JPH03290024A - Two-shaft type intermediate pressure power turbine regeneration type gas turbine - Google Patents

Two-shaft type intermediate pressure power turbine regeneration type gas turbine

Info

Publication number
JPH03290024A
JPH03290024A JP8921790A JP8921790A JPH03290024A JP H03290024 A JPH03290024 A JP H03290024A JP 8921790 A JP8921790 A JP 8921790A JP 8921790 A JP8921790 A JP 8921790A JP H03290024 A JPH03290024 A JP H03290024A
Authority
JP
Japan
Prior art keywords
turbine
pressure
shaft
compressor
pressure turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8921790A
Other languages
Japanese (ja)
Inventor
Isamu Nemoto
勇 根本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP8921790A priority Critical patent/JPH03290024A/en
Publication of JPH03290024A publication Critical patent/JPH03290024A/en
Pending legal-status Critical Current

Links

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PURPOSE:To improve part load thermal efficiency of a two-shaft regeneration type gas turbine by changing the turbine arrangement to maintain the energy distribution ratio of a compressor driving turbines and a power turbine constant regardless of load factor, and automatically controlling the flow rates of the turbines interrelatedly. CONSTITUTION:Compressor driving turbines for driving a compressor C are composed in two stages of a high pressure turbine HT and a low pressure turbine LT to employ an intermediate pressure turbine IT as a power turbine, and the IT is not mechanically coupled to the gas generator shaft. The intermedi ate pressure (power) turbine IT is rotatably arranged on the gas generator shaft to take out the work to the outside by means of a gear train G. The power turbine shaft is provided separate from the gas generator shaft, and a compressor driving low pressure turbine LT is arranged in the downstream of the power turbine IT. The LT is not mechanically coupled to the power turbine shaft to be coupled to the gas generator shaft by means of the gear train G. Thus, the high pressure turbine HT and the low pressure turbine LT have the same rotational speed and a constant rotation ratio.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、車両用、舶用、機械駆動用に適した2軸再生
式ガスタービンに関するものであり、その部分負荷熱効
率を、可変機構を用いず、簡単なタービン配列の変更に
より改善するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a two-shaft regenerative gas turbine suitable for use in vehicles, ships, and mechanical drives. First, it can be improved by simply changing the turbine arrangement.

〔従来の技術〕[Conventional technology]

出力タービンがガス発生機に対し回転自在である2軸ガ
スタービンは、n正トルクが定格点の約2倍になる為、
低速で高トルクを必要とする車両用、舶用、機械駆動用
原動機に適している。
In a two-shaft gas turbine, where the output turbine can rotate freely relative to the gas generator, the n-positive torque is approximately twice the rated point, so
Suitable for vehicles, ships, and mechanical drive engines that require high torque at low speeds.

しかし2軸ガスタービンは、圧縮機駆動タービンと出力
タービンのエネルギ配分が負荷率により変化し、低負荷
に於いて出力タービンへのエネルギ配分が減少するのて
、再生熱交換器を用いてもなお部分負荷熱効率が悪い。
However, in a two-shaft gas turbine, the energy distribution between the compressor drive turbine and the output turbine changes depending on the load factor, and the energy distribution to the output turbine decreases at low loads, so even if a regenerative heat exchanger is used, Part load thermal efficiency is poor.

再 2軸N生式ガスタービンの部分負荷熱効率を改善する為
に、高、低圧タービン間のエネルギ配分を′fえる手段
として、可変1111楕が用いられている。
In order to improve the part-load thermal efficiency of the twin-shaft N-type gas turbine, a variable 1111 ellipse is used as a means of adjusting the energy distribution between the high and low pressure turbines.

従来の可変機構には次の3方式がある。There are three types of conventional variable mechanisms:

)可変出力タービンIn翼 出力タービン入口のnxを可変翼とし1部分負荷に於い
てこれを絞って出力タービン流量を減らし、マ/チング
時の出力タービン膨張比の低下を防ぐ、よってその制御
法は出力タービンの流量制御である。
) Variable output turbine In blade The nx at the output turbine inlet is made a variable blade and is throttled at 1 partial load to reduce the output turbine flow rate and prevent the output turbine expansion ratio from decreasing during machining.Therefore, the control method is This is the flow rate control of the output turbine.

ii )パワートランスファ機横 出力軸とガス発生機軸の間に動力伝達機構を朝み込み、
部分負荷に於いて1軸化を図る事によってサイクル最高
温度を上昇させる。よってその制御法は軸間の伝達トル
クの制御である。
ii) Insert the power transmission mechanism between the power transfer machine lateral output shaft and the gas generator shaft,
The maximum cycle temperature is increased by using a single shaft under partial load. Therefore, the control method is to control the torque transmitted between the shafts.

iii ) K T T 3 mガスタービンスウェー
デンのU n1ted  T urbine社が開発し
ているK T T (K ronogard T ur
bine T rans+*1sson>3軸ガスター
ビン、2軸ガスタービンの出力タービンの後に補助ター
ビンを設け、遊星歯車を通して出力軸と圧縮機軸を駆動
する事により、エンジンにトランスミッション機能をも
たせた構成で、部分負荷時の低燃費と高いトルク比が得
られる。この方式は部分負荷時のマツチングの為に可変
静翼を必要とする。よってその制御法は出力軸と圧縮機
軸への伝達トルクの制御と出力タービン流量の制御であ
る。
iii) KTT 3m gas turbine The KTT (Kronogard Turbine) is being developed by the Swedish company United Turbine.
Bine Trans+*1sson>3-shaft gas turbine, 2-shaft gas turbine. An auxiliary turbine is installed after the output turbine, and the output shaft and compressor shaft are driven through planetary gears. This configuration gives the engine a transmission function. Achieves low fuel consumption and high torque ratio under load. This method requires variable vanes for matching during partial loads. Therefore, the control method is to control the torque transmitted to the output shaft and the compressor shaft, and to control the output turbine flow rate.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の可′Rt!1楕による制御法の欠点は次の如くで
ある。
Conventional OK'Rt! The disadvantages of the control method using one ellipse are as follows.

)出力タービン流量の制御 圧縮機の成る回転数(揚程曲線上)で出口側を絞り圧力
比を上昇させると、圧縮機はサージング領域に近付いて
しまう。従って可変静翼によって圧縮機出口側を絞る出
力タービン流量制御法は、圧縮機のサージ限界により大
幅な燃費改善をなし得ない。
) Control of output turbine flow rate If the pressure ratio is increased by throttling the outlet side at the rotation speed (on the head curve) of the compressor, the compressor will approach the surging region. Therefore, the output turbine flow rate control method that throttles the compressor outlet side using variable stator vanes cannot significantly improve fuel efficiency due to the surge limit of the compressor.

その上、高温、高圧部に可変機構を設ける事は、潤滑力
1しく、また空気漏れの原因ともなり、複雑さを増して
、決して望ましい方法ではない。
Furthermore, providing a variable mechanism in a high temperature and high pressure section is not a desirable method because it reduces the lubricating power, causes air leaks, and increases complexity.

ii )伝達トルクの制御 軸間の伝達トルクの制御は、高速回転部にスリッピング
クラッチ、成るいは遊星歯車と変速要素の多板クラッチ
等を設けねばならず、これも構造複雑である。
ii) Control of Transmitted Torque Control of the transmitted torque between the shafts requires a slipping clutch, or a multi-disc clutch consisting of a planetary gear and a transmission element, etc. to be provided in the high-speed rotating section, and this also has a complicated structure.

本発明は以上の点に鑑みてなされたものである。The present invention has been made in view of the above points.

本発明が解決しようとする課題を現下に列記する。The problems to be solved by the present invention are listed below.

)本発明は、2軸再生式ガスタービンの部分負荷熟効率
を大幅に改善し、同時にその改善手段の簡単化を図る事
を目的とする。
) The object of the present invention is to significantly improve the partial load maturation efficiency of a two-shaft regenerative gas turbine, and at the same time to simplify the improvement means.

11〉部分負荷黙効率を改善する為に、圧縮8!駆動タ
ービンと出力タービンのエネルギ配分比を負荷率に係わ
りなく一定にする。
11> Compression 8! to improve partial load silent efficiency! The energy distribution ratio between the drive turbine and the output turbine is made constant regardless of the load factor.

m)改善手段の簡単化の為に、複雑な可変機構を排し、
タービン配列の変更のみによって自動的にタービン相互
の流量を制御して、そのエネルギ配分比の一定化を実現
する。
m) Eliminate complicated variable mechanisms to simplify improvement measures;
By simply changing the turbine arrangement, the flow rates between the turbines are automatically controlled, and the energy distribution ratio is kept constant.

〔課題を解決する為の手段〕[Means to solve problems]

本発明の構成並びにサイクルを第1121と第2図にボ
す。
The structure and cycle of the present invention are shown in FIG. 1121 and FIG.

図に於いてCは圧lll5.HTは高圧タービン、IT
は中圧タービン、LTは低圧タービンであり、CCは燃
焼器、HEは再生熟交換器、Gは歯車列Pは負荷である
In the figure, C is pressure lll5. HT stands for high pressure turbine, IT
is an intermediate pressure turbine, LT is a low pressure turbine, CC is a combustor, HE is a regeneration mature exchanger, and G is a gear train P is a load.

本発明では、圧縮機駆動タービンを高圧タービンHTと
低圧タービンLTの2段にする。出力タービンは中圧タ
ービンITであり、ITはガス発生機軸と機械的に結合
されていない、第1図の構成では中圧(出力〉タービン
ITはガス発生機軸上に回転自在に置かれ、歯車列Gに
より外部に仕事を取り出す、第2図の構成では、出力タ
ービシ軸はガス発生機軸と別に設けられ、出力タービン
ITの下流に圧縮機駆動低圧タービンLTが置かれる。
In the present invention, the compressor driving turbine is made up of two stages: a high pressure turbine HT and a low pressure turbine LT. The output turbine is an intermediate pressure turbine IT, which is not mechanically connected to the gas generator shaft. In the configuration shown in FIG. 1, the intermediate pressure (output) turbine IT is rotatably placed on the gas generator shaft, In the configuration of FIG. 2, in which work is extracted externally by row G, the output turbine shaft is provided separately from the gas generator shaft, and a compressor-driven low-pressure turbine LT is placed downstream of the output turbine IT.

LTは出力タービン軸と機械的に結合されておらず、歯
車列Gによりガス発生機軸と結きされている。従って高
圧タービンHTと低圧タービンLTは同回転数または回
転比一定である。よって第2図の場合も3軸ではなく、
本質的には2軸である。
LT is not mechanically coupled to the output turbine shaft, but is coupled to the gas generator shaft by a gear train G. Therefore, the high pressure turbine HT and the low pressure turbine LT have the same rotation speed or constant rotation ratio. Therefore, in the case of Figure 2, there are not 3 axes, but
It is essentially two axes.

第2図とKTTB軸ガスタガスタービンは、本発明はm
星歯車装置がなく、低圧タービンLTはガス発生機軸と
のみ結合している事、可変静翼が声い事である。従って
制御法が異なり、本発明では可変機構を排L 自動的に
タービン相互の流量制御が行われる。
FIG. 2 and the KTTB shaft gas turbine are shown in FIG.
There is no star gear system, the low pressure turbine LT is connected only to the gas generator shaft, and the variable stator blades are outstanding. Therefore, the control method is different, and in the present invention, the variable mechanism is eliminated and mutual flow rate control of the turbines is automatically performed.

本発明を一言でいえば、再生式1輪3段タービンの中圧
タービンをフリータービンにして2軸にし、これより出
力を取り出すガスタービンて′ある。
To put it simply, the present invention is a gas turbine that uses a regenerative one-wheel three-stage turbine medium-pressure turbine as a free turbine and has two shafts, from which output is extracted.

〔作用〕[Effect]

本発明の作動原理は、高圧タービンHTと低圧タービン
l Tの軸を結きすitば、タービンの相似、則により
両者の軸流速度が部分負荷に於いて変わる流れの現象を
利用して、高圧、中圧、低圧の3つのタービンへのエネ
ルギ配分比を一定にする事にある。
The operating principle of the present invention is that by connecting the shafts of the high-pressure turbine HT and the low-pressure turbine LT, the high-pressure The goal is to keep the energy distribution ratio to the three turbines, medium pressure and low pressure, constant.

本発明の3つのタービンを構造相似にすれば、タービン
の性能は流量は回転数に比例し、断熱ヘッドは流量に比
例するという相似則が成立する。
If the three turbines of the present invention are made to have similar structures, the law of similarity will hold that the performance of the turbines is that the flow rate is proportional to the rotational speed, and the adiabatic head is proportional to the flow rate.

圧縮機駆動タービンである高圧タービン)ITと低圧タ
ービンLTは機械的に結合しているので、負荷変動に係
わりなく同回転数ないしは回転比−定である。両タービ
ンの大きさは固定であるから部分負荷時でも高、低圧両
タービンの流量は等しく、また断熱ヘッドの比も相似則
により負荷率に係わりなく一定となる。即ち、高圧ター
ビン仕事W□と低圧タービン仕事WLの比をαとすれば
α=WL /Wll =const         
     (] )となる、高、低圧両タービンの流量
が等しければ、その中間に挟まれた中圧(出力)タービ
ンITの流量もこれと等しく、流量が等しければ、そ内
理論断熟ヘッド(エネルギ)も負荷率に係わりなく一定
配分比となる。よって3つのタービンへのエネルギ配分
比も負荷率に関係なく一定となる。故にタービン断熱効
率を一定とすれば、高圧タービン仕事W、と中圧(出力
)タービン仕事WIの比をβとして、次式が成立する。
Since the high-pressure turbine IT (which is a compressor-driving turbine) and the low-pressure turbine LT are mechanically coupled, the rotational speed or rotational ratio is constant regardless of load fluctuations. Since the sizes of both turbines are fixed, the flow rates of both the high and low pressure turbines are equal even under partial load, and the ratio of the adiabatic heads is also constant regardless of the load factor due to the law of similarity. That is, if the ratio of high-pressure turbine work W□ and low-pressure turbine work WL is α, then α=WL /Wll =const
If the flow rates of both the high and low pressure turbines are equal ( ), then the flow rate of the intermediate pressure (output) turbine IT sandwiched between them is also equal to this, and if the flow rates are equal, the internal theoretical calculation head (energy ) also has a constant distribution ratio regardless of the load factor. Therefore, the energy distribution ratio to the three turbines is also constant regardless of the load factor. Therefore, if the turbine adiabatic efficiency is constant, the following equation holds true, where β is the ratio of the high-pressure turbine work W and the intermediate-pressure (output) turbine work WI.

β=W、 /W、−8゜。st           
   (2)以上を基本原理として、本発明の作用を理
論計算に基づいて説明する。計算に用いる記号並びに設
定値を以下に示す。
β=W, /W, -8°. st
(2) With the above as the basic principle, the operation of the present invention will be explained based on theoretical calculations. The symbols and setting values used for calculation are shown below.

Wo 圧縮機仕事 W ca  圧縮機駆動タービン仕事 W、  高圧タービン仕事 W、 中圧(出力)タービン仕事 W、  低圧タービン仕事 Wo 比出力 Q、 燃焼器供給熱量 η  熟効率 Lo 負荷率 rc  圧力比 r? タービン全j1張比 r、  高圧タービン1M張比 r、  中圧(出力)タービン膨張比 rL 低圧タービン膨張比 α=WL/W、  低圧と高圧タービンの仕事の比β−
W、/W、  中圧と高圧タービンの仕事の比G  圧
i機流量 G、l 高圧タービン流量 GL 低圧タービン流量 S、l 高圧タービンノズル面積 SL 低圧タービンノズル面積 空気の比熱比          にc−14燃焼ガス
の比熱比        にt = 1.:’l:’1
mc= (にc−1>/にC m t =(にt−1)/にを 圧縮機部定圧比熱   Cpc= 0.240kca1
% kgタービン部定圧比%   Cp t = 0 
、276 k c a l 7 k gガス定数   
     R= 29.27kgm/kBK再生黙交換
器空気側圧力損失 ΔP A= 0.02P 。
Wo Compressor work W ca Compressor drive turbine work W, High pressure turbine work W, Medium pressure (output) turbine work W, Low pressure turbine work Wo Specific output Q, Combustor supply heat amount η Ripe efficiency Lo Load factor rc Pressure ratio r? Turbine total j1 tension ratio r, High pressure turbine 1M tension ratio r, Medium pressure (output) turbine expansion ratio rL, Low pressure turbine expansion ratio α = WL/W, Work ratio of low pressure and high pressure turbine β-
W, /W, Ratio of work between intermediate pressure and high pressure turbine G Pressure i Machine flow rate G, l High pressure turbine flow rate GL Low pressure turbine flow rate S, l High pressure turbine nozzle area SL Low pressure turbine nozzle area Specific heat ratio of air To c-14 combustion The specific heat ratio of the gas is t = 1. :'l:'1
mc= (to c-1>/to C m t = (to t-1)/to constant pressure specific heat of the compressor Cpc= 0.240kca1
% kg Turbine constant pressure ratio % Cpt = 0
, 276 k c a l 7 k g gas constant
R = 29.27kgm/kBK regenerative silent exchanger air side pressure loss ΔP A = 0.02P.

熱交換器燃焼ガス側圧力損失 △P c= 0.02P
Heat exchanger combustion gas side pressure loss △P c= 0.02P
.

燃焼器圧力損失       Δp ee= 0.03
F1 。
Combustor pressure loss Δp ee = 0.03
F1.

圧縮II断さ効率       ηc=0.82タービ
ン断熱効率      η、=0.85燃焼効率   
       ηcc= 0.99再生然交換器温度効
率    η、、−0.85機械効率        
  η、=0.97計算を簡単にする為、燃料の添加に
よる作動流体の流量変化を省略し、比熱及び比熱比は圧
縮機部、タービン部でそれぞれ一定、また圧縮機とター
ビンの断熱効率もそれぞれ一定とする。以下に本発明の
サイクル計算式を示す。
Compression II shearing efficiency ηc = 0.82 Turbine adiabatic efficiency η, = 0.85 Combustion efficiency
ηcc = 0.99 Regenerative exchanger temperature efficiency η,, -0.85 Mechanical efficiency
η, = 0.97 To simplify the calculation, we omit the change in the flow rate of the working fluid due to the addition of fuel, and assume that the specific heat and specific heat ratio are constant in the compressor and turbine sections, and the adiabatic efficiency of the compressor and turbine is also Each is constant. The cycle calculation formula of the present invention is shown below.

Wc=CpcT1(r”−1) /ηc(3)W11=
77?CF、T、 (] −、、−at)      
      (4)w+=ηtrp、t、、 (1−1
−1−”)            (5)Wし一ηt
Cr+Ti  (1−rL−”)          
                     (6)W
?=η?CPiT+(1、、−m′)(7)α−w、、
′w、  より wc、ww+wL= (1+α)W++       
             (8)WO−η・W・  
              (9)Q+=CPc (
T*−T3) /ηee            (l
o)7.−W。’Q、(II) Pi=P(re Ps=P2−ΔPII P、=Pj−ΔP、c=P、−(ΔPA+ΔP−c)P
s=P、/r* PG=Ps/r+ P 、=Pg/rL=Pm+ΔP。
Wc=CpcT1(r”-1)/ηc(3)W11=
77? CF, T, (] -,, -at)
(4) w+=ηtrp, t, (1-1
−1−”) (5) W and ηt
Cr+Ti (1-rL-”)
(6)W
? =η? CPiT+(1,,-m')(7)α-w,,
'w, from wc, ww+wL= (1+α)W++
(8) WO-η・W・
(9) Q+=CPc (
T*-T3) /ηee (l
o)7. -W. 'Q, (II) Pi=P(re Ps=P2-ΔPII P,=Pj-ΔP,c=P,-(ΔPA+ΔP-c)P
s=P,/r*PG=Ps/r+P,=Pg/rL=Pm+ΔP.

r’ s = P (12〉 〈13) (10 (15) (16〉 (17) 〈18〉 T、−T、il+ (r″″’−1)/77−1T3=
(1−η、)T2+η、、T。
r' s = P (12><13) (10 (15) (16> (17) <18> T, -T, il+ (r″″'-1)/77-1T3=
(1-η,)T2+η,,T.

Ts−Tt (1,−77741−r++−”) IT
s=Ti 11−77? (1−r、−++t) )T
I−TI  (177T  (1rt−1)IT・=(
1−η5t)T++ηMET2※設計点性能の計算 設計点に於いて次の如く仮定する。
Ts-Tt (1,-77741-r++-”) IT
s=Ti 11-77? (1-r,-++t) )T
I-TI (177T (1rt-1)IT・=(
1-η5t) T++ ηMET2 * Calculation of design point performance The following assumptions are made at the design point.

Pに1.033kB、/cm’   rc=5T、=2
88K      T、=1200KT ツ、 T +
 −r cを仮定すれば、高圧タービン1張(20) (2]) (22) (23) (24) (25) 比r8はη、Wc、c=Weより求まる。左記の式に(
8)式を代入すれば Wc=η、(1+α)W、l 故に CpcTI(r” 1 ) =77m’7c’7yCpt’L(1−rx−”) (
1−+α)        (26)次に中圧(出力)
タービン膨張比r+を求める。
1.033kB in P, /cm' rc=5T, =2
88K T, = 1200KT TS, T +
-r c, high pressure turbine 1 tension (20) (2]) (22) (23) (24) (25) The ratio r8 can be found from η, Wc, and c=We. In the formula on the left (
8) Substituting the formula, Wc=η, (1+α)W, l Therefore, CpcTI(r” 1 ) = 77m'7c'7yCpt'L(1-rx-") (
1-+α) (26) Next, medium pressure (output)
Determine the turbine expansion ratio r+.

WT=Wcc+W + より W+=Wt−Waa=Wy −(1+a ) WN77
?CPI75  (1−rr−”)  =ηyCpt’
L  <  1 − rt−−t)77yCptT+ 
(1r u−t)(1+α)(1−η丁子η?r□−”
)  (1r、す゛〉−(1−r?す゛)   (1r
u−”)(1+α、)低圧タービン膨張比r、は(19
)式よりrL−r丁/ (rHrI)        
                         
         (29)以上の式を用い α−0,
8と仮定すると設計点に於ける各タービンのF張比は、 r++#1.53   r+!;】 925   rL
”;1.583タービン全I!ij張比はrt#4.6
6となる。
From WT=Wcc+W+, W+=Wt-Waa=Wy-(1+a) WN77
? CPI75 (1-rr-”) = ηyCpt'
L<1-rt--t)77yCptT+
(1r ut) (1+α) (1-η clove η?r□-”
) (1r, Su゛〉-(1-r?Su゛) (1r
u-”)(1+α,)low-pressure turbine expansion ratio r, is (19
) From the formula, rL−rD/ (rHrI)

(29) Using the above equation, α−0,
8, the F tension ratio of each turbine at the design point is r++#1.53 r+! ;] 925 rL
”;1.583 turbine total I!ij tension ratio is rt#4.6
It becomes 6.

各タービンのWr3張比が判れば、(20)〜(25)
式より各状態の温度が判り、(3)〜(11)式より設
計点に於ける熱効率η及び比出力W0を得られる。
If you know the Wr3 tension ratio of each turbine, (20) to (25)
The temperature in each state can be determined from the equations, and the thermal efficiency η and specific output W0 at the design point can be obtained from equations (3) to (11).

計算結果は、 η#o、348    We#37.463keml/
kgとなった。また設計点でβを求めて置くと、β=W
、/W、# 1 、37 同じ計算条件で算出した従来型2軸再生サイクルの設計
点に於けるr。、rr及びη、woは、r11?2.2
27  rL=2.092η#0.36   woL、
3s、 698kcal/kg本発明は圧縮機駆動ター
ビンがITとLTの2段である為、所要の圧力比rcを
得る為の圧縮機駆動タービン膨張比(r MX r L
)が従来型2軸のr、より大きくなり、その分出力ター
ビン膨張比r、が小さくなるので、設計点に於けるηと
wpが従来型2紬再生サイクルより僅かに低下する。
The calculation result is η#o, 348 We#37.463keml/
kg. Also, if β is determined at the design point, β=W
, /W, # 1, 37 r at the design point of the conventional two-axis regeneration cycle calculated under the same calculation conditions. , rr and η, wo are r11?2.2
27 rL=2.092η#0.36 woL,
3s, 698 kcal/kg In the present invention, since the compressor driving turbine has two stages, IT and LT, the compressor driving turbine expansion ratio (r MX r L
) is larger than the conventional two-shaft regeneration cycle, and the output turbine expansion ratio r is correspondingly smaller, so η and wp at the design point are slightly lower than in the conventional two-shaft regeneration cycle.

牙部分負荷性能の計算 次に部分負荷時のマツチング計算を示す、まず部分負荷
に於ける圧力比re  (ガス発生機回転数)を仮定し
た場合の各タービン11張比を求める。
Calculation of Partial Load Performance Next, we will show the matching calculation at partial load.First, we will calculate the tension ratio of each turbine 11 assuming the pressure ratio re (gas generator rotational speed) at partial load.

全タービンの仕事は高、中、低圧タービンの仕事の和で
あるから5 W、−W。+W、+WL(30) (30〉式は単位流量当りの仕事を示す式であるから、
3つのタービン流量がマツチングしている事を意味して
いる。(30)式に(1)(2)式を代入すると、 W、=(1+α+β)W、             
        (3])(31)式に(4)(7)式
を代入すると、rzycr+T+ (]−rtパ) =
ηTCPITI (1+a+β) (1−r、−”)中
圧(出力)タービン膨張比rIは(2)式のW、=βW
Hよ リ フ7 y Cp +丁h(J  rrすl)=β77y
cr+T1 (]  rr*”’)低圧タービン膨張比
rLは(29)式より得られる1次に部分負荷に於ける
各圧力比毎のサイクル最高温度T、は、出力マツチング
の式であると同時に、圧縮機と圧縮機駆動タービンの流
量が等しい事を意味する(26)式を変形して、(32
)式より得られf、: r yを用いて、各圧力比毎の
T4を(34)式から求めれば、流量と出力のマツチン
グ条件を同時に満たすサイクル最高温度が得られる。
The work of the total turbine is the sum of the work of the high, medium, and low pressure turbines, so 5 W, -W. +W, +WL (30) (30> Formula is a formula that indicates work per unit flow rate, so
This means that the three turbine flow rates are matched. Substituting equations (1) and (2) into equation (30), W, = (1+α+β)W,
(3]) Substituting equations (4) and (7) into equation (31), rzycr+T+ (]-rtp) =
ηTCPITI (1+a+β) (1-r, -”) The intermediate pressure (output) turbine expansion ratio rI is W in equation (2), = βW
H riff 7 y Cp + dingh (J rrsl) = β77y
cr+T1 (] rr*”') The low pressure turbine expansion ratio rL is obtained from equation (29). The cycle maximum temperature T for each pressure ratio at the primary partial load is the output matching equation, and at the same time, Equation (26), which means that the flow rates of the compressor and the compressor-driving turbine are equal, is transformed into (32).
) is obtained from the equation (34), and T4 for each pressure ratio is determined from the equation (34), the maximum cycle temperature that simultaneously satisfies the matching conditions of flow rate and output can be obtained.

各圧力比毎のr、r’+、rL、T、が判れば、先述の
如<(11)式より熱効率ηが2 (9)式より比出力
W0が得られる。
If r, r'+, rL, and T for each pressure ratio are known, then the thermal efficiency η is 2 from the equation (11) as described above.The specific output W0 can be obtained from the equation (9).

次に部分負荷に於ける各圧力比毎の圧縮機流量Gをター
ビン流量から求める。計算を簡単にする為、各タービン
の反動度を零としノズルに於いて段の全膨張が行われる
ものとする。燃焼ガスの臨界圧力比を 0542とすれ
ば、高圧タービン出口温度に於いて、 (1/r、)<0.542  の時 (1/r、)>0.542  の時 低圧タービンLT側でも (1/rL)<0.542  の時 (1/r、)>0.542  の時 とし、高圧タービンノズル流量G8と低圧タービンノズ
ル流量GLを求めると、 よって、設計点に於いて、単位重量流量当りの両タービ
ンノズル面積S□、S、を求力ておけば、各圧力比毎の
高圧タービシa M c −、低圧タービン流iGLを
計算する事ができる。
Next, the compressor flow rate G for each pressure ratio at partial load is determined from the turbine flow rate. To simplify the calculations, it is assumed that the recoil of each turbine is zero and that full stage expansion occurs at the nozzle. If the critical pressure ratio of combustion gas is 0542, then at the high-pressure turbine outlet temperature, when (1/r,)<0.542, when (1/r,)>0.542, even on the low-pressure turbine LT side ( 1/rL)<0.542 When (1/r,)>0.542, calculate the high pressure turbine nozzle flow rate G8 and the low pressure turbine nozzle flow rate GL. Therefore, at the design point, the unit weight flow rate By calculating the respective turbine nozzle areas S□, S, it is possible to calculate the high-pressure turbidity a Mc- and the low-pressure turbine flow iGL for each pressure ratio.

G、、GLを計算してみると部分負荷に於いてはG□<
GLとなる。高圧タービンノズル入口状態はマツチング
条件により定まっているから(35)式により算出され
る流量より多くのガスが高圧タービンノズルを通過する
事はできない、よって圧縮W1流量は G−GIIとし
た。
When calculating G,,GL, at partial load, G□<
Becomes GL. Since the high-pressure turbine nozzle inlet state is determined by the matching conditions, more gas than the flow rate calculated by equation (35) cannot pass through the high-pressure turbine nozzle. Therefore, the compression W1 flow rate was set as G-GII.

各圧力比毎の負荷率L0は次式より求まる。The load factor L0 for each pressure ratio is determined from the following equation.

1−o=w0XGz’設置1値 第3[ilに各圧力比reに対する本発明の熱効率ηと
負荷率L0の関係を実線で示す。第3図に於いて点線で
示したη及びLoは、同じ計算条件で求めた従来型2軸
再生サイクルのものである0図から明らかに本発明は部
分負荷熱効率を大幅に改善している事が判る。
1-o=w0 η and Lo shown by dotted lines in Figure 3 are for the conventional two-shaft regeneration cycle obtained under the same calculation conditions.From Figure 0, it is clear that the present invention significantly improves the partial load thermal efficiency. I understand.

また第4図に本発明のタービン入口温度T、と出口温度
T、を実線で、従来の2軸再生サイクルのタービシ入口
温度T、と出口温度T6を点線て示す、第4図より第3
図の熱効率ηの差はサイクル最高温度T、の差によ1て
生じている事か判る。
Further, FIG. 4 shows the turbine inlet temperature T and outlet temperature T of the present invention as solid lines, and the turbine inlet temperature T and outlet temperature T6 of the conventional two-shaft regeneration cycle as dotted lines.
It can be seen that the difference in thermal efficiency η in the figure is caused by the difference in the maximum cycle temperature T.

但し本発明では圧力比がr c < 2となるとタービ
ン出口温度T7が上昇するのて、再生熟交換器HEの材
料の問題が生じる可能性がありrCて2ではサイクルi
高温度を押えるべきかも知れない。
However, in the present invention, when the pressure ratio becomes r c < 2, the turbine outlet temperature T7 increases, which may cause a problem with the material of the regeneration ripening exchanger HE.
Maybe I should keep the temperature down.

次に第5図に本発明に於ける各圧力比毎の高圧タービン
流量比G、(即ち圧縮m流量比G〉と、低圧タービン流
量比GLを示す0図から明らかにG ++ < G L
である。
Next, FIG. 5 shows the high pressure turbine flow rate ratio G for each pressure ratio in the present invention (that is, the compression m flow rate ratio G) and the low pressure turbine flow rate ratio GL, which clearly shows that G ++ < G L
It is.

しかし実際には、連続の原理から高圧タービン流量と低
圧タービン流量は等しくなければならない。本発明の部
分負荷性能を知る為に導いた各圧力比@nr。 rl、
r、、及びT、は、流量と出力のマツチング条件を同時
に満たしている。にも拘わらず、G s <−、G L
となる。
However, in reality, the high pressure turbine flow rate and the low pressure turbine flow rate must be equal due to the principle of continuity. Each pressure ratio @nr derived to understand the partial load performance of the present invention. rl,
r, and T simultaneously satisfy the matching conditions for flow rate and output. Nevertheless, G s <-, G L
becomes.

このタービン流量計算が11判る事は、圧縮機駆動ター
ビンを2段にすると、タービンの空力的相似則により部
分負荷では、低圧タービ〉・L T側で軸流速度(流量
係数)が低下し、GLからG□まで流量が減るのである
This turbine flow rate calculation shows that when the compressor drive turbine is made into two stages, the axial flow velocity (flow coefficient) decreases on the low pressure turbine side at partial load due to the aerodynamic similarity law of the turbine. The flow rate decreases from GL to G□.

タービンの部分負荷に於けるこのような流れの現象は、
多段圧縮機が、低速で初段近くでは流量係数が小さく、
正の失速か起こるのとちょうど逆の現象である。
This flow phenomenon at partial load of the turbine is
A multi-stage compressor has a small flow coefficient near the first stage at low speed.
This is exactly the opposite of what happens when a positive stall occurs.

以上から本発明は、出力タービンを挟んで、圧縮機駆動
タービンを2段とする事により、可変機構を用いず、自
動的にタービン段内のガスの流れを制御できるので、部
分負荷に於いて出力タービン膨張比rIが高い所でマツ
チングするのである。
From the above, the present invention has a two-stage compressor-driving turbine with an output turbine in between, and can automatically control the gas flow within the turbine stage without using a variable mechanism. Matching occurs where the output turbine expansion ratio rI is high.

換言すれば、部分負荷に於ける本発明のマツチング条件
は、2軸ガスタービンのそれではなく、1軸ガスタービ
ンと似たマツチング条件となるのである。
In other words, the matching conditions of the present invention under partial load are similar to those of a single-shaft gas turbine, rather than those of a two-shaft gas turbine.

第3図に示したη及びり。の計算は、タービン断熱効率
η1、機械効率η、を一定として、圧力比meを変化さ
せたものである。よって第3図では本発明と従来型2軸
再生サイクルのガス発生機の各回転数毎のピーク効率及
びピーク出力を比較している事になる。つまり第3図は
、各負荷率に対する最低燃費率の比較に対応する。
η and η shown in FIG. The calculation is performed by changing the pressure ratio me while keeping the turbine adiabatic efficiency η1 and mechanical efficiency η constant. Therefore, in FIG. 3, the peak efficiency and peak output at each rotation speed of the gas generator of the present invention and the conventional two-shaft regeneration cycle are compared. In other words, FIG. 3 corresponds to a comparison of the lowest fuel efficiency rates for each load factor.

ガス発生機が成る回転数にある時、出力タービン回転数
が低下しても、出力タービンITiこ配分される理論断
熱ヘッドの比(ニオ・ルギの比)Cま、本発明の原理に
より変わらな聾)、シカ)し出力タービンの効率は低下
するので、コンボーオ・ント全体の熱効率及び出力は減
少する。
When the gas generator is at the rotational speed of Since the efficiency of the turbine decreases, the thermal efficiency and power output of the entire combo unit decreases.

ガス発生機回転数一定の下で出力タービン回転数を変え
て性能を計算する為には、特定の圧縮機、特定のタービ
ンの特性曲線によらなければならないので、ここでは省
略する。
In order to calculate the performance by changing the output turbine rotation speed while the gas generator rotation speed is constant, it is necessary to use the characteristic curve of a specific compressor and a specific turbine, so we will omit it here.

〔発明の効果〕〔Effect of the invention〕

第3図から一例として負荷率20%近傍の熱効率を取り
出してみると、 従来の2軸再生サイクルでは L0=0.196  の時   η=0.2047本発
明では、 L0=0.197  の時   η=0.2773従っ
てその熱効率の差は0.0726  故に本発明は2軸
再生サイクルの部分負荷熱効率を負荷率20%近傍で約
35 、5 p、; 改善できる事になる。
Taking the thermal efficiency near 20% load factor from Figure 3 as an example, in the conventional two-axis regeneration cycle, when L0 = 0.196, η = 0.2047, and in the present invention, when L0 = 0.197, η =0.2773 Therefore, the difference in thermal efficiency is 0.0726 Therefore, the present invention can improve the partial load thermal efficiency of a two-shaft regeneration cycle by about 35.5 p; at a load factor of around 20%.

従来の固定Wpr&2軸ガスタービンで、高、低圧ター
ビンへのエネルギ配分比を一定にしようとすれば、部分
負荷に於いてサイクル最高温度が極端に過Hとなり実現
できない。また従来の可変出力タービン静翼でこれを実
現しようとすれば、第5図から判るように出力タービン
流量を大量に絞らねばならず、圧縮機特性に反する事に
なる。
In a conventional fixed Wpr & two-shaft gas turbine, if it is attempted to maintain a constant energy distribution ratio to the high and low pressure turbines, the maximum cycle temperature will be extremely excessive under partial load, making it impossible to achieve this. Furthermore, if this were to be achieved using the conventional variable output turbine stationary blades, the output turbine flow rate would have to be reduced by a large amount, as seen from FIG. 5, which would go against the compressor characteristics.

以上から本発明は、タービンの相似則を利用して、3つ
のタービンの流れを1軸ガスターヒンと同様にする事に
より、各タービンへのエネルギ配分比を一定にできるの
で、可変11!横を用いずに、2軸再生式ガスタービン
の部分負荷熱効率を従来になく大幅に改善できるのであ
る。
From the above, the present invention makes use of the similarity law of turbines to make the flow of three turbines similar to that of a single-shaft gas turbine, thereby making it possible to keep the energy distribution ratio to each turbine constant. The partial load thermal efficiency of a two-shaft regenerative gas turbine can be improved to a greater extent than ever before without using a lateral shaft.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図は本発明の構成並びにサイクルを示す図
、第3図は本発明と従来型2軸再生サイクルの圧力比r
eに対する勢効率ηと負荷率り。 の関係を示す図、第4図は本発明と従来型2軸再生サイ
クルのタービン入口温度T、と出口温度(T6、T、)
を示す図、第5図はノズ/L流量かt。 算出した高圧タービ〉・流量比G8と低圧ターし7流量
比GLを示す図。 第1図、第2図に於いて、C圧縮機、HT:高圧タービ
ン、IT  中圧(出力)タービン、L T  低圧タ
ービン、CC−燃焼器、l−I E  再生熱交換器、
G 歯車列、P 負荷。
Figures 1 and 2 are diagrams showing the configuration and cycle of the present invention, and Figure 3 shows the pressure ratio r of the present invention and the conventional two-shaft regeneration cycle.
Force efficiency η and load factor ri for e. Figure 4 shows the relationship between the turbine inlet temperature T and outlet temperature (T6, T,) of the present invention and the conventional two-shaft regeneration cycle.
Figure 5 shows the nozzle/L flow rate. A diagram showing the calculated high pressure turbine flow rate ratio G8 and low pressure turbine flow rate ratio GL. In Fig. 1 and Fig. 2, C compressor, HT: high pressure turbine, IT: intermediate pressure (output) turbine, LT: low pressure turbine, CC: combustor, l: IE: regenerative heat exchanger,
G gear train, P load.

Claims (1)

【特許請求の範囲】[Claims] 高圧、中圧、低圧からなるタービン段の高圧タービンと
低圧タービンを圧縮機と機械的に結合して圧縮機駆動タ
ービンとし、中圧タービンをガス発生機軸に対し回転自
在にして出力タービンとし、圧縮機出口と圧縮機駆動高
圧タービン入口を再生熱交換器、燃焼器の順に結び、圧
縮機駆動低圧タービンを出たガスを該再生熱交換器に送
って排熱を回収する事によりなる2軸型中圧出力タービ
ン再生式ガスタービン。
A high-pressure turbine and a low-pressure turbine in turbine stages consisting of high-pressure, intermediate-pressure, and low-pressure turbines are mechanically coupled to a compressor to form a compressor-driven turbine, and the intermediate-pressure turbine is rotatable about the gas generator shaft to form an output turbine, which compresses A two-shaft type that connects the machine outlet and compressor-driven high-pressure turbine inlet to a regenerative heat exchanger and then a combustor, and sends the gas exiting the compressor-driven low-pressure turbine to the regenerative heat exchanger to recover exhaust heat. Medium pressure power turbine regenerative gas turbine.
JP8921790A 1990-04-05 1990-04-05 Two-shaft type intermediate pressure power turbine regeneration type gas turbine Pending JPH03290024A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8921790A JPH03290024A (en) 1990-04-05 1990-04-05 Two-shaft type intermediate pressure power turbine regeneration type gas turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8921790A JPH03290024A (en) 1990-04-05 1990-04-05 Two-shaft type intermediate pressure power turbine regeneration type gas turbine

Publications (1)

Publication Number Publication Date
JPH03290024A true JPH03290024A (en) 1991-12-19

Family

ID=13964556

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8921790A Pending JPH03290024A (en) 1990-04-05 1990-04-05 Two-shaft type intermediate pressure power turbine regeneration type gas turbine

Country Status (1)

Country Link
JP (1) JPH03290024A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003083085A (en) * 2001-09-07 2003-03-19 Tsukishima Kikai Co Ltd Method and facility for obtaining electric power and heat energy from digested gas
JP2010249134A (en) * 2009-04-15 2010-11-04 General Electric Co <Ge> System involving multi-spool generator
JP2011140899A (en) * 2010-01-07 2011-07-21 Hitachi Ltd Method of modifying gas turbine plant

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003083085A (en) * 2001-09-07 2003-03-19 Tsukishima Kikai Co Ltd Method and facility for obtaining electric power and heat energy from digested gas
JP2010249134A (en) * 2009-04-15 2010-11-04 General Electric Co <Ge> System involving multi-spool generator
JP2011140899A (en) * 2010-01-07 2011-07-21 Hitachi Ltd Method of modifying gas turbine plant

Similar Documents

Publication Publication Date Title
US7168235B2 (en) Highly supercharged regenerative gas turbine
US4077748A (en) Turbomachine plant comprising coupled gas turbine, synchronous electrical machine and compressor units having optional operating modes
US4117343A (en) Turbo-machine plant having optional operating modes
CN105164385B (en) Compressor system
US4404805A (en) Method of and system for power generation by supercharged internal combustion engine
US5832714A (en) Gas turbine engine having flat rated horsepower
US20170370290A1 (en) Gas turbine engine
US10107199B2 (en) Aero boost—gas turbine energy supplementing systems and efficient inlet cooling and heating, and methods of making and using the same
JPH073181B2 (en) Gas turbine prime mover and method for increasing output of gas turbine prime mover
EP3081765A1 (en) Engine bypass valve
JP6263170B2 (en) Combination of two gas turbines to drive a load
US11187150B2 (en) Combined cycle heat engine comprising a first and second gas turbine engine
JPS5946326A (en) Gas turbine engine power apparatus
JP2016530451A (en) High pressure ratio twin spool industrial gas turbine engine
CN210003340U (en) multistage expansion generator start-up phase exhaust gas regulation system
CN107476996B (en) Generating set
JPH03290024A (en) Two-shaft type intermediate pressure power turbine regeneration type gas turbine
CN216198320U (en) Multi-shaft turbine compression expander
EP0087302A1 (en) Gas turbine engine operating method and apparatus therefor
JP5195485B2 (en) Multistage turbo compressor
US11933225B2 (en) Fuel management system
JPH0586899A (en) Bispool gas-turbine engine
EP0381755A4 (en) High pressure intercooled turbine engine
JPS63105238A (en) Two-shaft regenerative turbine providing variable stator blade in inlet of turbine driving compressor
Stone et al. Part load fuel consumption problem of open cycle gas turbines