CONSTITUTION:A protective layer consists of a first part 5-1 with thermal conductivity lambda1, second parts 5-2 with thermal conductivity lambda2 and third parts 5-3 with thermal conductivity lambda3, and it is lambda1>lambda2 and lambda3>lambda2. When power is connected to a heating resistor 3, joule heat generated at a heating part 7 is conducted in the protective layer 5-1 and quickly transmitted to the surface of the protective layer 5-1. Since thermal conductivity lambda2 is lower than thermal conductivity lambda1, diffusion of heat generated at the heating part 7 to the protective layer area direction is suppressed, and the surface of the protective layer 5-1 is kept at a sufficient temperature for printing, during pulse power connection. In addition, the thermal head is formed in such a manner that heat conducted in the protective layer 5-2 reaches the protective layer 5-3 at the time of completion of the pulse power connection, and therefore, heat stayed in the protective layers 5-1, 5-2 during the pulse power connection is diffused immediately through the protective layer 5-3 after the completion of the pulse power connection, and the thermal head is quickly cooled to a room temperature.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は感熱記録機器などにおいて利用されるサーマル
ヘッドの品質に関わるものであり、特にサーマルヘッド
発熱部の発熱特性の改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to the quality of thermal heads used in thermal recording equipment and the like, and particularly relates to improving the heat generation characteristics of the heat generating portion of the thermal head.

〔発明の概要〕[Summary of the invention]

サーマルヘッドは発熱抵抗体に通電することにより発生
したジュール熱を保護層を介して感熱紙あるいは熱転写
インクシートなどのメディアに伝えることを機能とする
。従って保護層の熱特性は発熱部の発熱・冷却特性およ
びメディアへの熱伝達特性を大きく左右し、これを通じ
て感熱記録機器の印字品質にも多大の影響を与えるもの
である。
The function of a thermal head is to transmit Joule heat generated by energizing a heating resistor to a medium such as thermal paper or a thermal transfer ink sheet via a protective layer. Therefore, the thermal properties of the protective layer greatly influence the heat generation/cooling properties of the heat generating part and the heat transfer properties to the media, and through this, they also have a great influence on the print quality of the thermal recording device.

本発明は、低熱伝導率を有する単一の保護層のうちの一
部分をより高い熱伝導率を有する薄膜で形成することに
より発熱部の発熱および冷却特性を良好なものにし、こ
れによって印字品質を向上させようとするものである。
The present invention improves the heat generation and cooling characteristics of the heat generating part by forming part of a single protective layer with low thermal conductivity with a thin film with higher thermal conductivity, thereby improving print quality. It is something that we are trying to improve.

〔従来の技術〕[Conventional technology]

従来の薄膜サーマルヘッド発熱部の一般的な構造を第3
図に示す。第3図において1は絶縁性基板・2はグレー
ズ層・3は発熱抵抗体・4は電極・5は保護層であり、
6は感熱紙・熱転写インクシートなどのメディアを示し
、前記発熱抵抗体3に電力パルスを印加することにより
発生ずるジュール熱を該保護層5を介して該メディア6
に伝え印字を行なっていた。
The general structure of the conventional thin-film thermal head heat generating part is explained in the third section.
As shown in the figure. In Fig. 3, 1 is an insulating substrate, 2 is a glaze layer, 3 is a heating resistor, 4 is an electrode, and 5 is a protective layer.
Reference numeral 6 indicates a medium such as thermal paper or a thermal transfer ink sheet, and Joule heat generated by applying a power pulse to the heating resistor 3 is transferred to the medium 6 through the protective layer 5.
The company was in charge of printing the information.

前記保護層5はスパッタリング法・蒸着法・CVD法な
どによって形成される薄膜であり、膜厚は例えば6[μ
m]、熱伝導率は低く10[W/mK]程度である。
The protective layer 5 is a thin film formed by sputtering, vapor deposition, CVD, etc., and has a thickness of, for example, 6 μm.
m], and its thermal conductivity is low, about 10 [W/mK].

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、従来のサーマルヘッドにおいては保護層
が低熱伝導率を有する単一の薄膜で形成されているため
該保護層表面の発熱−冷却特性が悪く、かつ発熱部の発
熱温度分布も不均一でありメディアへの熱伝達効率も低
いため満足すべき印字品質を得ることができなかった。
However, in conventional thermal heads, the protective layer is formed of a single thin film with low thermal conductivity, so the heat generation and cooling characteristics of the surface of the protective layer are poor, and the heat generation temperature distribution of the heat generating part is also uneven. Since the heat transfer efficiency to the media was also low, satisfactory printing quality could not be obtained.

例えば該保護層5の表面で発熱部7の中央に相当する点
8の発熱−冷却特性は、第2図に示すように理想的特性
と比較して温度上昇が遅く、かつ冷却特性も悪いものし
か得られず、また該発熱部7の発熱温度分布も第4図に
示すように該発熱部7の中央部でピークをもち均一な温
度分布が得られない。従ってメディア上の印字ドツトは
第5図のような形状となり良好な印字品質を得ることが
不可能であった。
For example, the heat generation-cooling characteristics at a point 8 corresponding to the center of the heat generating portion 7 on the surface of the protective layer 5 are such that the temperature rise is slower and the cooling characteristics are poorer than the ideal characteristics, as shown in FIG. Furthermore, as shown in FIG. 4, the heat generation temperature distribution of the heat generation portion 7 has a peak at the center of the heat generation portion 7, and a uniform temperature distribution cannot be obtained. Therefore, the printed dots on the medium have a shape as shown in FIG. 5, making it impossible to obtain good printing quality.

〔課題を解決するための手段〕[Means to solve the problem]

良好な印字品質を得るための課題を発熱部の熱特性とい
う面から考えると次のように整理される。
When considering the issues in obtaining good print quality from the perspective of the thermal characteristics of the heat generating part, the issues can be summarized as follows.

■保護層表面の発熱−冷却特性を第7図のような理想的
プロファイルに近づける。
(2) Bringing the heating-cooling characteristics of the surface of the protective layer closer to the ideal profile as shown in Figure 7;

■発熱温度分布を発熱ドツト内で均一にする。■Make the heat generation temperature distribution uniform within the heat generation dot.

■メディアへの熱伝達効率を高める。■Improve heat transfer efficiency to the media.

このような課題を解決するためにまず第1に考えられる
ことは保護層として熱伝導率の高い薄膜を使用すること
である。本発明者らは第3図に示した断面構造を有する
発熱部の熱伝導特性を有限要素法によりシミュレートし
、保護層の熱伝導率が発熱特性に及はす効果を評価した
。第6図にこの結果を模式的に示す。第6図(a)は保
護層熱伝導率λ=2[W/mK]、第6図(b)は2=
500 [W/ m K ]の場合であり、図中のパル
スを印加したときの時刻tにおける保護層5表面の温度
分布を示している。この図かられかるように保護層の熱
伝導率が高い場合には十分な発熱温度が得られない。即
ち、保護層の熱伝導率が高くなるに従い保護層の面積方
向への熱コンダクタンスが高くなり、保護層表面が十分
な発熱温度になる前にジュール熱は面積方向へ拡散して
しまう。ごく初期的な時刻においては保護層表面は高い
発熱温度になっていると予想されるが、メディアへの伝
達熱量は小さく発色には至らない。従って保護層を単一
の熱伝導率で形成する限り上記の課題は達成できないこ
とがわかる。
The first thing that can be considered to solve these problems is to use a thin film with high thermal conductivity as a protective layer. The present inventors simulated the heat conduction characteristics of the heat generating portion having the cross-sectional structure shown in FIG. 3 by using the finite element method, and evaluated the effect of the thermal conductivity of the protective layer on the heat generation characteristics. FIG. 6 schematically shows the results. Figure 6(a) shows the protective layer thermal conductivity λ = 2 [W/mK], Figure 6(b) shows the thermal conductivity of the protective layer = 2 =
500 [W/mK], and shows the temperature distribution on the surface of the protective layer 5 at time t when the pulse in the figure is applied. As can be seen from this figure, when the thermal conductivity of the protective layer is high, a sufficient heat generation temperature cannot be obtained. That is, as the thermal conductivity of the protective layer increases, the thermal conductance in the area direction of the protective layer increases, and Joule heat diffuses in the area direction before the surface of the protective layer reaches a sufficient heat generation temperature. Although the surface of the protective layer is expected to have a high heat generation temperature at a very early stage, the amount of heat transferred to the media is small and does not result in color development. Therefore, it can be seen that the above-mentioned problem cannot be achieved as long as the protective layer is formed with a single thermal conductivity.

第2に考えられることは保護層のうち発熱抵抗体の真上
部分のみを高熱伝導率を有する層に置き換えることであ
る。即ち保護層面積方向への熱拡散を抑えようとするも
のである。しかしながらこの場合には、第7図に示すよ
うに発熱の立ち上がりは速くなり、発熱部の温度分布は
均一化するものと予想されるが、冷却特性は単一の低熱
伝導率保護層の場合と全く同じであり何ら改善は期待で
きない。
A second possibility is to replace only the portion of the protective layer directly above the heating resistor with a layer having high thermal conductivity. That is, the purpose is to suppress heat diffusion in the area direction of the protective layer. However, in this case, as shown in Figure 7, the rise in heat generation is expected to be faster and the temperature distribution in the heat generating part is expected to be more uniform, but the cooling characteristics are not the same as in the case of a single low thermal conductivity protective layer. It's exactly the same and no improvement can be expected.

そこで本発明者らは上述第2の構造に加えてさらに発熱
部の冷却特性を改良するため、高熱伝導率を有する部分
を保護層中の適切な位置に設けることを考案した。即ち
上述第2の方法によって、発熱立ち上がりを速やかにす
る、温度分布を均一化する、熱伝達効率を高めるという
改良がなされると同時に、保護層中の低熱伝導率部分を
発熱抵抗体上部の第1の高熱伝導率部分とではさむよう
に第2の高熱伝導率部分を形成する。この手段により印
字後も保護層中に残留する不要な熱を保護層の面積方向
へ速やかに拡散させることができ、冷却特性を著しく改
良することが可能となる。これらの方法により上記■■
■の課題はすべて達成されることになる。
Therefore, in addition to the second structure described above, the present inventors devised a method of providing a portion having high thermal conductivity at an appropriate position in the protective layer in order to further improve the cooling characteristics of the heat generating portion. That is, the above-mentioned second method makes improvements such as speeding up the rise of heat generation, making the temperature distribution uniform, and increasing heat transfer efficiency, and at the same time, the low thermal conductivity portion of the protective layer is transferred to the upper part of the heating resistor. A second high thermal conductivity portion is formed so as to be sandwiched between the first high thermal conductivity portion. By this means, unnecessary heat remaining in the protective layer even after printing can be quickly diffused in the area direction of the protective layer, making it possible to significantly improve cooling characteristics. By these methods, the above ■■
All of the tasks listed in ■ will be accomplished.

なお、第2の高熱伝導率部分の形成位置については印字
パルスのタイミングも含め、発熱部断面の熱伝導解析を
行うことにより最適な形成位置を特定することは全く可
能なことである。
As for the formation position of the second high thermal conductivity portion, it is completely possible to specify the optimum formation position by analyzing the heat conduction of the cross section of the heat generating part, including the timing of the printing pulse.

〔実施例〕〔Example〕

本発明の実施例を図面に基づき説明する。第1図は本発
明の実施例を示す図であり、保護層は熱伝導率λ、の第
1の部分5−1と、熱伝導率λ2の第2の部分5−2と
、熱伝導率λ、の第3の部分5−3とから構成されてお
り、λ1>λ2かつλ3>λ2である。発熱抵抗体3に
通電することにより発熱部7に発生したジュール熱は該
保護層5−1−内を伝導し速やかに該保護層5−1表面
へ伝わる。このとき該保護層5−2の熱伝導率λ2は該
保護層5−1の熱伝導率λ1よりも低いため、該発熱部
7に発生した熱の保護層面積方向への拡散は抑制され、
該保護層5−1の表面はパルス通電中、印字するに十分
な温度に保たれる。さらに、該保護層5−2中を伝導し
た熱が、パルス通電終了時に該保護層5−3に達するよ
うに形成されている。これによりパルス通電中に該保護
層5−1および5−2中に滞留していた熱はパルス通電
終了時以降速やかに該保護層5−3を通じて拡散するこ
とになり、該保護層5−1は急速に室温まで冷却し、該
発熱部7の冷却特性は大きく向上する。
Embodiments of the present invention will be described based on the drawings. FIG. 1 is a diagram showing an embodiment of the present invention, in which the protective layer includes a first portion 5-1 having a thermal conductivity of λ, a second portion 5-2 having a thermal conductivity of λ2, and a second portion 5-2 having a thermal conductivity of λ2. λ1>λ2 and λ3>λ2. Joule heat generated in the heat generating portion 7 by energizing the heat generating resistor 3 is conducted within the protective layer 5-1- and quickly transmitted to the surface of the protective layer 5-1. At this time, since the thermal conductivity λ2 of the protective layer 5-2 is lower than the thermal conductivity λ1 of the protective layer 5-1, diffusion of the heat generated in the heat generating portion 7 in the area direction of the protective layer is suppressed.
The surface of the protective layer 5-1 is maintained at a temperature sufficient for printing during pulse energization. Further, the protective layer 5-2 is formed so that the heat conducted through the protective layer 5-2 reaches the protective layer 5-3 at the end of pulse energization. As a result, the heat accumulated in the protective layers 5-1 and 5-2 during pulse energization is quickly diffused through the protective layer 5-3 after the pulse energization ends. is rapidly cooled down to room temperature, and the cooling characteristics of the heat generating section 7 are greatly improved.

以上の作用を図示したのが第2図である。第2図に示す
ように、第1図の実施例により発熱部の発熱−冷却特性
が大きく改善され、理想的プロファイルである矩形に近
づくことがわかる。
FIG. 2 illustrates the above action. As shown in FIG. 2, it can be seen that the embodiment shown in FIG. 1 greatly improves the heat generation-cooling characteristics of the heat generating portion, approaching the ideal profile of a rectangle.

第9図に本発明の第2の実施例を示す。第9図の例では
従来通りに形成された低熱伝導率λ2を有する保護層5
の上層に、発熱部7の上部の熱伝導率λ1の保護層5−
1と該保護層5−1を挟む位置に形成された熱伝導率λ
3の保護層5−3を有している。ここてλ1 >λ2、
λ3>λ2てあり、該保護層5−3の形成位置は第7図
における形成位置と同様である。本実施例では発熱特性
改善のための高熱伝導率保護層5−1は該保護層5の上
部に形成されるため発熱特性は第1図の例に比べ若干劣
化するが、λ1〉>λ2とすることにより影響はほとん
ど無視てきる。また冷却特性は第1図実施例と全く同様
であり、発熱−冷却特性はやはり第2図のように大きく
改善される。さらに本実施例では電極4の断差に起因す
る該保護層5表面の断差が該保護層5−1により平坦化
されるため、感熱紙・熱転写インクシートなどのメディ
アとの圧接状態も改善され、熱伝達効率も大幅に向上す
るという優れた効果をも合わせもつことになる。
FIG. 9 shows a second embodiment of the invention. In the example of FIG. 9, the protective layer 5 having a low thermal conductivity λ2 formed in a conventional manner
A protective layer 5- with a thermal conductivity of λ1 above the heat generating part 7
1 and the thermal conductivity λ formed at the position sandwiching the protective layer 5-1.
It has three protective layers 5-3. Here λ1 > λ2,
λ3>λ2, and the formation position of the protective layer 5-3 is the same as that in FIG. In this example, the high thermal conductivity protective layer 5-1 for improving heat generation characteristics is formed on the top of the protective layer 5, so the heat generation characteristics are slightly deteriorated compared to the example shown in FIG. 1, but λ1>>λ2. By doing so, the impact can be almost ignored. Further, the cooling characteristics are exactly the same as those of the embodiment shown in FIG. 1, and the heat generation-cooling characteristics are greatly improved as shown in FIG. Furthermore, in this embodiment, the difference in the surface of the protective layer 5 caused by the difference in the electrode 4 is flattened by the protective layer 5-1, so the pressure contact condition with media such as thermal paper and thermal transfer ink sheets is also improved. It also has the excellent effect of significantly improving heat transfer efficiency.

なお、本発明においてはλ1〉>λ2、λ3〉>λ2と
することにより発熱−冷却特性の改善効果はより増大す
る。また、λ1=λ3とする、即ち保護層5−1と保護
層5−3とを同一材料で形成すれば製造工程上簡略化が
図れる。
In the present invention, by setting λ1>>λ2 and λ3>>λ2, the effect of improving heat generation-cooling characteristics is further increased. Moreover, if λ1=λ3, that is, the protective layer 5-1 and the protective layer 5-3 are formed of the same material, the manufacturing process can be simplified.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、本発明によればサーマルヘッド発熱
部の発熱−冷却特性を理想的プロファイルである矩形に
近づけることができ、かつ発熱部の発熱温度分布も均一
化することができるため、印字ドツト形状を矩形に近く
改善し、印字品質の大幅な向上を図ることが可能となる
。また、発熱効率も改善されることからサーマルヘッド
の消費電力を低くすることができ、さらに冷却特性が改
善されることから、従来発熱部の蓄熱のため大きな制約
を受けていた印字スピードの高速化をももたらすことが
可能となる。
As described above, according to the present invention, the heat generation-cooling characteristics of the thermal head heat generating section can be brought close to the ideal rectangular profile, and the heat generation temperature distribution of the heat generating section can also be made uniform, so that printing It is possible to improve the dot shape to a nearly rectangular shape and significantly improve print quality. In addition, heat generation efficiency is improved, making it possible to lower the power consumption of the thermal head.Furthermore, the cooling characteristics are improved, increasing printing speed, which was previously subject to major limitations due to heat accumulation in the heat generating part. It is also possible to bring about

【図面の簡単な説明】[Brief explanation of the drawing]

第1および第9図は本発明の実施例を示す断面図であり
、第2図は実施例における発熱−冷却特性を示す説明図
である。 第3図は従来のサーマルヘッド発熱部の一般的構造を示
す断面図、第4図は発熱部の温度分布を示す説明図、第
5図は印字ドツト形状を示す説明図である。 第6 (a)(b)図は従来の構造において保護層の熱
伝導率が異なる場合の発熱温度分布を示す説明図であり
、第7図はサーマルヘッド発熱部の発熱−冷却特性を示
す説明図、第8図は発熱部直上のみに高熱伝導率保護層
を形成した場合の特性を示す説明図である。 1 ・ ・ 21 3 ・ ・ 4 ・ ・ 5、5 6 拳 争 7 ・ ・ 8 ・ ・ ・絶縁性基板 ・グレーズ層 ・発熱抵抗体 ・電極 1.5−2.5 ・保護層 ・印字メディア ・発熱部中央 ・保護層表面中央
1 and 9 are sectional views showing an embodiment of the present invention, and FIG. 2 is an explanatory diagram showing heat generation-cooling characteristics in the embodiment. FIG. 3 is a sectional view showing the general structure of a conventional thermal head heat generating section, FIG. 4 is an explanatory drawing showing the temperature distribution of the heat generating section, and FIG. 5 is an explanatory drawing showing the shape of printed dots. 6(a) and 6(b) are explanatory diagrams showing the heat generation temperature distribution when the thermal conductivity of the protective layer is different in the conventional structure, and FIG. 7 is an explanatory diagram showing the heat generation-cooling characteristics of the heat generating part of the thermal head. 8 are explanatory diagrams showing the characteristics when a high thermal conductivity protective layer is formed only directly above the heat generating part. 1 ・ ・ 21 3 ・ ・ 4 ・ ・ 5, 5 6 Fight 7 ・ ・ 8 ・ ・ ・Insulating substrate, glaze layer, heating resistor, electrode 1.5-2.5 ・Protective layer, printing media, heat generation Center of section/center of protective layer surface

Claims (1)

【特許請求の範囲】[Claims] 絶縁性基板、グレーズ層、発熱抵抗体、該発熱抵抗体に
通電するための電極、該電極を含む発熱抵抗体を覆うよ
うに形成された保護層とからなるサーマルヘッドにおい
て、前記発熱抵抗体の真上に形成され、少なくとも前記
発熱抵抗体を覆うべき熱伝導率λ_1を有する第1の部
分と、該第1の部分の両側に前記発熱抵抗体の配列方向
と平行に形成される熱伝導率λ_2を有する第2の部分
と、前記第1および第2の部分をはさみ、かつ該発熱抵
抗体の配列方向と平行に形成される熱伝導率λ_3を有
する第3の部分とから少なくとも形成される保護層を有
するとともに、前記保護層の熱伝導率がλ_1>λ_2
かつλ_3>λ_2であることを特徴とするサーマルヘ
ッド。
In a thermal head comprising an insulating substrate, a glaze layer, a heating resistor, an electrode for energizing the heating resistor, and a protective layer formed to cover the heating resistor including the electrode, a first portion formed directly above and having a thermal conductivity λ_1 that should cover at least the heating resistor; and a thermal conductivity formed on both sides of the first portion in parallel to the arrangement direction of the heating resistor. A third portion sandwiching the first and second portions and having a thermal conductivity of λ_3 is formed in parallel to the arrangement direction of the heating resistors. has a protective layer, and the thermal conductivity of the protective layer is λ_1>λ_2
A thermal head characterized in that λ_3>λ_2.
JP9287790A 1990-04-06 1990-04-06 Thermal head Expired - Fee Related JP2651496B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9287790A JP2651496B2 (en) 1990-04-06 1990-04-06 Thermal head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9287790A JP2651496B2 (en) 1990-04-06 1990-04-06 Thermal head

Publications (2)

Publication Number Publication Date
JPH03290268A true JPH03290268A (en) 1991-12-19
JP2651496B2 JP2651496B2 (en) 1997-09-10

Family

ID=14066680

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9287790A Expired - Fee Related JP2651496B2 (en) 1990-04-06 1990-04-06 Thermal head

Country Status (1)

Country Link
JP (1) JP2651496B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995032866A1 (en) * 1994-05-31 1995-12-07 Rohm Co., Ltd. Thermal printing head, substrate used therefor and method for producing the substrate
WO1995035213A1 (en) * 1994-06-21 1995-12-28 Rohm Co., Ltd. Thermal printing head, substrate used therefor and method for producing the substrate
EP1130444A2 (en) * 2000-01-28 2001-09-05 Hewlett-Packard Company Resistor array with position dependent heat dissipation
CN1108930C (en) * 1997-11-26 2003-05-21 罗姆股份有限公司 Thermal print head and method of manufacturing the same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995032866A1 (en) * 1994-05-31 1995-12-07 Rohm Co., Ltd. Thermal printing head, substrate used therefor and method for producing the substrate
US5940109A (en) * 1994-05-31 1999-08-17 Rohm Co. Ltd. Thermal printhead, substrate for the same and method for making the substrate
CN1086639C (en) * 1994-05-31 2002-06-26 罗姆股份有限公司 Thermal printing head, substrate used thereof and method for producing the substrate
WO1995035213A1 (en) * 1994-06-21 1995-12-28 Rohm Co., Ltd. Thermal printing head, substrate used therefor and method for producing the substrate
US5949465A (en) * 1994-06-21 1999-09-07 Rohm Co., Ltd. Thermal printhead, substrate for the same and method for making the substrate
CN1086640C (en) * 1994-06-21 2002-06-26 罗姆股份有限公司 Thermal printing head, substrate used thereof and method for producing the substrate
CN1108930C (en) * 1997-11-26 2003-05-21 罗姆股份有限公司 Thermal print head and method of manufacturing the same
EP1130444A2 (en) * 2000-01-28 2001-09-05 Hewlett-Packard Company Resistor array with position dependent heat dissipation
EP1130444A3 (en) * 2000-01-28 2002-07-10 Hewlett-Packard Company Resistor array with position dependent heat dissipation
US6549690B2 (en) * 2000-01-28 2003-04-15 Hewlett-Packard Development Company, L.P. Resistor array with position dependent heat dissipation

Also Published As

Publication number Publication date
JP2651496B2 (en) 1997-09-10

Similar Documents

Publication Publication Date Title
JPH03290268A (en) Thermal head
JP4668637B2 (en) Thermal head and manufacturing method thereof
JPS61158474A (en) Thermal head
JP3263120B2 (en) Thermal head
JP2001062984A (en) Apparatus for thermal plate-making
JP2552560Y2 (en) Thermal head
JP2951178B2 (en) Structure of line type thermal print head
JPH0542698A (en) Thermal head and preparation thereof
JP2526911Y2 (en) Thermal head
JPH07205462A (en) Thermal record head
JPH0611797Y2 (en) Thick film thermal head
JPS6382763A (en) Thermal transfer recorder
JPH0579512B2 (en)
JPH0416361A (en) Thermal head
JPH0624023A (en) Thermal head
JPS6151356A (en) Direct heating type sublimation transfer image recording system
JPH0776117A (en) Thermal head
JPS62227656A (en) Thermal head
JP3038944B2 (en) Thick film type thermal head
JPS6016355B2 (en) Thin film thermal head
JPH0880628A (en) Thermal head
JPS6347159A (en) Thermal head
JPH04226766A (en) Thermal head
JPH01229658A (en) Edge type thermal head and its manufacture
JPH02270570A (en) Thermally sensitive recording head

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees