JPH0329020B2 - - Google Patents

Info

Publication number
JPH0329020B2
JPH0329020B2 JP61022975A JP2297586A JPH0329020B2 JP H0329020 B2 JPH0329020 B2 JP H0329020B2 JP 61022975 A JP61022975 A JP 61022975A JP 2297586 A JP2297586 A JP 2297586A JP H0329020 B2 JPH0329020 B2 JP H0329020B2
Authority
JP
Japan
Prior art keywords
calcia
sintered body
zro
less
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61022975A
Other languages
Japanese (ja)
Other versions
JPS62182154A (en
Inventor
Kunio Matsui
Takao Fukuda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Nihon Kagaku Kogyo KK
Original Assignee
Shin Nihon Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Nihon Kagaku Kogyo KK filed Critical Shin Nihon Kagaku Kogyo KK
Priority to JP61022975A priority Critical patent/JPS62182154A/en
Publication of JPS62182154A publication Critical patent/JPS62182154A/en
Publication of JPH0329020B2 publication Critical patent/JPH0329020B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は製鋼炉用耐火物の原料に適する高純
度、高密度かつ耐消化性に優れるカルシア焼結体
およびその製造法に関する。 従来の技術 近年、製鋼業ではますます鋼の高級化や連続鋳
造等、操業の合理化への志向が強まり、転炉や取
鍋の高温化、あるいは取鍋製錬法の導入が行なわ
れている。そのため転炉や取鍋製錬炉に使用され
る耐火物に対して従来用いられてきた。マグネシ
ア・カーボン質、マグネシア・クロム質、ハイア
ルミナ質、ジルコニア質耐火物よりもより苛酷な
条件に耐えるものが望まれている。 塩基性耐火物材料として、カルシアは融点が
2580℃と高く、耐熱衝撃性、耐スラグ侵食性が高
く、また鋼中介在物のAl2O3を吸収するなど優れ
た性質を持つている。我国では資源的にも恵まれ
ていることから、製鋼炉用耐火物として大いに期
待されている。それにも関わらず、カルシア質耐
火物はまだ本格的に実用化されていない。その大
きな理由は耐火物の原料となるカルシアクリンカ
ー(カルシア焼結体をカルシアクリンカーと呼
ぶ)は、水に耐する耐消化性が低く、取扱い、貯
蔵あるいは煉瓦製造に難点があること、および高
密度焼結体が得られいないため、耐スラグ性、お
よび強度に問題があることなどである。従つてカ
ルシア質耐火物を工業的に利用するには、カルシ
アクリンカーの耐消化性と嵩密度の改善が大きな
課題である。耐消化性と嵩密度とは密接な関係が
あり、嵩密度を高めることにより耐消化性も改善
される。それ故、嵩密度を高めることは耐消化性
を高める上で重要な要件の1つである。 密度を高めることの他に、カルシアクリンカー
の耐消化性を改善する方法として、種々の方法が
提案されている。たとえば、石灰質原料に
Fe2O32〜10重量%、MgO1〜5重量%、SiO22重
量%以下になる様に、各成分を添加調合して、こ
の原料を加圧成形した後に1350〜1650℃で焼成す
る方法(特開昭55−95614号公報)周期律表第
族または第族元素の化合物の1種と弗化カルシ
ウムをあわせて添加する方法(特開昭56−14457
号公報)CaOまたはCaOとMgOを主成分とし、
Fe2O30.4〜1.2重量%、TiO20.1〜0.5重量%、
SiO21.5重量%以下、Al2O31.0重量%以下を含み、
かつFe2O3、TiO2、SiO2、Al2O3の合量が0.5〜3
重量%とする方法(特開昭59−35060号公報)な
どがある。これらはCaOに一定の不純物を添加す
ることによつて、CaOの焼結温度を下げ、緻密化
を促進し、CaO結晶の表面を低融点化合物で覆う
ことにより、耐消化性を得ようとする方法であ
る。また、高純度でかつ微細な一定粒度の消石灰
を出発原料とし、1800℃以上の高温度で焼成する
ことによつて、高い耐消化性を有するカルシア焼
結体を得る方法(特開昭60−51658号公報)が提
案されている。 発明が解決しようとする問題点 上記方法において、CaOにCaOと低融点化合物
を形成する添加物を多量に添加することは、熱間
強度および高温安定性の低下を招くため、耐消化
性の改善には効果があるものの、カルシア質耐火
物の本来の優れた特性を劣化させる欠点を有す
る。また特開昭60−51658号公報の高純度微粒消
石灰を高温焼成する方法は焼成温度が1800℃以上
と高く、多量のエネルギーを必要とするのにも関
わらず、得られるカルシア焼結体の嵩密度は相対
密度で90〜93%であり、全気孔率が7〜10%であ
る。これは通常製鋼炉用耐火物の原料として使用
されているマグネシアクリンカーの相対密度(97
%)と比べてかなり低レベルであり、耐スラグ性
や強度の点で好ましくない。また、この様な密度
では高い耐消化性は期待できない。 カルシアクリンカーには高純度かつ高い耐消化
性が望まれており、また嵩密度についても耐消化
だけでなく、耐スラグ、強度の点からマグネシア
クリンカーと同等またはそれ以上の水準のものが
要望されている。 本発明の目的は、耐消化性に優れ、かつ高密
度、高純度なカルシア焼結体、およびその製造方
法を提供することにある。 問題点を解決するための手段 本発明者らは、カルシアの焼結に与える添加物
の影響、および得られたカルシア焼結体の構造と
耐消化性を中心に研究を重ねた結果、少量の
Al2O3とZrO2を共存させて焼結すると、従来得ら
れなかつた高密度かつ大結晶を有するカルシア焼
結体が得られることを見出した。さらにこの焼結
体は従来のものに比べ、非常に耐消化性に優れる
ことを見出し、その製造法を確立した。そして、
その構成は特許請求の範囲に記載のとおりであ
る。 本発明のカルシア焼結体の純度は発明の目的か
らしてCaOで97.5重量%以上とする。嵩密度は
3.20g/c.c.以上、好ましくは3.26g/c.c.以上が要
求され、かつカルシア結晶の平均径は60μm以
上、好ましくは80μm以上でなくてはならない。
嵩密度とカルシア結晶の平均径が上記範囲に同時
に満足されなければ、高い耐消化性、高い耐スラ
グ侵蝕性、および強度は得られない。 本発明のカルシア焼結体は、灼熱基準で
Al2O30.05重量%以上0.5重量%以下、ZrO20.1重
量%以上、1.0重量%以下を含有し、好ましくは
Al2O30.1重量%を越えて、0.2重量%以下、
ZrO20.1重量%以上、0.5重量%未満を含有する。
灼熱基準でAl2O3が0.5重量%を越えても、嵩密
度、カルシア結晶の粒径に及ぼす効果は飽和し、
また耐消化性についても変化しない。しかしなが
ら、Al2O3はCaOと反応して、1400℃付近でCaO
−Al2O3系の液相を形成するため、強度および耐
火度の低下を招くので、0.5重量%を上限とする。
下限は灼熱基準でAl2O30.05重量%であり、それ
よりAl2O3が少ないと平均粒径60μm以上のカル
シア結晶は得られない。灼熱基準でZrO2が1.0重
量%を越えるとZrO2のカルシア結晶に対する粒
径抑制作用により、平均粒径60μm以上のカルシ
ア結晶は得られない。灼熱基準でZrO2が0.1重量
%より少ないと、嵩密度3.20g/c.c.以上の高密度
焼結体は得られない。また、カルシア焼結体の嵩
密度およびカルシア結晶の平均粒径に与える
Al2O3、ZrO2の効果は、両者が共存して初めて作
用するものであり、上記組成範囲をAl2O3、ZrO2
のいずれか一方がはずれても、嵩密度3.20g/c.c.
以上、カルシア結晶の平均粒径が60μm以上、お
よび充分な強度を持つたカルシア焼結体は得られ
ない。灼熱基準で、Al2O3が0.1重量%を越えて
0.3重量%以下、かつ、ZrO2が0.1重量%以上、0.5
重量%未満の時、得られるカルシア焼結体は、さ
らに高密度になり、カルシア結晶の平均粒径も大
きくなる。 従来、カルシアクリンカー焼成の際にAl2O3
焼結助剤、および消化防止剤として有効であると
考えられているが、本発明者らにより、Al2O3
1200℃付近から焼結に有害なCaO粒子の粒成長を
促進するために、結果として相対密度97%を越え
る様な高密度領域ではむしろ密度を下げる方向に
働くことが見出された。さらに、本発明者らによ
りZrO2はCaOと低融点化合物を形成せず、かつ
カルシア粒子およびカルシア結晶の粒成長を抑制
するためにZrO2を添加焼成したカルシア焼結体
は、非常に高密度になることが見出された。ただ
し、この時カルシア結晶の平均粒径は小さくな
り、高い耐消化性は得られない。本発明者らは以
上の様に全く異なる効果を発揮するAl2O3とZrO2
を同時に添加して焼成することにより、従来見ら
れなかつた高密度かつ大結晶を有するカルシア焼
結体が得られることを見出した。 カルシア焼結体の高密度化と大結晶化が、同時
に達成される理由として、CaOが緻密化する温度
付近でZrO2が緻密化に有害な粒成長、およびネ
ツク形成を抑制し、緻密化以後の高い温度領域で
はCaO−Al2O3系の液相、またはCaO−Al2O3
ZrO2系の液相が微量生成し、カルシア結晶の成
長を促進するものと推定される。第1図および第
2図に焼成温度によるカルシア結晶の粒子径、お
よび嵩密度に及ぼすAl2O3、ZrO2の影響を示し
た。 第1図はAl2O3およびZrO2を含むカルシア焼結
体におけるカルシア結晶の平均粒子径と焼成温度
およびAl2O3およびZrO2の含有量との関係を示し
たグラフである。 第2図は同じ試料における各焼成温度と嵩密度
の関係を示すグラフである。 これらのグラフに画かれた線はそれぞれAl2O3
およびZrO2を下記のとおり含有している試料に
ついて上記関係を示したものである。なお、下記
の(%)は重量基準である。 線 Al2O3(%) ZrO2(%) 実線10.02 − 実線20.02 0.2 点線30.06 − 点線40.06 0.2 この図からカルシア焼結体中にAl2O3とZrO2
同時に、かつ微量存在して初めて、本発明による
高密度かつ大結晶を有するカルシア焼結体が得ら
れることが明らかである。 本発明によるカルシア焼結体は、組成が灼熱基
準で、重量%で表わして、 CaO 97.5以上 Al2O3 0.05以上0.5以下 ZrO2 0.1以上1.0以下 および残部が不可避の不純物からなる様に (a) 44μm以下の粒子が98重量%以上を占め、か
つCO2含有量がCa(OH)2基準で5.0重量%以下
の水酸化カルシウム (b) Al2O3または熱分解してAl2O3となるアルミ
ニウム化合物 (c) ZrO2または熱分解してZrO2となるジルコニ
ウム化合物を混合することにより、組成調整を
した原料をそのままで、あるいは加圧して成形
体とした後に、1500℃以上で焼成することによ
り製造することができる。 原料の1つである水酸化カルシウムは44μm以
下の粒子が98重量%以上を占めなければならな
い。この様な水酸化カルシウムは、石灰石または
合成炭酸カルシウム等を仮焼して得た生石灰を水
中、好ましくは温水中で消和して、得られたスラ
リーを湿式篩分あるいは液体サイクロン等を用い
て分級することにより得られる。44μm以上の粒
子は焼結に有害であり、高密度焼結体を得るため
には、この様な粒子は除かなくてはならない。さ
らに生石灰は不純物としてSiO2、Al2O3、MgO、
Fe2O3、CaCO3等を多量に含有する場合が多い
が、上記操作により、これら不純物を多量に除去
することが可能である。本発明によるカルシア焼
結体はCaOを97.5重量%以上、好ましくは98.0重
量%以上含有するが、この様な組成を得るために
は水酸化カルシウムの純度は灼熱基準でCaOとし
て99重量%以上でなければならない。さらに水酸
化カルシウムはCO2含有量がCa(OH)2基準で5.0
重量%以下でなければならない。水酸化カルシウ
ムのCO2含有量が5.0重量%を越えると、嵩密度
3.20g/c.c.以上の高密度カルシア焼結体は得られ
ない。これは、水酸化カルシウム中ではCO2
CaCO3として含有され、焼成時に900℃付近で分
解が起こり、CO2ガスの発生と体積収縮により空
隙が形成されるためと推定される。水酸化カルシ
ウムは容易に空気中のCO2と反応し、またこの様
にして生成したCaCO3は分級により除去するこ
とが困難なため、注意が必要である。 本発明において用いられるアルミニウムおよび
ジルコニウム化合物は、酸化物もしくは熱分解し
て酸化物となる化合物でなくてはならない。すな
わち、アルミニウム化合物としては、Al2O3、Al
(OH)3、AlCl3、Al(NO33、Al2(SO43等であ
り、ジルコニウム化合物としては、ZrO2
ZrOCl2、酢酸ジルコニル、硝酸ジルコニル、炭
酸ジルコニル等である。使用する化合物は、市販
されている工業用薬品でもよいが、純度が高いこ
と、粉末のものは微粒であることが望ましい。通
常、消石灰は前述のように不純物として、Al2O3
が含有し、分級精製した消石灰においても本発明
において規定されるAl2O3含量が達成されること
もあり得る。この様な場合はジルコニウム化合物
のみを混合する。 本発明において焼成に至るまでの製造工程とし
て原料スラリーを濾過した後に得られたケーキ
を、 (1)直接焼成する (2)乾燥した後に、加圧成形をして焼成する (3)仮焼した後に加圧成形をして焼成する の3つの工程のうち、いずれか1つをとることが
できる。いずれの工程においても、水酸化カルシ
ウムとアルミニウム化合物とジルコニウム化合物
の混合は十分均一に混合されることが望ましく、
水酸化カルシウムスラリー中での撹拌による混
合、濾過ケーキ中での混練による混合等が好まし
い。(2)の工程をとる場合は、水酸化カルシウムス
ラリーを濾過、乾燥した後に乾式で混合すること
も可能である。また(3)の工程をとる場合には水酸
化カルシウムを仮焼して酸化カルシウムとした後
に、混合を行つても何等差し支えない。ただしこ
の場合には用いるアルミニウムおよびジルコニウ
ム化合物は酸化物であることが望ましい。上記い
ずれの工程においても濾過は通常用いられる濾過
機、たとえば真空濾過機、加圧濾過機等を使用す
ることができる。 (2)の工程をとる場合には、乾燥工程が必要であ
り、通常用いられる乾燥機を用いることができ
る。ただし、乾燥に化石燃料燃焼ガスを用いる場
合は、CO2の吸収はCa(OH)2基準で5.0重量%以
下に押されることが必要である。CO2の吸収がな
い点で空気雰囲気下の乾燥が望ましい。また、乾
燥により水分はCa(OH)2基準で10重量%以下に
することが、高密度焼結体を得る上で望ましい。
さらにこれらの工程で得られた乾燥物はボールミ
ル、ヘンシエルミキサー等を用いて粉砕すること
が、次に良い成形体を得る上で望ましい。 (2)および(3)の工程において成形は1t/cm2程度の
加圧下で行なわれる。成形機は通常用いられるブ
リケツトマシン等を用いることができる。 (3)の工程における仮焼は600℃〜1000℃の間で
行わなくてはならない。600℃より低い温度では
仮焼の効果が小さく、1000℃より高温になると比
表面積の低下により、焼結性が低下する。ここで
行なわれる仮焼は通常用いられる軽焼炉、ロータ
リーキルン等を使用することができるが、この工
程においてもCO2の吸収は可能な限り低く押える
ことが必要であり、CO2分圧の低い、特に空気雰
囲気下で行うことが好ましい。 以上の様にして得られた濾過ケーキ、乾燥成形
体、あるいは仮焼成型体は次に1500℃以上の温
度、好ましくは1650℃以上の温度で焼成されなけ
ればならない。この温度により、焼結が充分に進
み、高嵩密度、大結晶を有するカルシア焼結体が
得られる。1500℃より低い温度ではカルシア結晶
の発達が不十分であり、高い耐消化性は得られな
い。焼成は通常マグネシアクリンカーを焼成する
際に用いられる焼成炉を使用することができ、た
とえばロータリーキルン等が使用される。この場
合重油等の燃料を用いるため、炉内の雰囲気は空
気雰囲気と異なり、CO2およびH2O分圧の高い雰
囲気となる。この様な雰囲気下での焼成は本発明
の組成とすることで易焼結性となるため、何等差
し支えないけれども、できればCO2分圧の低い、
空気雰囲気下で焼成することが好ましい。 本発明者らによればCO2分圧の高い雰囲気下で
焼成を行うことにより、水酸化カルシウムケーキ
または成形体の表面付近では比較的低温で起こる
CaCO3の生成と900℃付近で起こるCaCO3の分解
という2つの過程を経る結果、得られるカルシア
焼結体は気孔が多く、嵩密度も低いものになるこ
とが見出された。また、これらCO2によるCaCO3
の生成は水酸化カルシウムを仮焼して、酸化カル
シウムにすることにより、大幅に低減できること
も明らかにされた。従つてCO2分圧の高い雰囲気
下で焼成を行う場合は、上記工程のうち、(3)の仮
焼成形工程をとることが望ましい。 次に本発明の実施例および比較例を挙げ、具体
的に説明する。なお本発明における種々の測定法
は下記の通りである。 (1) 嵩密度 日本学術振興会第124委員会で提案された学
振法2「マグネシアクリンカー見掛け気孔率、
見掛け比重および嵩比重の測定方法に準じて測
定した。 (2) 平均結晶径 Fullman法(J.of.Metals 447 1953)によつ
た。すなわち研磨面を撮影した写真上で任意に
直線を引き、粒界によつて切り取られる線分の
長さの平均値を1.5倍した値を平均径粒とした。
なお測定にあたつてはクリンカー粒を5個以上
選び、各々の紙片につき、100個以上の結晶を
測定した。 (3) 化学組成 日本学術振興会第124委員会で提案された学
振法1「マグネシアクリンカーの化学分析法」
に準じて測定した。 (4)重量増加率 耐消化性の目安として、2.00〜4.47mmに分級し
たカルシア焼結体を相対湿度65%、気温20℃の空
気中に2週間静置して重量増加を測定して、もと
の重量に対する増加量を%で表示した。 (5) 水酸化カルシウム粒度 水スラリーを篩を用いて分級して、篩上に残
つた水酸化カルシウムの重量から求めた。 実施例 実施例1〜3、比較例1〜4 生石灰を純水中60℃の温水で消和した後に分級
して、第1表に示す化学組成および粒度を有する
水酸化カルシウムを得た。これにAl2O3、ZrO2
スラリー中で所定量添加混合した。ここでAl2O3
は高純度γ−Al2O3粉末、ZrO2は酢酸ジルコニル
溶液(試薬)として添加混合した。得られた混合
スラリーを濾過、乾燥、粉砕した後、1t/cm2の加
圧下で成形した。これら成形体を破砕して3.66〜
5.66mmの粒度に調整して、空気雰囲気下で1650℃
で焼成した。冷却して得られたカルシア焼結体の
物性を第2表に示す。
INDUSTRIAL APPLICATION FIELD The present invention relates to a calcia sintered body having high purity, high density and excellent digestion resistance and suitable as a raw material for refractories for steelmaking furnaces, and a method for producing the same. Conventional technology In recent years, there has been a growing trend in the steel manufacturing industry towards streamlining operations, such as using higher quality steel and continuous casting, leading to the introduction of higher temperatures in converters and ladles, and the introduction of ladle smelting methods. . Therefore, it has been conventionally used for refractories used in converters and ladle smelting furnaces. Refractories that can withstand harsher conditions than magnesia-carbon, magnesia-chromium, high-alumina, and zirconia refractories are desired. As a basic refractory material, calcia has a melting point of
At a high temperature of 2580℃, it has excellent properties such as high thermal shock resistance and slag erosion resistance, as well as the ability to absorb Al 2 O 3 inclusions in steel. Since our country is rich in resources, it is highly anticipated as a refractory for steelmaking furnaces. Despite this, calcia refractories have not yet been put into full-scale practical use. The main reasons for this are that calcia clinker (calcia sintered compacts are called calcia clinker), which is the raw material for refractories, has low water and digestion resistance, is difficult to handle, store, and manufacture bricks, and has a high density. Since a sintered body cannot be obtained, there are problems with slag resistance and strength. Therefore, in order to utilize calcia refractories industrially, improving the digestion resistance and bulk density of calcia clinker is a major issue. There is a close relationship between digestibility and bulk density, and increasing bulk density also improves digestibility. Therefore, increasing the bulk density is one of the important requirements for increasing the digestion resistance. In addition to increasing the density, various methods have been proposed to improve the digestibility of calcia clinker. For example, calcareous raw materials
Each component is added and mixed so that Fe 2 O 3 is 2 to 10% by weight, MgO is 1 to 5% by weight, and SiO 2 is 2% by weight or less. After this raw material is pressure molded, it is fired at 1350 to 1650°C. Method (Japanese Unexamined Patent Publication No. 55-95614) A method of adding calcium fluoride together with one of the compounds of Group 1 or Group 3 elements of the periodic table (Japanese Unexamined Patent Publication No. 56-14457)
Publication) CaO or CaO and MgO are the main components,
Fe2O3 0.4-1.2 % by weight, TiO2 0.1-0.5% by weight,
Contains SiO 2 1.5% by weight or less, Al 2 O 3 1.0% by weight or less,
and the total amount of Fe 2 O 3 , TiO 2 , SiO 2 , Al 2 O 3 is 0.5 to 3
There is a method of expressing it as weight % (Japanese Unexamined Patent Publication No. 59-35060). These methods attempt to obtain digestion resistance by adding certain impurities to CaO to lower the sintering temperature of CaO, promoting densification, and covering the surface of CaO crystals with low-melting compounds. It's a method. In addition, a method for obtaining a calcia sintered body with high digestion resistance by using slaked lime of high purity and a constant fine particle size as a starting material and firing it at a high temperature of 1800°C or higher (Japanese Patent Application Laid-Open No. 1989-1999- 51658) has been proposed. Problems to be Solved by the Invention In the above method, adding a large amount of an additive that forms a low melting point compound with CaO to CaO leads to a decrease in hot strength and high temperature stability. Although effective, it has the disadvantage of deteriorating the originally excellent properties of calcia refractories. Furthermore, the method disclosed in JP-A No. 60-51658, in which high-purity fine slaked lime is fired at a high temperature, has a high firing temperature of 1800°C or higher and requires a large amount of energy. The relative density is 90-93%, and the total porosity is 7-10%. This is the relative density (97
%), which is unfavorable in terms of slag resistance and strength. Furthermore, high digestion resistance cannot be expected at such a density. Calcia clinker is desired to have high purity and high digestion resistance, and it is also desired that the bulk density is equivalent to or higher than magnesia clinker in terms of not only digestion resistance but also slag resistance and strength. There is. An object of the present invention is to provide a calcia sintered body that has excellent digestion resistance, high density, and high purity, and a method for producing the same. Means for Solving the Problems As a result of repeated research focusing on the effects of additives on calcia sintering and the structure and digestion resistance of the obtained calcia sintered bodies, the present inventors found that
We have discovered that by sintering Al 2 O 3 and ZrO 2 in the coexistence, a calcia sintered body with high density and large crystals, which could not be obtained conventionally, can be obtained. Furthermore, they discovered that this sintered body has much better resistance to digestion than conventional sintered bodies, and established a method for producing it. and,
Its structure is as described in the claims. For the purpose of the invention, the purity of the calcia sintered body of the present invention is set to be 97.5% by weight or more as CaO. The bulk density is
3.20 g/cc or more, preferably 3.26 g/cc or more is required, and the average diameter of calcia crystals must be 60 μm or more, preferably 80 μm or more.
Unless the bulk density and the average diameter of calcia crystals are simultaneously satisfied within the above ranges, high digestion resistance, high slag corrosion resistance, and strength cannot be obtained. The calcia sintered body of the present invention is
Contains Al 2 O 3 0.05% by weight or more and 0.5% by weight or less, ZrO 2 0.1% by weight or more and 1.0% by weight or less, preferably
Al 2 O 3 more than 0.1% by weight and less than 0.2% by weight,
Contains ZrO 2 0.1% by weight or more and less than 0.5% by weight.
Even if Al 2 O 3 exceeds 0.5% by weight based on scorching heat, the effect on bulk density and grain size of calcia crystals is saturated;
There is also no change in digestion resistance. However, Al 2 O 3 reacts with CaO and forms CaO at around 1400℃.
- Formation of an Al 2 O 3 -based liquid phase leads to a decrease in strength and fire resistance, so the upper limit is set at 0.5% by weight.
The lower limit is 0.05% by weight of Al 2 O 3 based on scorching heat, and if Al 2 O 3 is less than that, calcia crystals with an average grain size of 60 μm or more cannot be obtained. If ZrO 2 exceeds 1.0% by weight on a scorching heat basis, calcia crystals with an average particle size of 60 μm or more cannot be obtained due to the grain size suppressing effect of ZrO 2 on calcia crystals. If ZrO 2 is less than 0.1% by weight on a sintering basis, a high-density sintered body with a bulk density of 3.20 g/cc or more cannot be obtained. In addition, the effect on the bulk density of the calcia sintered body and the average grain size of the calcia crystals is
The effects of Al 2 O 3 and ZrO 2 only work when both coexist, and the above composition range is limited to Al 2 O 3 and ZrO 2
Even if either one of them comes off, the bulk density is 3.20g/cc.
As described above, a calcia sintered body having an average grain size of calcia crystals of 60 μm or more and sufficient strength cannot be obtained. Al 2 O 3 exceeds 0.1% by weight on scorching heat basis
0.3% by weight or less, and ZrO 2 is 0.1% by weight or more, 0.5
When the amount is less than % by weight, the obtained calcia sintered body has a higher density and the average grain size of the calcia crystals becomes larger. Conventionally, Al 2 O 3 has been considered to be effective as a sintering aid and anti-digestion agent during calcia clinker firing, but the present inventors have found that Al 2 O 3
It was found that in order to promote the grain growth of CaO particles, which are harmful to sintering, from around 1200°C, it actually works in the direction of lowering the density in high-density regions where the relative density exceeds 97%. Furthermore, the inventors found that ZrO 2 does not form a low-melting point compound with CaO, and that the calcia sintered body produced by adding and firing ZrO 2 to suppress the grain growth of calcia particles and calcia crystals has a very high density. It was found that However, at this time, the average particle size of the calcia crystals becomes small, and high digestion resistance cannot be obtained. The present inventors have discovered that Al 2 O 3 and ZrO 2 have completely different effects as described above.
It has been discovered that by simultaneously adding and firing a calcia sintered body, a calcia sintered body having a high density and large crystals, which has never been seen before, can be obtained. The reason why high density and large crystallization of the calcia sintered body are achieved at the same time is that ZrO 2 suppresses grain growth and network formation that are harmful to densification near the temperature at which CaO densifies, and after densification. In the high temperature range, CaO−Al 2 O 3 system liquid phase or CaO−Al 2 O 3
It is presumed that a small amount of ZrO 2 -based liquid phase is generated and promotes the growth of calcia crystals. FIGS. 1 and 2 show the influence of Al 2 O 3 and ZrO 2 on the particle size and bulk density of calcia crystals depending on the firing temperature. FIG. 1 is a graph showing the relationship between the average particle diameter of calcia crystals, firing temperature, and content of Al 2 O 3 and ZrO 2 in a calcia sintered body containing Al 2 O 3 and ZrO 2 . FIG. 2 is a graph showing the relationship between each firing temperature and bulk density for the same sample. The lines drawn in these graphs each represent Al 2 O 3
The above relationship is shown for samples containing ZrO 2 and ZrO 2 as shown below. Note that (%) below is based on weight. Line Al 2 O 3 (%) ZrO 2 (%) Solid line 10.02 - Solid line 20.02 0.2 Dotted line 30.06 - Dotted line 40.06 0.2 From this figure, Al 2 O 3 and ZrO 2 are present in the calcia sintered body. It is clear that the calcia sintered body having high density and large crystals according to the present invention can be obtained only when it is present at the same time and in a small amount. The calcia sintered body according to the present invention has a composition expressed in weight percent based on scorching heat, such that CaO is 97.5 or more, Al 2 O 3 is 0.05 or more, 0.5 or less, ZrO 2 is 0.1 or more and 1.0 or less, and the balance is composed of unavoidable impurities (a ) Calcium hydroxide with a particle size of 44 μm or less accounting for 98% by weight or more and a CO 2 content of 5.0% by weight or less based on Ca(OH) 2 (b) Al 2 O 3 or Al 2 O 3 by thermal decomposition Aluminum compound (c) By mixing ZrO 2 or a zirconium compound that thermally decomposes to become ZrO 2 , the raw material whose composition has been adjusted is either as it is or pressurized to form a molded product, which is then fired at 1500℃ or higher. It can be manufactured by Calcium hydroxide, one of the raw materials, must contain particles with a diameter of 44 μm or less at least 98% by weight. Such calcium hydroxide is produced by sintering quicklime obtained by calcining limestone or synthetic calcium carbonate in water, preferably warm water, and then using a wet sieve or a liquid cyclone to slake the resulting slurry. Obtained by classification. Particles larger than 44 μm are harmful to sintering, and must be removed in order to obtain a high-density sintered body. Furthermore, quicklime contains impurities such as SiO 2 , Al 2 O 3 , MgO,
Although it often contains a large amount of Fe 2 O 3 , CaCO 3 , etc., it is possible to remove a large amount of these impurities by the above operation. The calcia sintered body according to the present invention contains 97.5% by weight or more of CaO, preferably 98.0% by weight or more, but in order to obtain such a composition, the purity of calcium hydroxide must be 99% by weight or more as CaO on a sintering basis. There must be. Additionally, calcium hydroxide has a CO2 content of 5.0 based on Ca(OH) 2.
Must be less than % by weight. When the CO2 content of calcium hydroxide exceeds 5.0% by weight, the bulk density
A high-density calcia sintered body of 3.20 g/cc or more cannot be obtained. This means that CO 2 in calcium hydroxide
This is presumed to be because it is contained as CaCO 3 and decomposes at around 900°C during firing, forming voids due to the generation of CO 2 gas and volumetric contraction. Calcium hydroxide easily reacts with CO 2 in the air, and CaCO 3 generated in this way is difficult to remove by classification, so care must be taken. The aluminum and zirconium compounds used in the present invention must be oxides or compounds that become oxides upon thermal decomposition. That is, aluminum compounds include Al 2 O 3 and Al
(OH) 3 , AlCl 3 , Al(NO 3 ) 3 , Al 2 (SO 4 ) 3, etc. Zirconium compounds include ZrO 2 ,
These include ZrOCl 2 , zirconyl acetate, zirconyl nitrate, and zirconyl carbonate. The compound used may be a commercially available industrial chemical, but it is desirable that the purity is high and that the powder is fine. Normally, slaked lime contains Al 2 O 3 as an impurity as mentioned above.
It is possible that the Al 2 O 3 content defined in the present invention can be achieved even in classified and purified slaked lime that contains Al 2 O 3 . In such a case, only the zirconium compound is mixed. In the present invention, as a manufacturing process up to baking, the cake obtained after filtering the raw material slurry is (1) directly baked, (2) after drying, pressure molded and baked, and (3) calcined. Any one of the three steps of subsequent pressure molding and firing can be used. In either step, it is desirable that the calcium hydroxide, aluminum compound, and zirconium compound be mixed sufficiently uniformly.
Mixing by stirring in a calcium hydroxide slurry, mixing by kneading in a filter cake, etc. are preferred. When taking step (2), it is also possible to dry mix the calcium hydroxide slurry after filtering and drying it. Further, when taking the step (3), there is no problem even if calcium hydroxide is calcined to form calcium oxide and then mixed. However, in this case, the aluminum and zirconium compounds used are preferably oxides. In any of the above steps, a commonly used filter, such as a vacuum filter or a pressure filter, can be used for filtration. When taking step (2), a drying step is necessary, and a commonly used dryer can be used. However, when fossil fuel combustion gas is used for drying, the absorption of CO 2 needs to be reduced to 5.0% by weight or less based on Ca(OH) 2 . Drying in an air atmosphere is preferable since there is no absorption of CO 2 . Further, it is desirable to reduce the moisture content by drying to 10% by weight or less based on Ca(OH) 2 in order to obtain a high-density sintered body.
Furthermore, it is desirable to pulverize the dried product obtained in these steps using a ball mill, Henschel mixer, etc. in order to obtain the next best molded product. In steps (2) and (3), molding is performed under pressure of about 1 t/cm 2 . As the molding machine, a commonly used briquetting machine or the like can be used. Calcination in step (3) must be performed at a temperature between 600°C and 1000°C. At temperatures lower than 600°C, the effect of calcination is small, and at temperatures higher than 1000°C, the specific surface area decreases, resulting in a decrease in sinterability. The calcination carried out here can be carried out using a commonly used light furnace, rotary kiln, etc., but even in this process, it is necessary to suppress CO 2 absorption as low as possible, and it is necessary to suppress CO 2 absorption as low as possible. It is particularly preferable to carry out under an air atmosphere. The filter cake, dry molded body, or pre-fired molded body obtained as described above must then be calcined at a temperature of 1500°C or higher, preferably 1650°C or higher. At this temperature, sintering progresses sufficiently, and a calcia sintered body having a high bulk density and large crystals can be obtained. At temperatures lower than 1500°C, calcia crystals are insufficiently developed and high digestion resistance cannot be obtained. For firing, a firing furnace that is normally used for firing magnesia clinker can be used, such as a rotary kiln. In this case, since fuel such as heavy oil is used, the atmosphere inside the furnace is different from an air atmosphere, and is an atmosphere with high partial pressures of CO 2 and H 2 O. Since the composition of the present invention facilitates sintering in such an atmosphere, there is no problem with firing in such an atmosphere, but if possible, an atmosphere with a low CO 2 partial pressure
It is preferable to bake in an air atmosphere. According to the present inventors, by performing calcination in an atmosphere with a high partial pressure of CO 2 , carbon dioxide occurs at a relatively low temperature near the surface of the calcium hydroxide cake or molded body.
It was discovered that as a result of the two processes of CaCO 3 generation and CaCO 3 decomposition that occur at around 900°C, the resulting calcia sintered body has many pores and a low bulk density. In addition, CaCO 3 due to these CO 2
It has also been revealed that the formation of can be significantly reduced by calcining calcium hydroxide to form calcium oxide. Therefore, when firing is performed in an atmosphere with a high partial pressure of CO 2 , it is desirable to perform the calcination forming step (3) among the above steps. Next, Examples and Comparative Examples of the present invention will be given and specifically explained. In addition, various measuring methods in the present invention are as follows. (1) Bulk density JSPS method 2 “Magnesia clinker apparent porosity,” proposed by the 124th Committee of the Japan Society for the Promotion of Science
It was measured according to the method for measuring apparent specific gravity and bulk specific gravity. (2) Average crystal diameter According to the Fullman method (J.of.Metals 447 1953). That is, a straight line was arbitrarily drawn on a photograph of the polished surface, and the value obtained by multiplying the average value of the length of the line segment cut by the grain boundary by 1.5 was defined as the average diameter grain.
In addition, for the measurement, five or more clinker grains were selected, and more than 100 crystals were measured for each piece of paper. (3) Chemical composition JSPS method 1 “Chemical analysis method of magnesia clinker” proposed by the 124th Committee of the Japan Society for the Promotion of Science
Measured according to. (4) Weight increase rate As a guideline for digestion resistance, calcia sintered bodies classified into 2.00 to 4.47 mm were left standing in air at a relative humidity of 65% and a temperature of 20°C for two weeks, and the weight increase was measured. The amount of increase relative to the original weight is expressed as a percentage. (5) Calcium hydroxide particle size It was determined from the weight of calcium hydroxide remaining on the sieve after classifying the water slurry using a sieve. Examples Examples 1 to 3, Comparative Examples 1 to 4 Quicklime was slaked with warm pure water at 60°C and then classified to obtain calcium hydroxide having the chemical composition and particle size shown in Table 1. To this, predetermined amounts of Al 2 O 3 and ZrO 2 were added and mixed in a slurry. Here Al 2 O 3
was a high-purity γ-Al 2 O 3 powder, and ZrO 2 was added and mixed as a zirconyl acetate solution (reagent). The obtained mixed slurry was filtered, dried, and pulverized, and then molded under pressure of 1 t/cm 2 . By crushing these molded bodies, 3.66 ~
Adjusted to a particle size of 5.66mm and heated at 1650℃ under air atmosphere.
It was fired in Table 2 shows the physical properties of the calcia sintered body obtained by cooling.

【表】
重量%
【table】
weight%

【表】 実施例 4 焼成を1550℃で行う他は実施例1と同じ条件で
実験を行つた。冷却して得られたカルシア焼結体
の物性を第3表に示す。
[Table] Example 4 An experiment was conducted under the same conditions as Example 1 except that the firing was performed at 1550°C. Table 3 shows the physical properties of the calcia sintered body obtained by cooling.

【表】 実施例5、比較例5 プロパンおよび酸素を燃料とする焼成炉を用い
て、1700℃で焼成を行うこと、および組成の他は
実施例1と同じ条件で行つた。冷却して得られた
カルシア焼結体の組成および物性を第4表に示
す。
[Table] Example 5, Comparative Example 5 The firing was performed under the same conditions as in Example 1 except for the composition and the firing at 1700° C. using a firing furnace using propane and oxygen as fuel. Table 4 shows the composition and physical properties of the calcia sintered body obtained by cooling.

【表】 実施例 6 実施例1で用いた原料粉末を空気雰囲気下で、
800℃で仮焼を行つた後に1t/cm2の加圧下で成形
して、得られた成形体を破砕して、3.36〜5.66mm
の粒度に調整した後に焼成を行う他は実施例4と
同じ条件で行つた。冷却して得られたカルシア焼
結体の物性を第5表に示す。
[Table] Example 6 The raw material powder used in Example 1 was treated in an air atmosphere.
After calcination at 800°C, the molded body is molded under a pressure of 1 t/cm 2 and the resulting molded body is crushed to a size of 3.36 to 5.66 mm.
The process was carried out under the same conditions as in Example 4, except that the firing was carried out after adjusting the particle size to . Table 5 shows the physical properties of the calcia sintered body obtained by cooling.

【表】 発明の効果 本発明により、化学組成がCaO97.5重量%以上
の高純度であり、かつ嵩密度が3.20g/c.c.以上で
あり、かつカルシア結晶の平均粒径が60μm以上
の耐消化性に優れるカルシア焼結体が、Al2O3
ZrO2を同時に、かつ微量混合して焼成するとい
う比較的容易な方法で得られる。実施例1で見ら
れる様に相対湿度65%の空気中に放置しても、2
週間後の重量増が0.13%と著しく低く、肉眼では
何ら変化も観察されない。従つて、本発明品はカ
ルシアを工業的に利用する際の大きな支障であつ
た耐消化性を大幅に改善し、また嵩密度、純度と
もに高く、耐スラグ性、機械的強度も期待され、
工業分野で充分活用できることが可能となつた。
[Table] Effects of the Invention The present invention provides a digestible material having a high purity chemical composition of 97.5% by weight or more of CaO, a bulk density of 3.20 g/cc or more, and an average grain size of calcia crystals of 60 μm or more. Calcia sintered bodies with excellent properties are Al 2 O 3 ,
It can be obtained by a relatively easy method of simultaneously mixing a small amount of ZrO 2 and firing. As seen in Example 1, even when left in air with a relative humidity of 65%, the
The weight increase after a week was extremely low at 0.13%, and no change was observed with the naked eye. Therefore, the product of the present invention is expected to significantly improve digestion resistance, which has been a major hindrance when using calcia industrially, and is also expected to have high bulk density and purity, as well as slag resistance and mechanical strength.
It has become possible to fully utilize it in the industrial field.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は所定量のAl2O3、ZrO2を含むカルシア
焼結体の各焼成温度におけるカルシア結晶の平均
粒子径を示すグラフ、第2図は同じ試料による各
焼成温度における嵩密度を示すグラフ、第3図は
実施例1のカルシア焼結体の研磨面の組織を示す
顕微鏡写真、第4図は比較例1のカルシア焼結体
の研磨面の組織を示す顕微鏡写真である。
Figure 1 is a graph showing the average particle diameter of calcia crystals at each firing temperature of a calcia sintered body containing predetermined amounts of Al 2 O 3 and ZrO 2 , and Figure 2 is a graph showing the bulk density of the same sample at each firing temperature. The graph and FIG. 3 are microphotographs showing the structure of the polished surface of the calcia sintered body of Example 1, and FIG. 4 is a microphotograph showing the structure of the polished surface of the calcia sintered body of Comparative Example 1.

Claims (1)

【特許請求の範囲】 1 組成が灼熱基準で、重量%で表わして CaO 97.5以上 Al2O3 0.05以上0.5以下 ZrO2 0.1以上1.0以下 および残部が不可避の不純物から成り、かつ嵩
密度が3.20g/c.c.以上であり、かつカルシア結晶
の平均粒径が60μm以上であることを特徴とする
カルシア焼結体。 2 組成が灼熱基準で重量%で表わして CaO 98.0以上 Al2O3 0.1を越えて0.3以下 ZrO2 0.1以上0.5未満 である特許請求の範囲第1項に記載のカルシア焼
結体。 3 嵩密度が3.26g/c.c.以上である特許請求の範
囲第1項または第2項のいずれかに記載のカルシ
ア焼結体。 4 カルシア結晶の平均粒径が80μm以上である
特許請求の範囲第1〜3項のいずれかに記載のカ
ルシア焼結体。 5 組成が灼熱基準で重量%で表わして CaO 97.5以上 Al2O3 0.05以上0.5以下 ZrO2 0.1以上1.0以下 および残部が不可避の不純物から成る様に (a) 44μm以下の粒子が98重量%以上を占め、か
つCO2含有量がCa(OH)2基準で5.0重量%以下
の水酸化カルシウム (b) Al2O3または熱分解してAl2O3となるアルミ
ニウム化合物 (c) ZrO2または熱分解してZrO2となるジルコニ
ウム化合物 を混合することにより、組成調整をした原料をそ
のままで、あるいは加圧して成形体とした後に、
1500℃以上で焼成することを特徴とするカルシア
焼結体の製造方法。 6 組成を調整した原料を600℃以上1000℃以下
で仮焼を行なつた後に、加圧して成形体とする特
許請求の範囲第5項記載のカルシア焼結体の製造
方法。 7 仮焼時の雰囲気が空気である特許請求の範囲
第6項記載のカルシア焼結体の製造方法。 8 焼成温度が1650℃以上である特許請求の範囲
第5〜8項のいずれかに記載のカルシア焼結体の
製造方法。
[Scope of Claims] 1. The composition is based on scorching heat and expressed in weight percent: CaO 97.5 or more, Al 2 O 3 0.05 or more, 0.5 or less ZrO 2 0.1 or more and 1.0 or less, and the remainder consisting of unavoidable impurities, and has a bulk density of 3.20 g. /cc or more, and the average grain size of calcia crystals is 60 μm or more. 2. The calcia sintered body according to claim 1, which has a composition of 98.0 or more CaO, more than 0.1 Al 2 O 3 , and less than 0.3 ZrO 2 0.1 or more and less than 0.5 expressed in weight percent on a sintering basis. 3. The calcia sintered body according to claim 1 or 2, which has a bulk density of 3.26 g/cc or more. 4. The calcia sintered body according to any one of claims 1 to 3, wherein the average grain size of the calcia crystals is 80 μm or more. 5. The composition is expressed in weight percent based on scorching heat: CaO 97.5 or more, Al 2 O 3 0.05 or more, 0.5 or less ZrO 2 0.1 or more and 1.0 or less, and the balance consisting of unavoidable impurities (a) 98% by weight or more of particles of 44 μm or less (b) Al 2 O 3 or an aluminum compound that thermally decomposes to become Al 2 O 3 (c) ZrO 2 or By mixing a zirconium compound that thermally decomposes to become ZrO 2 , the raw material whose composition has been adjusted can be made into a molded body as it is or after being pressurized to form a molded body.
A method for producing a calcia sintered body characterized by firing at a temperature of 1500°C or higher. 6. The method for producing a calcia sintered body according to claim 5, wherein the raw material whose composition has been adjusted is calcined at a temperature of 600°C or more and 1000°C or less, and then pressurized to form a compact. 7. The method for producing a calcia sintered body according to claim 6, wherein the atmosphere during calcination is air. 8. The method for producing a calcia sintered body according to any one of claims 5 to 8, wherein the firing temperature is 1650°C or higher.
JP61022975A 1986-02-06 1986-02-06 Calcia sintered body and manufacture Granted JPS62182154A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61022975A JPS62182154A (en) 1986-02-06 1986-02-06 Calcia sintered body and manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61022975A JPS62182154A (en) 1986-02-06 1986-02-06 Calcia sintered body and manufacture

Publications (2)

Publication Number Publication Date
JPS62182154A JPS62182154A (en) 1987-08-10
JPH0329020B2 true JPH0329020B2 (en) 1991-04-22

Family

ID=12097560

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61022975A Granted JPS62182154A (en) 1986-02-06 1986-02-06 Calcia sintered body and manufacture

Country Status (1)

Country Link
JP (1) JPS62182154A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5374063B2 (en) * 2007-03-28 2013-12-25 三菱重工業株式会社 Metal melting crucible and surface treatment method thereof
JP5302562B2 (en) * 2008-03-28 2013-10-02 三菱重工業株式会社 Metal melting crucible and method for producing the same
JP5561671B2 (en) * 2010-02-23 2014-07-30 スーパーピュアメタル合同会社 Method for producing crucible for melting metal
JP5561670B2 (en) * 2010-02-23 2014-07-30 スーパーピュアメタル合同会社 Metal melting crucible

Also Published As

Publication number Publication date
JPS62182154A (en) 1987-08-10

Similar Documents

Publication Publication Date Title
EP2239245A1 (en) Aluminum magnesium titanate - alumina composite ceramic
EP0001327B1 (en) Magnesium aluminate spinel bonded refractory and method of making
Li et al. Improving the hydration resistance of lime-based refractory materials
Ghasemi-Kahrizsangi et al. the effect of nano meter size ZrO2 particles addition on the densification and hydration resistance of magnesite–dolomite refractories
Chen et al. Effect of additives on the hydration resistance of materials synthesized from the magnesia–calcia system
US3929498A (en) Sintered zirconia bodies
JPH0329020B2 (en)
JPH02133314A (en) Magnesium-aluminum spinel
Zhihui et al. Influence of mechanical activation of Al2O3 on synthesis of magnesium aluminate spinel
JPH04944B2 (en)
JPH025707B2 (en)
JPH0794343B2 (en) Magnesia clinker and method for producing the same
US20020041062A1 (en) Low-firing temperature method for producing Al2O3 bodies having enhanced chemical resistance
JPH09301766A (en) Porous spinel clinker and its production
JP2749662B2 (en) Magnesia clinker and manufacturing method thereof
JP3681199B2 (en) Casting calcia and magnesia clinker and method for producing the same
JP2747325B2 (en) Spinel-containing magnesia clinker having large pores and method for producing the same
JP3510642B2 (en) Magnesia clinker and manufacturing method thereof
KR100276976B1 (en) Manufacturing method of electrolytic dolomite
JP3771607B2 (en) Digestion resistant calcia magnesia clinker and method for producing the same
JP3682325B2 (en) Method for producing calcia clinker with excellent digestion resistance
JPH07291716A (en) Basic refractory
JPH0138071B2 (en)
JPH01197315A (en) Calcium hydroxide
JPS6042183B2 (en) Calcia refractories and their manufacturing method