JPH0329011B2 - - Google Patents

Info

Publication number
JPH0329011B2
JPH0329011B2 JP60201377A JP20137785A JPH0329011B2 JP H0329011 B2 JPH0329011 B2 JP H0329011B2 JP 60201377 A JP60201377 A JP 60201377A JP 20137785 A JP20137785 A JP 20137785A JP H0329011 B2 JPH0329011 B2 JP H0329011B2
Authority
JP
Japan
Prior art keywords
aqueous solution
reaction
lepidocrocite
value
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60201377A
Other languages
Japanese (ja)
Other versions
JPS62119116A (en
Inventor
Norio Koike
Yoji Matsue
Koji Shibuya
Toshiko Suzuki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP60201377A priority Critical patent/JPS62119116A/en
Publication of JPS62119116A publication Critical patent/JPS62119116A/en
Publication of JPH0329011B2 publication Critical patent/JPH0329011B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compounds Of Iron (AREA)
  • Hard Magnetic Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明はレピツドクロサイト(γ−FeOOH)
の製造に係り、より詳細には、オーデイオテー
プ、ビデオテープ、磁気カード等の磁気記録媒体
用磁性酸化鉄粉を製造する際に出発物質として好
適なレピツドクロサイトの製造方法に関するもの
である。 (従来の技術及び解決しようとする問題点) 一般に、オーデイオテープ、ビデオテープ、磁
気カード等の磁気記録媒体用の磁性酸化鉄粉は、
α−FeOOH(ゲータイト)又はγ−FeOOH(レ
ピツドクロサイト)を出発物質とし、これに焼成
(脱水、焼きしめ)、還元及び酸化などの処理を順
次に施して針状のγ−Fe2O3(マグヘマイト)を
得、或いはその粒子表面にコバルト変成処理によ
つてコバルト被着したCo−γ−F2O3を得ること
により、製造されている。この場合、得られた磁
性酸化鉄粉の磁気特性は上記出発物質の性状に依
存するため、磁気記録媒体に適した磁性酸化鉄粉
末を得るには、優れた性状の出発物質を使用する
必要がある。 この点、従来、レピツドクロサイト(γ−
FeOOH)を出発物質として得られる磁性酸化鉄
粉末は、ゲータイト(α−FeOOH)を出発物質
とする場合に比らべ、最終製品であるオーデイオ
テープ、ビデオテープ等々の磁気記録媒体の磁気
的配向性、分散性、角形比、転写特性は優れてい
るにも拘わらず、粒度分布が大きいという問題が
あり、最終製品の特性(保磁力、反転磁界強度分
布等)に悪影響を及ぼすという欠点があつた。 ところで、上記出発物質のうちのレピツドクロ
サイトは、通常、以下のような合成反応法で製造
されている。 まず、酸洗廃液等を利用して得られる塩化第一
鉄(FeCl2)水溶液に苛性アルカリ又はアンモニ
ウム等のアルカリ水溶液を加えて中和する。この
際、水酸基と鉄のモル比(OH/Fe)が約0.8〜
1.4となるようにアルカリ水溶液を混合する。 次いで、これを酸素含有ガス(空気又は酸素)
で酸化してシード反応により種結晶をつくる。こ
のときの反応温度は約10〜25℃とする。シード反
応が終了に近づくと、反応液のPHが低下し、アル
カリ分が完全に消費されて反応が終ると、PH値は
約3.2〜3.8となる。 その後、30〜50℃に昇温し、PH値が約3.5〜4.5
になるように酸素含有ガスを吹込むと共にアルカ
リ水溶液を添加して成長反応を行う。この成長反
応が終了に近づくと、反応速度が遅くなり、PH値
が上昇する。PH値が約5.5になつた時点で反応の
終了とし、針状のレピツドクロサイトを得る。 しかし乍ら、上記方法では、前述の如く粒度分
布が大きいレピツドクロサイトしか得られず、良
好な性状とは言えず、更には平均粒度をコントロ
ールすることが困難であるため、用途目的に適し
た任意の平均粒度を有するレピツドクロサイトを
提供できないという欠点があつた。このため、磁
性作家鉄粉末の製造の出発物質としてはゲータイ
ト(α−FeOOH)が多用されているのが現状で
ある。 本発明は、前述の如く多くの利点を有するレピ
ツドクロサイトにつき、上記従来技術の欠点を解
消し、粒度分布が小さく、かつ、要求される各種
粒度を安定的に有する優れた性状のレピツドクロ
サイトを製造する方法を提供することを目的とす
るものである。 (問題点を解決するための手段) 上記目的を達成するため、本発明では、塩化第
一鉄水溶液とアルカリ水溶液を混合するとレピツ
ドクロサイトの種結晶の前駆体であるグリーンラ
ストが生じるが、この結晶粒径の均一性をコント
ロールすれば、以降の工程におけるレピツドクロ
サイトの種結晶の生成及び成長に好結果をもたら
すことを知見し、そのためシード反応前に該混合
水溶液を特定条件にて保持する熟成工程を設ける
ことを骨子とするものである。 以下に本発明を実施例に基づいて詳細に説明す
る。 本発明における熟成工程は、塩化第一鉄水溶液
にアルカリ水溶液を加える混合工程と、酸素含有
ガスで酸化してシード反応によりレピツドクロサ
イトの種結晶を生成させるシード反応工程との間
に行うもので、混合水溶液のPH値が6.0〜9.0、温
度が10〜50℃の範囲内で20〜120分間保持する。
勿論、シード反応ではないので、不活性ガス雰囲
気等の非酸化性雰囲気中で行い、また撹拌しつつ
行うことは云うまでもない。混合撹拌状態は、例
えば、撹拌羽根の回転数200〜400rpmとする程度
で良い。 なお、保持時間は、20分未満ではグリーンラス
トの結晶粒径の均一化の効果がなく、しかし、
120分を超えて保持しても上記効果がそれ以上期
待できず、処理時間の延長化をもたらすだけであ
るので、20〜120分間の範囲内とし、好ましくは
30分以上100分以内で保持する。また、混合水溶
液のPH値及び温度が上昇範囲外では、ゲータイト
が発生したり、粒子の針状性が悪化するので、比
較的低温で弱酸もしくは弱アルカリの上記範囲内
で行う必要がある。 また、上記PH値、温度及び保持時間を適宜設定
することにより、グリーンラストの結晶粒径の大
きさをコントロールすることも可能であり、した
がつて、出発原料の塩化第一鉄の溶液濃度等々の
条件選定と相俟つて得られるレピツドクロサイト
の平均粒度をコントロールすることができる。 本発明における熟成工程以外の工程は、従来と
同様であり、特にそれらの条件は制限されない。
但し、塩化第一鉄を水酸化第一鉄にするのに要す
るアルカリの理論量は、シード反応工程と成長工
程とに分けて添加するが、シード反応工程で添加
する量は、ゲータイトの発生を防止し、針状性の
優れたレピツドクロサイトの粒子を得るため、上
記理論量の0.4〜0.7倍とする必要がある。 (実施例) 実施例 1 濃度0.97モル/の塩化第一鉄水溶液25を窒
素ガス雰囲気に保つた反応器内で撹拌しながら、
濃度0.71モル/の水酸化ナトリウム水溶液42
を添加し、PH値7.6、温度13℃で60分間撹拌しつ
つ保持して熟成させた。この熟成の後、5気圧
(ゲージ圧)の空気を20/minの速度で吹き込
んで酸化させ、シード反応を行つた。この間、液
温は13℃にコントロールした。 シード反応の終了をPH値の測定で確認した後
(PH=3.2)、空気の吹込みを止め、1.5気圧(ゲー
ジ圧)の窒素ガスを3/minの速度で吹き込
み、反応器内を不活性雰囲気にし、撹拌しつつ48
℃に昇温した。 その後、窒素ガスに代えて、5気圧(ゲージ
圧)の空気を3/minの速度で吹き込むと共に
濃度1.6モル/の水酸化ナトリウム水溶液を80
g/minの一定速度で添加し、成長反応を行なつ
た。この成長反応はPH値が5.5に上昇した時点で
終了した。 実施例 2 濃度1.0モル/の塩化第一鉄水溶液25を窒
素ガス雰囲気に保つた反応器内で撹拌しながら、
濃度0.8モル/のアンモニア水溶液41を添加
し、PH値7.5、温度13℃で60分間撹拌しつつ保持
して熟成させた。この熟成の後、5気圧(ゲージ
圧)の空気を20/minの速度で吹き込んで酸化
させ、シード反応を行つた。この間、液温は13℃
にコントロールした。 シード反応の終了をPH値の測定で確認した後
(PH=3.4)、空気の吹込みを止め、1.5気圧(ゲー
ジ圧)の窒素ガスを3/minの速度で吹き込
み、反応器内を不活性雰囲気にし、撹拌しつつ45
℃に昇温した。 その後、窒素ガスに代えて、5気圧(ゲージ
圧)の空気を3/minの速度で吹き込むと共に
濃度1.6モル/の水酸化ナトリウム水溶液を80
g/minの一定速度で添加し、成長反応を行つ
た。この成長反応はPH値が5.5に上昇した時点で
終了した。 比較例 1 実施例1において、塩化第一鉄と水酸化ナトリ
ウムとの混合水溶液を、熟成させずに、直ちにシ
ード反応工程に供し、以降、同様の処理を行つ
た。 比較例 2 実施例2において、塩化第一鉄とアンモニアと
の混合水溶液を、熟成させずに、直ちにシード反
応工程に供し、以降、同様の処理を行つた。 以上の4例で得た各々のレピツドクロサイトに
ついて、電子顕微鏡にて粒子の粒径を測定し、粒
度分布を求めた。その結果を第1表に示す。な
お、粒度分布は針状のレピツドクロサイト粒子の
長軸方向の粒度分布における標準偏差値で表わ
し、平均粒径は粒度分布の平均値で表わした。
(Industrial Application Field) The present invention relates to lepidocrocite (γ-FeOOH)
More specifically, the present invention relates to a method for producing lepidocrocite, which is suitable as a starting material when producing magnetic iron oxide powder for magnetic recording media such as audio tapes, video tapes, and magnetic cards. (Prior art and problems to be solved) In general, magnetic iron oxide powder for magnetic recording media such as audio tapes, video tapes, and magnetic cards is
α-FeOOH (goethite) or γ-FeOOH (lepidocrocite) is used as a starting material, and it is sequentially subjected to treatments such as calcination (dehydration, hardening), reduction, and oxidation to form acicular γ-Fe 2 O. It is produced by obtaining Co-γ-F 2 O 3 (maghemite) or Co-γ-F 2 O 3 with cobalt deposited on the particle surface by cobalt modification treatment. In this case, the magnetic properties of the obtained magnetic iron oxide powder depend on the properties of the above-mentioned starting material, so in order to obtain magnetic iron oxide powder suitable for magnetic recording media, it is necessary to use a starting material with excellent properties. be. In this respect, conventionally, lepidocrocite (γ-
The magnetic iron oxide powder obtained using Goethite (α-FeOOH) as a starting material has a higher magnetic orientation than that of goethite (α-FeOOH) in magnetic recording media such as audio tapes and video tapes. Although it has excellent dispersibility, squareness ratio, and transfer characteristics, it has the problem of large particle size distribution, which has the disadvantage of adversely affecting the properties of the final product (coercive force, switching field strength distribution, etc.). . By the way, among the above starting materials, lepidocrocite is usually produced by the following synthetic reaction method. First, an aqueous solution of ferrous chloride (FeCl 2 ) obtained using pickling waste liquid or the like is neutralized by adding an aqueous alkali solution such as caustic alkali or ammonium. At this time, the molar ratio of hydroxyl groups to iron (OH/Fe) is approximately 0.8 to
Mix the alkaline aqueous solution so that the ratio is 1.4. This is then converted into an oxygen-containing gas (air or oxygen)
It is oxidized and a seed crystal is created by a seed reaction. The reaction temperature at this time is approximately 10 to 25°C. As the seed reaction approaches completion, the pH of the reaction solution decreases, and when the alkaline content is completely consumed and the reaction ends, the pH value will be approximately 3.2 to 3.8. After that, the temperature is raised to 30-50℃, and the PH value is about 3.5-4.5
A growth reaction is performed by blowing oxygen-containing gas and adding an alkaline aqueous solution so that the growth reaction occurs. As this growth reaction approaches completion, the reaction rate slows down and the pH value increases. The reaction is terminated when the pH value reaches approximately 5.5, and needle-like lepidocrocites are obtained. However, as mentioned above, the above method only yields repitdocrosite with a large particle size distribution, which cannot be said to have good properties, and furthermore, it is difficult to control the average particle size, so it is not suitable for the purpose of use. However, there was a drawback in that it was not possible to provide lepidocrocite having an arbitrary average particle size. For this reason, goethite (α-FeOOH) is currently frequently used as a starting material for producing magnetic iron powder. The present invention solves the drawbacks of the prior art, and produces a repito-crocite with excellent properties that have a small particle size distribution and stably have various required particle sizes. The purpose of the present invention is to provide a method for producing docrosite. (Means for Solving the Problems) In order to achieve the above object, in the present invention, when a ferrous chloride aqueous solution and an alkaline aqueous solution are mixed, green rust, which is a precursor of lepidocrocite seed crystals, is produced. We found that controlling the uniformity of this crystal grain size would bring about good results in the generation and growth of lepidocrocite seed crystals in the subsequent process. The main idea is to provide a ripening process to maintain the quality. The present invention will be explained in detail below based on examples. The ripening step in the present invention is carried out between the mixing step of adding an alkaline aqueous solution to the ferrous chloride aqueous solution and the seeding reaction step of oxidizing with an oxygen-containing gas to generate seed crystals of lepidocrocite through a seed reaction. The mixed aqueous solution is maintained at a pH value of 6.0 to 9.0 and a temperature of 10 to 50°C for 20 to 120 minutes.
Of course, since this is not a seed reaction, it goes without saying that it is carried out in a non-oxidizing atmosphere such as an inert gas atmosphere, and is carried out with stirring. The mixing and stirring state may be such that, for example, the rotation speed of the stirring blade is 200 to 400 rpm. Note that if the holding time is less than 20 minutes, there will be no effect of uniformizing the crystal grain size of Green Rust; however,
If the temperature is maintained for more than 120 minutes, the above effects cannot be expected any longer and the processing time will only be prolonged, so the period should be within the range of 20 to 120 minutes, preferably.
Hold for more than 30 minutes and less than 100 minutes. Furthermore, if the PH value and temperature of the mixed aqueous solution are outside the rising range, goethite may be generated or the acicularity of the particles may deteriorate, so it is necessary to carry out the process at a relatively low temperature and with a weak acid or weak alkali within the above range. In addition, by appropriately setting the above PH value, temperature, and holding time, it is possible to control the crystal grain size of green rust, and therefore, the solution concentration of ferrous chloride, the starting material, etc. In combination with the selection of conditions, it is possible to control the average particle size of the lepidocrocite obtained. The steps other than the aging step in the present invention are the same as conventional ones, and the conditions are not particularly limited.
However, the theoretical amount of alkali required to convert ferrous chloride to ferrous hydroxide is added separately in the seed reaction step and the growth step, but the amount added in the seed reaction step is determined to prevent the generation of goethite. In order to prevent this and obtain lepidocrocite particles with excellent acicular properties, the amount needs to be 0.4 to 0.7 times the above theoretical amount. (Example) Example 1 While stirring a ferrous chloride aqueous solution 25 with a concentration of 0.97 mol/in a reactor maintained in a nitrogen gas atmosphere,
Sodium hydroxide aqueous solution with a concentration of 0.71 mol/42
was added, and the mixture was maintained at a pH value of 7.6 and a temperature of 13°C for 60 minutes with stirring to age. After this ripening, air at 5 atm (gauge pressure) was blown at a rate of 20/min to oxidize and perform a seed reaction. During this time, the liquid temperature was controlled at 13°C. After confirming the completion of the seed reaction by measuring the PH value (PH = 3.2), the air blowing was stopped and nitrogen gas of 1.5 atm (gauge pressure) was blown at a rate of 3/min to inert the inside of the reactor. Create an atmosphere and stir while stirring 48
The temperature was raised to ℃. Then, instead of nitrogen gas, air at 5 atm (gauge pressure) was blown in at a rate of 3/min, and a sodium hydroxide aqueous solution with a concentration of 1.6 mol/min was added to the
The growth reaction was carried out by adding at a constant rate of g/min. This growth reaction ended when the PH value rose to 5.5. Example 2 While stirring a ferrous chloride aqueous solution 25 with a concentration of 1.0 mol/25 in a reactor maintained in a nitrogen gas atmosphere,
An ammonia aqueous solution 41 having a concentration of 0.8 mol/ml was added, and the mixture was maintained at a pH value of 7.5 and a temperature of 13° C. for 60 minutes with stirring to ripen. After this ripening, air at 5 atm (gauge pressure) was blown at a rate of 20/min to oxidize and perform a seed reaction. During this time, the liquid temperature was 13℃
was controlled. After confirming the completion of the seed reaction by measuring the PH value (PH = 3.4), the air blowing was stopped and nitrogen gas of 1.5 atm (gauge pressure) was blown at a rate of 3/min to inert the inside of the reactor. 45 while stirring and adjusting the atmosphere.
The temperature was raised to ℃. Then, instead of nitrogen gas, air at 5 atm (gauge pressure) was blown in at a rate of 3/min, and a sodium hydroxide aqueous solution with a concentration of 1.6 mol/min was added to the
The growth reaction was carried out by adding at a constant rate of g/min. This growth reaction ended when the PH value rose to 5.5. Comparative Example 1 In Example 1, the mixed aqueous solution of ferrous chloride and sodium hydroxide was immediately subjected to a seed reaction step without being aged, and thereafter the same treatment was performed. Comparative Example 2 In Example 2, the mixed aqueous solution of ferrous chloride and ammonia was immediately subjected to a seed reaction step without being aged, and thereafter the same treatment was performed. For each of the lepidocrocites obtained in the above four examples, the particle size of the particles was measured using an electron microscope, and the particle size distribution was determined. The results are shown in Table 1. The particle size distribution was expressed by the standard deviation value of the particle size distribution in the long axis direction of the acicular lepidocrocite particles, and the average particle size was expressed by the average value of the particle size distribution.

【表】 同表に示すところから明らかなように、得られ
たレピツドクロサイトの粒度分布は比較例に比
べ、熟成工程を有する本発明例の場合の方が遥か
に小さく、均一であり、優れた性状であることを
表わしている。また、この熟成の効果はアルカリ
の種類(水酸化ナトリウム又はアンモニア)によ
らず同様に期待でき、更には平均粒径が小さい場
合(実施例1)でも大きい場合(実施例2)で
も、小さな粒度分布のものが得られる。 (発明の効果) 以上詳述したように、本発明によれば、レピツ
ドクロサイトの合成反応においてシード反応前に
特定条件の熟成工程を経るので、任意の平均粒径
を有し、しかも粒度分布が極めて小さい優れた性
状の針状レピツドクロサイトを安定して製造する
ことができ、したがつて、優れた特性の磁性酸化
鉄粉末の製造を可能にするものである。
[Table] As is clear from the table, the particle size distribution of the obtained lepidocrocite is much smaller and more uniform in the case of the present invention example, which has a ripening process, than in the comparative example. This indicates excellent properties. In addition, the effect of this aging can be expected to be the same regardless of the type of alkali (sodium hydroxide or ammonia), and even if the average particle size is small (Example 1) or large (Example 2), A distribution is obtained. (Effects of the Invention) As described in detail above, according to the present invention, in the synthetic reaction of lepidocrocite, an aging process under specific conditions is performed before the seed reaction, so that the grain size can be set to any desired average particle size. Acicular lepidocrocite with excellent properties and extremely small distribution can be stably produced, and therefore magnetic iron oxide powder with excellent properties can be produced.

Claims (1)

【特許請求の範囲】[Claims] 1 塩化第一鉄水溶液に苛性アルカリ、アンモニ
ア等のアルカリ水溶液を、該塩化第一鉄を水酸化
第一鉄にするのに要する理論量の0.4〜0.7倍加え
た後、PH値6.0〜9.0及び温度10〜50℃の条件のも
とで20〜120分間保持して熟成し、次いで酸素含
有ガスを吹込んでγ−FeOOHの種結晶を生成さ
せ、更に上記アルカリ水溶液を加えると共に酸素
含有ガスを吹込んでγ−FeOOH生成反応を完結
させることを特徴とするレピツドクロサイトの製
造方法。
1. After adding an alkaline aqueous solution such as caustic alkali or ammonia to a ferrous chloride aqueous solution, 0.4 to 0.7 times the theoretical amount required to convert the ferrous chloride to ferrous hydroxide, the pH value is 6.0 to 9.0. Aging is maintained at a temperature of 10 to 50°C for 20 to 120 minutes, then an oxygen-containing gas is blown in to generate γ-FeOOH seed crystals, and the above alkaline aqueous solution is added and an oxygen-containing gas is blown in. A method for producing lepidocrocite, which comprises completing the γ-FeOOH production reaction.
JP60201377A 1985-09-11 1985-09-11 Production of lepidocrocite Granted JPS62119116A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60201377A JPS62119116A (en) 1985-09-11 1985-09-11 Production of lepidocrocite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60201377A JPS62119116A (en) 1985-09-11 1985-09-11 Production of lepidocrocite

Publications (2)

Publication Number Publication Date
JPS62119116A JPS62119116A (en) 1987-05-30
JPH0329011B2 true JPH0329011B2 (en) 1991-04-22

Family

ID=16440062

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60201377A Granted JPS62119116A (en) 1985-09-11 1985-09-11 Production of lepidocrocite

Country Status (1)

Country Link
JP (1) JPS62119116A (en)

Also Published As

Publication number Publication date
JPS62119116A (en) 1987-05-30

Similar Documents

Publication Publication Date Title
US4729846A (en) Method for manufacturing lepidocrocite
US3897354A (en) Cobalt-containing acicular ferrimagnetic iron oxide of improved remanence stability
US4060596A (en) Method of making goethite powder
JPH0329011B2 (en)
JP3750414B2 (en) Spindle-shaped goethite particle powder, spindle-shaped hematite particle powder, spindle-shaped metal magnetic particle powder containing iron as a main component, and production method thereof
JPH0255382B2 (en)
JPH10226520A (en) Hydrate iron oxide and production of ferromagnetic iron oxide
US4748017A (en) Method for manufacturing lepidocrocite
KR910009210B1 (en) Method for manufacturing lepidocrocite
JP2704525B2 (en) Method for producing spindle-shaped goethite particles
JPS62119117A (en) Production of lepidocrocite
JPS63170222A (en) Production of lepidocrocite
JP3087808B2 (en) Manufacturing method of magnetic particle powder for magnetic recording
JPS62119118A (en) Production of lepidocrocite
JPH08165501A (en) Fusiform metallic magnetic-grain powder consisting essentially of cobalt and iron and its production
JP2704537B2 (en) Method for producing spindle-shaped goethite particles
JP2704539B2 (en) Method for producing spindle-shaped goethite particles
JP2970705B2 (en) Method for producing acicular magnetic iron oxide particles
JP3166809B2 (en) Method for producing acicular magnetic iron oxide particles
JP2743000B2 (en) Spindle-shaped goethite particles and method for producing the same
JPH01115827A (en) Spindle-shaped goethite particle power and production thereof
JPH02267123A (en) Production of lepidocrosite
KR960010092B1 (en) Process for the preparation of lepidocrosite
JP2852459B2 (en) Method for producing spindle-shaped iron-based metal magnetic particle powder
JPH0532421A (en) Production of needlelike magnetic iron oxide grain powder