JPH03288801A - Optical element, its production, and display element using the same - Google Patents

Optical element, its production, and display element using the same

Info

Publication number
JPH03288801A
JPH03288801A JP2090802A JP9080290A JPH03288801A JP H03288801 A JPH03288801 A JP H03288801A JP 2090802 A JP2090802 A JP 2090802A JP 9080290 A JP9080290 A JP 9080290A JP H03288801 A JPH03288801 A JP H03288801A
Authority
JP
Japan
Prior art keywords
press molding
melting point
optical element
glass substrate
low melting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2090802A
Other languages
Japanese (ja)
Other versions
JP3018387B2 (en
Inventor
Hideto Monju
秀人 文字
Kiyoshi Kuribayashi
清 栗林
Makoto Umetani
誠 梅谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2090802A priority Critical patent/JP3018387B2/en
Priority to EP19910302211 priority patent/EP0450780A3/en
Priority to US07/678,155 priority patent/US5276538A/en
Publication of JPH03288801A publication Critical patent/JPH03288801A/en
Application granted granted Critical
Publication of JP3018387B2 publication Critical patent/JP3018387B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)
  • Joining Of Glass To Other Materials (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

PURPOSE:To obtain an optical element increasing the aperture rate of picture elements and consisting of the array of fine optical elements constituting a bright screen by forming a low melting point (MP) glass layer on a transparent glass substrate with a high MP and executing the hot press molding of the whole layers by plural press molding metal molds coated with a chemically stabilized thin film. CONSTITUTION:The plane press molding metal mold, the high MP transparent glass substrate 3 on which the MP glass layer 4 is formed and the press molding metal mold forming concave microlens shapes on its surface are successively set up from the uppermost layer and the hot press molding of these layers is executed in a molding machine held at atmosphere in which nitrogen gas is allowed to flow in the rate of 20 liters/min. When the layers are gradually cooled down to 300 deg.C together with the cooling of the press molding metals after the press molding, the fine optical element forming the glass layer 4 and a convex lens array 7 on the substrate 3 is obtained. The radius of curvature of the array 7 is determined so that light is focused on the position of a transparent electrode 9 constituting a picture element. Since light on an aperture part or light in the vicinity of the aperture part are concentrated into the aperture part of each picture element, the aperture rate of the picture element is practically increased and a display having a bright screen and high picture quality can be obtained.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、液晶デイスプレィ、プラズマデイスプレィ、
エレクトロルミネセンスデイスプレィ等の表示素子に使
用する微小光学素子のアレーよりなる光学素子およびそ
の製造方法ならびにこれを用いた表示素子に関する。
[Detailed Description of the Invention] Industrial Application Field The present invention is applicable to liquid crystal displays, plasma displays,
The present invention relates to an optical element comprising an array of microscopic optical elements used in a display element such as an electroluminescent display, a method for manufacturing the same, and a display element using the same.

従来の技術 近年、CRT (CATHOD  RAY  TUBE
、陰極線管)にかわる薄型の表示素子として、種々のも
のが提案されており、大表示容量でカラー表示ができる
薄型の表示素子として、各画素ごとに薄膜トランジスタ
(TPT)を形成したアクティブマトリックス方式の液
晶デイスプレィがとりわけ注目されている。
Conventional technology In recent years, CRT (CATHOD RAY TUBE)
Various thin display elements have been proposed as an alternative to cathode ray tubes (e.g., cathode ray tubes).As a thin display element capable of color display with a large display capacity, an active matrix type display element in which a thin film transistor (TPT) is formed in each pixel has been proposed. Liquid crystal displays are attracting particular attention.

このような表示素子では、光源からの光は各画素の開口
部を通して透過されるので、光の透過率は画素の開口率
に依存する。正相精度の液晶デイスプレィにおいて、非
常に小さな画素が高密度に形成される場合、TPTの大
きさを小さくするには限界があり、画素に占めるTPT
の面積は相対的に大きくなる。このことは言い換えれば
、光が透過する開口部が小さくなり(開口率の低下)、
透過光量が減少する。透過光量の減少により、画面が暗
くなり表示画質が悪くなる。
In such a display element, light from a light source is transmitted through the aperture of each pixel, so the light transmittance depends on the aperture ratio of the pixel. In a liquid crystal display with positive phase accuracy, when very small pixels are formed at high density, there is a limit to reducing the size of TPT, and the TPT that occupies a pixel
The area of will be relatively large. In other words, the aperture through which light passes becomes smaller (decreased aperture ratio),
The amount of transmitted light decreases. Due to the decrease in the amount of transmitted light, the screen becomes dark and the display image quality deteriorates.

このことを解決する方法として、TPT形威形成要な配
線や遮光体によってこれまで吸収されていた光を、レン
ズによって画素の開口部に集光して有効利用する方法が
考えられている。例えば、特開昭60−165624号
公報にはガラス基板それ自身に従来からの機械的な加工
を施して球面形状のマイクロレンズを形成するとの記載
がある。また特開平1−189685号公報には、光学
研磨したガラス基板に熱変形樹脂を圧着押圧成形法でマ
イクロレンズを形成するとの記載がある。
As a method to solve this problem, a method has been considered in which the light that was previously absorbed by the wiring and the light shielding body that are essential to the TPT type formation is effectively utilized by condensing it into the aperture of the pixel using a lens. For example, Japanese Patent Application Laid-Open No. 165624/1983 describes that spherical microlenses are formed by subjecting the glass substrate itself to conventional mechanical processing. Furthermore, Japanese Patent Laid-Open No. 1-189685 describes that microlenses are formed on an optically polished glass substrate by press-molding a thermally deformable resin.

発明が解決しようとする課題 しかしながら特開昭60−165624号公報の場合、
例えば3インチサイズの超高密度の液晶デイスプレィに
おいては、約100万個のマイクロレンズが必要であり
、約100万個にもおよぶ非常に多くのマイクロレンズ
をこのような方法で、加工することは極めて難しく、ま
たそのようなマイクロレンズを量産することは不可能に
近い。一方、特開平1−189685号公報の場合、マ
イクロレンズ部分の材料が有機化合物である樹脂を用い
ている。−船釣に有機化合物である樹脂はガラス基板と
比べて熱膨張係数が一桁近く大きく、温度変化による膨
張や収縮の程度が大きい。したがってガラス基板上に形
成したマイクロレンズは、長期間の使用によって、画素
とマイクロレンズとの高精度の位置がずれたり、レンズ
の曲率半径が変化したり、マイクロレンズがガラス基板
から剥離するといったことが起こる。
Problems to be Solved by the Invention However, in the case of JP-A-60-165624,
For example, a 3-inch ultra-high-density liquid crystal display requires approximately 1 million microlenses, and it is difficult to process such a large number of microlenses, approximately 1 million microlenses. It is extremely difficult and nearly impossible to mass-produce such microlenses. On the other hand, in the case of JP-A-1-189685, the material of the microlens portion is a resin which is an organic compound. -Resins, which are organic compounds for boat fishing, have a coefficient of thermal expansion nearly an order of magnitude higher than glass substrates, and are more susceptible to expansion and contraction due to temperature changes. Therefore, when using a microlens formed on a glass substrate for a long period of time, the precise position between the pixel and the microlens may shift, the radius of curvature of the lens may change, or the microlens may peel off from the glass substrate. happens.

本発明は上記課題を解決するもので、明るい画面を有す
る液晶デイスプレィ、エレクトロルミネッセンスデイス
プレィ等の表示素子に使用する熱変形や剥離の恐れのな
い微小光学素子のアレーよりなる光学素子およびその製
造方法ならびにこれを用いた表示素子を提供することを
目的とする。
The present invention solves the above-mentioned problems, and is an optical element comprising an array of microscopic optical elements without fear of thermal deformation or peeling, used in display elements such as liquid crystal displays and electroluminescent displays with bright screens, and a method for manufacturing the same. The present invention also aims to provide a display element using the same.

課題を解決するための手段 本発明は上記目的を遠戚するために、高融点の透明ガラ
ス基板に低融点ガラス層を形成し、化学的に安定な薄膜
で被覆されたプレス成形用金型により熱間でプレス底形
することにより高融点の透明ガラス基板上に低融点ガラ
スからなる所望の微小光学素子をアレー状に形成した光
学素子を製造し、表示物質を保持する表示素子において
各画素に対応するように、前記製造方法によって得られ
た光学素子を配してなるものである。
Means for Solving the Problems In order to achieve the above object, the present invention uses a press molding die in which a low melting point glass layer is formed on a high melting point transparent glass substrate and is coated with a chemically stable thin film. An optical element is manufactured by forming an array of desired microscopic optical elements made of low melting point glass on a high melting point transparent glass substrate by hot press bottom shaping, and then each pixel in a display element holding a display material is manufactured. Correspondingly, the optical element obtained by the above manufacturing method is arranged.

作用 本発明は上記した構成により、透明ガラス基板の上に形
成した低融点ガラスからなる微小光学素子アレーによっ
て、開口部及び開口部近傍の光が各画素の開口部に集光
される。従って実質的に、画素の開口率が大きくなって
、明るい画面、高い表示画質のデイスプレィにすること
ができる。また所望の微小光学素子アレーの形状に加工
したプレス成形用金型で熱間成形されることによって、
高精度の微小光学素子アレーおよび表示素子を極めて量
産性よく製造することができる。
Operation According to the above-described configuration, the present invention condenses light at and near the aperture onto the aperture of each pixel by a micro optical element array made of low-melting glass formed on a transparent glass substrate. Therefore, the aperture ratio of the pixels is substantially increased, making it possible to provide a bright screen and a display with high display image quality. In addition, by hot forming with a press molding die processed into the shape of the desired micro optical element array,
High-precision micro optical element arrays and display elements can be manufactured with extremely high mass productivity.

実施例 以下、本発明の実施例について第1図〜第4図を参照し
ながら説明する。
EXAMPLES Hereinafter, examples of the present invention will be described with reference to FIGS. 1 to 4.

実施例1゜ 第1図に示すように、プレス成形用金型の母材lとして
超硬合金(WC−57iC−8Co)を50+++m 
X 40gX 10++nn角の平板に切断し、超微細
なダイヤモンド粉末を用いてラッピングおよびポリッシ
ングして、表面の表面粗さ(RMS)が約3nmの鏡面
にした。鏡面となった母材1に、曲率半径が40011
mの半球状のダイヤモンド圧子を高精度に数値制御した
押し込み装置で、凹状のマイクロレンズ型を40μmピ
ッチで格子状に約80万個形成した。この上にスバンタ
法で白金−イリジウム−オスミウム合金(Pt−1r−
Os)の薄膜2を被覆して、プレス成形用金型とした。
Example 1゜As shown in Fig. 1, 50 +++ m of cemented carbide (WC-57iC-8Co) was used as the base material l of the press molding die.
It was cut into a flat plate of x 40 g x 10++ nn square, and was lapped and polished using ultrafine diamond powder to give a mirror surface with a surface roughness (RMS) of about 3 nm. The base material 1 has a mirror surface, and the radius of curvature is 40011.
Approximately 800,000 concave microlens shapes were formed in a lattice pattern with a pitch of 40 μm using an indentation device using highly accurate numerical control of a hemispherical diamond indenter. On top of this, platinum-iridium-osmium alloy (Pt-1r-
A thin film 2 of Os) was coated to prepare a mold for press molding.

第2図において、3は表面を研磨した高融点の透明ガラ
ス基板(コーニング社製# 7059.40■×30m
X1.1鴫)であり、4は低融点ガラス層である。シリ
カ(S10□)30重量パーセント、酸化バリウム(B
ad)50重量パーセント、ホウ酸(BzOi)15重
量パーセント、残部が微量成分からなるホウケイ酸バリ
ウムガラスのターゲットをスパッタリングして、高融点
の透明ガラス基板3に低融点ガラス層4を10μmの厚
みでコーティングした。5は平面状のプレス成形用金型
の母材であり、6は母材5の上の白金−イリジウム−オ
スミウム合金の薄膜であり、上記のプレス成形用金型と
同様の方法で作製した。
In Figure 2, 3 is a high melting point transparent glass substrate with a polished surface (#7059.40 x 30 m manufactured by Corning).
X1.1), and 4 is a low melting point glass layer. Silica (S10□) 30% by weight, barium oxide (B
ad) Sputtering a barium borosilicate glass target consisting of 50% by weight, 15% by weight of boric acid (BzOi), and the balance being trace components to form a low melting point glass layer 4 with a thickness of 10 μm on a high melting point transparent glass substrate 3. Coated. 5 is a base material of a flat press molding die, and 6 is a thin film of platinum-iridium-osmium alloy on the base material 5, which was produced in the same manner as the press molding die described above.

第2図のように、上から平面状のプレス成形用金型、低
融点ガラス層4を形威した高融点の透明ガラス基板3、
凹状のマイクロレンズ型を形威したプレス成形用金型の
順序でセットし、窒素ガスを毎分20リツター流した雰
囲気に保持した成形機内で熱間でプレス成形した。プレ
ス成形条件は金型温度560°C、プレス圧力30kg
/cd、プレス時間2分であった。プレス成形後プレス
成形用金型とともに300’Cまで徐冷することにより
、第3図に示すような透明ガラス基板3の上に低融点ガ
ラス層4、凸レンズアレー7が形威された微小光学素子
を得た。
As shown in FIG. 2, from above, a flat press mold, a high melting point transparent glass substrate 3 formed with a low melting point glass layer 4,
A press molding die with a concave microlens mold was set in this order, and hot press molding was carried out in a molding machine maintained in an atmosphere in which nitrogen gas was flowing at 20 liters per minute. Press molding conditions are mold temperature 560°C, press pressure 30kg.
/cd, press time was 2 minutes. After press molding, the micro optical element is slowly cooled together with the press mold to 300'C to form a low melting point glass layer 4 and a convex lens array 7 on a transparent glass substrate 3 as shown in FIG. I got it.

第4図に示すように微小光学素子の凸レンズアレー7を
形威した透明ガラス基板3の反対面に、アモルファスシ
リコンからなる薄膜トランジスタ(TPT)8および画
素を構成するITOからなる透明電極9をそれぞれ形威
し、凸レンズアレー7の方の面に偏光板10を貼つけた
。平板状の透明ガラス基板tiの片方の全面にTTOか
らなる透明な共通電極12を設け、画素を構成する透明
電極9と対応する位置にカラーフィルタ13を共通電極
12の上に設け、また他方の面には偏光板14を貼つけ
た。このような構成の透明ガラス基板3および11を接
着剤で固定しく不図示)、その隙間には液晶材料15を
注入充填した。このような表示素子において、入射光1
6が平行に入射したとき、共通電極12と画素を構成す
る透明電極9との間に印加される電圧がオンの場合、液
晶材料15を通過する先の偏波面は変化しないで通過し
、印加される電圧がオフの場合、液晶材料15を通過す
る光の偏波面は90度回転して液晶材料15を通過でき
ない。
As shown in FIG. 4, a thin film transistor (TPT) 8 made of amorphous silicon and a transparent electrode 9 made of ITO constituting a pixel are formed on the opposite surface of a transparent glass substrate 3 on which a convex lens array 7 of a micro optical element is formed. Then, a polarizing plate 10 was attached to the surface facing the convex lens array 7. A transparent common electrode 12 made of TTO is provided on one entire surface of a flat transparent glass substrate ti, and a color filter 13 is provided on the common electrode 12 at a position corresponding to the transparent electrode 9 constituting the pixel. A polarizing plate 14 was attached to the surface. The transparent glass substrates 3 and 11 having such a structure were fixed with an adhesive (not shown), and a liquid crystal material 15 was injected into the gap therebetween. In such a display element, incident light 1
6 are incident in parallel, if the voltage applied between the common electrode 12 and the transparent electrode 9 constituting the pixel is on, the polarized wave passes through the liquid crystal material 15 without changing, and the applied When the applied voltage is off, the plane of polarization of light passing through the liquid crystal material 15 is rotated by 90 degrees and cannot pass through the liquid crystal material 15.

凸レンズアレー7は画素を構成する透明電極9の位置で
焦点を結ぶように曲率半径を決めてあり、凸レンズアレ
ー7を通過した入射光16は、開口部である透明電極9
に集光され、その後共通電極■2、透明ガラス基板11
を透過する。第4図から明らかなように、入射光16が
平行に入射したとき、薄膜トランジスタ8で遮光される
ことなくほとんどすべての光が、開口部である画素を構
成する透明電極9を透過し、表示に有効に寄与した。従
って実質的に、画素の開口率が大きくなって、明るい画
面、高い表示画質のデイスプレィにすることができた。
The radius of curvature of the convex lens array 7 is determined so as to focus at the position of the transparent electrode 9 constituting the pixel, and the incident light 16 that has passed through the convex lens array 7 is directed to the transparent electrode 9 which is the aperture.
The light is focused on the common electrode 2 and the transparent glass substrate 11.
Transparent. As is clear from FIG. 4, when the incident light 16 is incident in parallel, almost all of the light is transmitted through the transparent electrode 9 constituting the pixel, which is the aperture, without being blocked by the thin film transistor 8, and is displayed. Contributed effectively. Therefore, the aperture ratio of the pixels is substantially increased, making it possible to create a display with a bright screen and high display image quality.

実施例2゜ プレス成形用金型の母材1としてオーステナイト鋼js
tJs3]6)を50ao X 40mm X 10m
n角の平板に切断し、超微細なダイヤモンド粉末を用い
てラッピングおよびポリッシングして、表面の表面粗さ
(RMS)が約3ns+の鏡面にした。鏡面となった母
材1に、曲率半径が400μmの半球状のダイヤモンド
圧子を高精度に数値制御した押し込み装置で、第1図の
ように凹状のマイクロレンズ型を40μmピッチで格子
状に約80万個形威した。この上にスパッタ法でロジウ
ム−金−タングステン合金(Rh−Au−W)の薄膜2
を被覆して、プレス成形用金型とした。
Example 2゜Austenitic steel JS as base material 1 of press molding die
tJs3]6) 50ao x 40mm x 10m
It was cut into n-square plates, lapped and polished using ultrafine diamond powder to give a mirror surface with a surface roughness (RMS) of about 3 ns+. As shown in Fig. 1, about 80 concave microlens shapes are injected into the mirror-surfaced base material 1 in a lattice pattern at a pitch of 40 μm using a highly precisely numerically controlled indentation device using a hemispherical diamond indenter with a radius of curvature of 400 μm. There were 10,000 forms of power. On top of this, a thin film 2 of rhodium-gold-tungsten alloy (Rh-Au-W) was applied by sputtering.
was coated to make a press molding mold.

第2図において、3は表面を研磨した透明ガラス基板(
石英ガラス、40mX30鴫×1.1鵬)であり、4は
低融点ガラス層であり、ジルコニア(ZrOz)8重量
パーセント、酸化ランタン(1,az Oa)30重量
パーセント、ホウ酸(BzC)+)42重量パーセント
、酸化カルシウム(Cab)10重量パーセント、残部
が微量成分からなるランタン系ガラスを用いた。超微粒
のランタン系ガラスのスラリー液をブレードコーターで
透明ガラス基板3に約20μmの厚みで全面に均一に塗
布した。
In Figure 2, 3 is a transparent glass substrate with a polished surface (
4 is a low melting point glass layer, 8 weight percent zirconia (ZrOz), 30 weight percent lanthanum oxide (1,az Oa), boric acid (BzC)+). A lanthanum glass containing 42% by weight, 10% by weight of calcium oxide (Cab), and the balance being trace components was used. A slurry liquid of ultrafine particles of lanthanum-based glass was uniformly applied to the entire surface of the transparent glass substrate 3 to a thickness of about 20 μm using a blade coater.

これを乾燥後、空気中、800°C電気炉で坑底して、
透明ガラス基板3に低融点ガラス層4をコーティソゲし
た。5は平面状のプレス成形用金型の母材であり、6は
母材5の上のロジウム−金−タングステン合金(Rh−
Au−W)薄膜であり、上記のプレス成形用金型と同様
の方法で作製した。
After drying this, it is placed at the bottom of a pit in an 800°C electric furnace in the air.
A low melting point glass layer 4 was coated on a transparent glass substrate 3. 5 is a base material of a flat press mold, and 6 is a rhodium-gold-tungsten alloy (Rh-
Au-W) thin film, and was produced in the same manner as the press molding die described above.

第2図のように、上から平面状のプレス成形用金型の母
材、低融点ガラス層4を形威した透明ガラス基板3、凹
状のマイクロレンズ型を形威したプレス成形用金型のw
l序でセットし、窒素ガス2゜リッター7分、水素ガス
lリッター7分の割合で混合した雰囲気に保持した成形
機内で熱間でプレス底形した。プレス成形条件は金型温
度680″C、プレス圧力10kg/cd、プレス時間
2分であった。
As shown in Fig. 2, from above, the base material of a flat press mold, a transparent glass substrate 3 formed with a low melting point glass layer 4, and a press mold formed with a concave microlens mold are shown. lol
The bottom of the press was hot pressed in a molding machine maintained in an atmosphere containing 2.0 liters of nitrogen gas for 7 minutes and 1 liter of hydrogen gas for 7 minutes. The press molding conditions were a mold temperature of 680''C, a press pressure of 10 kg/cd, and a press time of 2 minutes.

プレス成形後プレス成形用金型とともに400’Cまで
徐冷することにより、第3図に示すように透明ガラス基
板3の上に凸レンズアレー7が形威された光学素子を得
た。
After press molding, it was slowly cooled to 400'C together with the press mold to obtain an optical element in which a convex lens array 7 was formed on a transparent glass substrate 3 as shown in FIG.

第4図に示すように微小光学素子の凸レンズアレー7を
形威した透明ガラス基板3の反対面に、アモルファスシ
リコンからなる′FrIWIj!トランジスタ(TPT
)8および画素を構成するITOからなる透明電極9を
それぞれ形威し、凸しンズア、−7の方の面に偏光板1
0を貼つけた。平板状の透明ガラス基板11の片方の全
面にITOからなる共通電極12を設け、画素を構成す
る透明電極9と対応する位置にカラーフィルタ13を共
通電極12の上に設け、また他方の面には偏光板14を
貼つけた。このような構成の透明ガラス基板3および1
1を接着剤で固定しく不図示)、その隙間には液晶材料
15を注入充填した。このような表示素子において、入
射光16が平行に入射したとき、共通電極12と画素を
構成する透明電極9との間に印加される電圧がオンの場
合、液晶材料15を通過する光の偏波面は変化しないで
通過し、印加される電圧がオフの場合、液晶材料15を
通過する光の偏波面は90度回転して液晶材料15を通
過できない。
As shown in FIG. 4, 'FrIWIj!' made of amorphous silicon is placed on the opposite side of the transparent glass substrate 3 on which the convex lens array 7 of the micro optical element is formed. Transistor (TPT
) 8 and a transparent electrode 9 made of ITO constituting a pixel, and a polarizing plate 1 is placed on the convex surface and -7 side.
I pasted 0. A common electrode 12 made of ITO is provided on one entire surface of a flat transparent glass substrate 11, a color filter 13 is provided on the common electrode 12 at a position corresponding to the transparent electrode 9 constituting the pixel, and a color filter 13 is provided on the other surface of the common electrode 12. A polarizing plate 14 was attached. Transparent glass substrates 3 and 1 having such a structure
1 was fixed with an adhesive (not shown), and a liquid crystal material 15 was injected and filled into the gap. In such a display element, when the incident light 16 is incident in parallel and the voltage applied between the common electrode 12 and the transparent electrode 9 constituting the pixel is on, the light passing through the liquid crystal material 15 is polarized. The wavefront passes through unchanged, and when the applied voltage is off, the plane of polarization of the light passing through the liquid crystal material 15 is rotated by 90 degrees and cannot pass through the liquid crystal material 15.

凸レンズアレー7は画素を構成する透明電極9の位置で
焦点を結ぶように曲率半径を決めてあり、凸レンズアレ
ー7を通過した入射光16は、開口部である透明電極9
に集光され、その後共通電極12、透明ガラス基板11
を透過する。第4図から明らかなように、入射光16が
平行に入射したとき、薄膜トランジスタ8で遮光される
ことなくほとんどすべての光が、開口部である画素を構
成する透明電極9を透過し、表示に有効に寄与した。従
って実質的に、画素の開口率が太き(なって、明るい画
面、高い表示画質のデイスプレィにすることができた。
The radius of curvature of the convex lens array 7 is determined so as to focus at the position of the transparent electrode 9 constituting the pixel, and the incident light 16 that has passed through the convex lens array 7 is directed to the transparent electrode 9 which is the aperture.
The light is focused on the common electrode 12 and the transparent glass substrate 11.
Transparent. As is clear from FIG. 4, when the incident light 16 is incident in parallel, almost all of the light is transmitted through the transparent electrode 9 constituting the pixel, which is the aperture, without being blocked by the thin film transistor 8, and is displayed. Contributed effectively. Therefore, in effect, the aperture ratio of the pixel was increased (thus, a bright screen and a display with high display image quality could be obtained).

実施例3゜ プレス成形用金型の母材1とし7てサーメント(T i
 c−10Mo−9N i )を50+s X 40m
 X 10wm角の平板に切断し、超微細なダイヤモン
ド粉末を用いてランピングおよびポリッシングして、表
面の表面粗さ(RMS)が約2nmの鏡面にした。鏡面
となった母材1に、曲率半径が400μmの半球状のダ
イヤモンド圧子を高精度に数値制御した押し込み装置で
、第1図のように凹状のマイクロレンズ型を40μmピ
ッチで格子状に約80万個形威した。この上にスバフタ
法で白金−タンタル−レニウム合金(P t −T a
 −Re )の薄膜2を被覆して、プレス成形用金型と
した。
Example 3 Cerment (T i
c-10Mo-9N i) 50+s x 40m
It was cut into a flat plate of x 10wm square, and was then ramped and polished using ultrafine diamond powder to give a mirror surface with a surface roughness (RMS) of about 2nm. As shown in Fig. 1, about 80 concave microlens shapes are injected into the mirror-surfaced base material 1 in a lattice pattern at a pitch of 40 μm using a highly precisely numerically controlled indentation device using a hemispherical diamond indenter with a radius of curvature of 400 μm. There were 10,000 forms of power. On top of this, platinum-tantalum-rhenium alloy (P t -Ta
-Re) was coated with a thin film 2 to prepare a press molding mold.

プレス成形用金型に被覆する薄膜は、低融点ガラスと反
応あるいは融着しない貴金属、タングステン、タンタル
、レニウム、ハフニラj、の単体あるいはそれらの合金
であることが望ましい。
The thin film coated on the press-molding die is preferably made of noble metals such as tungsten, tantalum, rhenium, and hafnira, which do not react or fuse with low-melting glass, or alloys thereof.

また低融点ガラスとこれらの薄膜とが反応あるいは融着
しない雰囲気は、窒素、アルゴン、ヘリウム等の不活性
ガス、およびこれらの不活性ガスに水素、あるいは−酸
化炭素、二酸化炭素の炭素酸化物、メタン、エタン、エ
チレン、トルエン等の炭化水素類、トリクロロエチレン
、トリクロルトリフルオルエタン等のハロゲン化炭化水
素類、エチレングリコール、グリセリン等のアルコール
類、F−113、F−11等のフルオロカーボン類を適
宜混合した非酸化性雰囲気であることが望ましい。
The atmosphere in which the low melting point glass and these thin films do not react or fuse together is an inert gas such as nitrogen, argon, helium, etc., and these inert gases contain hydrogen, carbon oxide, carbon oxide such as carbon dioxide, Hydrocarbons such as methane, ethane, ethylene, and toluene, halogenated hydrocarbons such as trichloroethylene and trichlorotrifluoroethane, alcohols such as ethylene glycol and glycerin, and fluorocarbons such as F-113 and F-11 are appropriately mixed. It is desirable that the atmosphere be a non-oxidizing atmosphere.

これらの雰囲気あるいはブレス成形条件(温度と時間と
圧力)は、低融点ガラス組成、プレス成形用金型に被覆
する薄膜組成、あるいは微小光学素子アレーの光学的形
状等の条件によって適宜選択する。
These atmospheres or press molding conditions (temperature, time, and pressure) are appropriately selected depending on conditions such as the low melting point glass composition, the thin film composition coated on the press molding die, or the optical shape of the micro optical element array.

第2図において、3は表面を研磨した透明ガラス基板(
無アルカリガラス、旭硝子AN、40閣×30ooX1
.1m)であり、4は低融点ガラス層であり、シリカ(
SiO2)52重量パーセント、酸化カリウム(K2O
)6重量パーセント、酸化鉛(Pb(1)35重量パー
セント、酸化ナトリウム(Na2(1)5重量パーセン
ト、残部が微量成分からなる重フリントガラスを用いた
。S i(OCH,、)n 、P b (Oi  C=
H?)2などの金属アルコキシドを用いたゾル−ゲル法
で透明ガラス基板3に約5μmの厚みで全面に均−Gこ
形威した。これを乾燥後、空気中、750℃電気炉で坑
底して、透明ガラス基板3に低融点ガラス層4をコーテ
ィングした。5は平面状のプレス成形用金型の母材であ
り、6は母材5の上の白金−クンタル−レニウム合金(
pt−Ta−Re)l膜であり、上記のプレス成形用金
型と同様の方法で作製した。
In Figure 2, 3 is a transparent glass substrate with a polished surface (
Alkali-free glass, Asahi Glass AN, 40×30oo×1
.. 1m), 4 is a low melting point glass layer, and silica (
SiO2) 52% by weight, potassium oxide (K2O
) 6% by weight, lead oxide (Pb(1) 35% by weight, sodium oxide (Na2(1) 5% by weight, the balance being trace components. S i (OCH, ) n , P b (Oi C=
H? ) A uniform G shape was applied over the entire surface of the transparent glass substrate 3 to a thickness of about 5 μm using a sol-gel method using a metal alkoxide such as 2. After drying this, the transparent glass substrate 3 was coated with a low melting point glass layer 4 by being bottomed in an electric furnace at 750° C. in the air. 5 is a base material of a flat press molding die, and 6 is a platinum-cuntal-rhenium alloy (
It was a pt-Ta-Re)l film, and was produced in the same manner as the press molding die described above.

第2図のように、上から平面状のブレス成形用金型の母
材、低融点ガラス層4を形威した透明ガラス基板3、凹
状のマイクロレンズ型を形成したプレス成形用金型の順
序でセントし、ヘリウムガス2oリツター/分、二酸化
炭素ガス2リツタ一/分の割合で混合した雰囲気に保持
した成形機内で熱間でプレス成形した。プレス成形条件
は金型温度520”C,プレス圧力20kg/c11T
、プレス時間1分であった。プレス成形後プレス成形用
金型とともに350℃まで徐冷することにより、第3図
に示すように透明ガラス基板3の上に凸レンズアレー7
が形威された光学素子を得た。
As shown in Fig. 2, from above, the base material of the flat press mold, the transparent glass substrate 3 formed with the low melting point glass layer 4, and the press mold formed with the concave microlens mold are arranged in this order. The material was then hot press-molded in a molding machine maintained in an atmosphere containing a mixture of 20 liters/min of helium gas and 2 liters/min of carbon dioxide gas. Press molding conditions are mold temperature 520"C, press pressure 20kg/c11T
, the press time was 1 minute. After press molding, the convex lens array 7 is formed on the transparent glass substrate 3 by slowly cooling it to 350° C. together with the press molding die, as shown in FIG.
We have obtained an optical element with an impressive shape.

第4図のように微小光学素子アレー〇凸レンズアレー7
を形威した透明ガラス基板3の反対面に、アモルファス
シリコンからなる薄膜トランジスタ(TPT)8および
画素を構成するTTOからなる透明電極9をそれぞれ形
威し、凸レンズアレー7の方の面に偏光板10を貼つけ
た。平板状の透明ガラス基板11の片方の全面にITO
からなる共通電極12を設け、画素を構成する透明電極
9と対応する位置にカラーフィルタ13を共通電極12
の上に設け、また他方の面には偏光板14を貼つけた。
As shown in Figure 4, micro optical element array 〇 convex lens array 7
A thin film transistor (TPT) 8 made of amorphous silicon and a transparent electrode 9 made of TTO constituting a pixel are formed on the opposite side of the transparent glass substrate 3, and a polarizing plate 10 is formed on the side facing the convex lens array 7. I pasted it. ITO is applied to one entire surface of the flat transparent glass substrate 11.
A color filter 13 is provided at a position corresponding to the transparent electrode 9 constituting the pixel.
A polarizing plate 14 was attached to the other surface.

このような構成の透明ガラス基板3および11を接着剤
で固定しく不図示)、その隙間には液晶材料15を注入
充填した。このような表示素子において、入射光I6が
平行に入射したとき、共通電極12と画素を構成する透
明電極9との間ムこ印加される電圧がオンの場合、液晶
材料15を通過する光の偏波面は変化しないで通過し、
印加される電圧がオフの場合、液晶材料15を通過する
光の偏波面は90度回転転て液晶材料15を通過できな
い。
The transparent glass substrates 3 and 11 having such a structure were fixed with an adhesive (not shown), and a liquid crystal material 15 was injected into the gap therebetween. In such a display element, when the incident light I6 is incident in parallel, if the voltage applied across the common electrode 12 and the transparent electrode 9 constituting the pixel is on, the light passing through the liquid crystal material 15 is The plane of polarization passes through unchanged,
When the applied voltage is off, the plane of polarization of light passing through the liquid crystal material 15 is rotated by 90 degrees and cannot pass through the liquid crystal material 15.

凸レンズアレー7は画素を構成する透明電極9の位置で
焦点を結ぶように曲率半径を決めてあり、凸レンズアレ
ー7を通過した入射光16は、開口部である透明電極9
に集光され、その後共通電極12、透明ガラス基Fi、
llを透過する。第4図から明らかなように、入射光1
6が平行に入射したとき、薄膜トランジスタ8で遮光さ
れることなくほとんどすべての光が、開口部である画素
を構成する透明電極9を透過し、表示乙こ有効に寄与し
た。従って実質的に、画素の開口率が大きくなって、明
るい画面、高い表示画質のデイスプレィにすることがで
きた。
The radius of curvature of the convex lens array 7 is determined so as to focus at the position of the transparent electrode 9 constituting the pixel, and the incident light 16 that has passed through the convex lens array 7 is directed to the transparent electrode 9 which is the aperture.
The light is then focused on the common electrode 12, the transparent glass substrate Fi,
Transmit ll. As is clear from Fig. 4, the incident light 1
When the light beams 6 were incident in parallel, almost all of the light was not blocked by the thin film transistor 8 and was transmitted through the transparent electrode 9 constituting the pixel, which is the aperture, contributing effectively to the display. Therefore, the aperture ratio of the pixels is substantially increased, making it possible to create a display with a bright screen and high display image quality.

比較のために第5図に示すような従来と同様な構成の表
示素子を試作した。
For comparison, a display element having a structure similar to the conventional one as shown in FIG. 5 was fabricated.

第5図では凸レンズアレー7は樹脂材料であり、それ以
外は第4図と同し構成であった。このような構成からな
る表示素子に入射光16が平行に入射したとき、温度変
化によってレンズの曲率半径が変化して、画素からずれ
た位置でレンズの焦点を結び、極端な場合には同図中点
線で示すように光が非開口部に到達して表示に寄与しな
かった。また約1ケ月間使用したとき、樹脂材料からな
る凸レンズアレー7は透明ガラス基板3から剥離した。
In FIG. 5, the convex lens array 7 is made of resin material, and other than that, the structure is the same as in FIG. 4. When incident light 16 enters a display element having such a configuration in parallel, the radius of curvature of the lens changes due to temperature changes, and the lens focuses at a position shifted from the pixel, and in extreme cases, As shown by the dotted line, light reached the non-aperture and did not contribute to the display. Further, after using it for about one month, the convex lens array 7 made of a resin material peeled off from the transparent glass substrate 3.

なお本発明の光学素子およびその製造方法ならび乙ここ
れを用いた表示素子において、プレス成形条件(温度と
時間と圧力と雰囲気)、低融点ガラス材料およびその作
製方法、プレス底形申合型母材やそれに被覆する薄膜組
成、あるいは微小光学素子アレーの形状やその作製方法
、表示素子の表示原理や素子構成等は、本実施例に限定
されるものではない。
In addition, in the optical element of the present invention, its manufacturing method, and display element using the same, press molding conditions (temperature, time, pressure, and atmosphere), low melting point glass material and its manufacturing method, press bottom shape and molded matrix The material and the composition of the thin film covering it, the shape of the micro optical element array and its manufacturing method, the display principle of the display element, the element configuration, etc. are not limited to the present example.

発明の効果 以上の実施例から明らかなように、本発明の光学素子お
よびその製造方法ならびにこれを用いた表示素子は、透
明ガラス基板の上に形成した低融点ガラスからなる微小
光学素子アレーによって、開口部および開口部近傍の光
が各画素の開口部に集光される。従って実質的に、画素
の開口率が大きくなって、明るい画面、高い表示品質の
デイスプレィにすることができる。しかもこのような表
示素子は、熱変形や基板からの剥離を生じ難く、所望の
微小光学素子アレーの形状に加工したプレス成形用金型
で熱間成形されることによって、高精度の微小光学素子
アレーよりなる光学素子および表示素子を極めて量産性
よく製造することができる。
Effects of the Invention As is clear from the above examples, the optical element of the present invention, the method for manufacturing the same, and the display element using the same can be realized by a micro optical element array made of low melting glass formed on a transparent glass substrate. The aperture and light near the aperture are focused on the aperture of each pixel. Therefore, the aperture ratio of the pixel is substantially increased, and a bright screen and display with high display quality can be obtained. In addition, such display elements are resistant to thermal deformation and peeling from the substrate, and are made into highly accurate micro-optical elements by being hot-formed in a press-molding die processed into the desired shape of the micro-optical element array. Optical elements and display elements consisting of arrays can be manufactured with extremely high mass productivity.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例におけるプレス成形用金型の
断面図、第2図は微小光学素子アレーのプレス成形状態
を示す断面図、第3図は微小光学素子アレーを示す断面
図、第4図は表示素子アレーを示す断面図、第5図は従
来の微小光学素子アレーを用いた比較例の表示素子の構
成を示す断面図である。 ■・−・・・−プレス成形用金型の母材、2・・・・−
・薄膜、3・・・・・・高融点の透明ガラス基板、4−
・−・・・低融点ガラス層、5・−・−・プレス成形用
金型の母材、6−・・・・薄膜、7−−−−・・凸レン
ズ(微小光学素子)アレー8・・・・−・薄膜トランジ
スタ、9・・・・・・透明電極、10・・・・−・偏光
板、11・・・−・−透明ガラス基板、12・・−・・
共通電極、13・・・・・・カラーフィルター、14・
・・・・・偏光板、15・・−・・・液晶材料、16・
・・・・・入射光。
FIG. 1 is a sectional view of a press molding die in an embodiment of the present invention, FIG. 2 is a sectional view showing a state of press molding of a micro optical element array, and FIG. 3 is a sectional view showing a micro optical element array. FIG. 4 is a sectional view showing a display element array, and FIG. 5 is a sectional view showing the configuration of a comparative example display element using a conventional micro optical element array. ■・・・・・Base material for press molding mold, 2・・・・−
・Thin film, 3...High melting point transparent glass substrate, 4-
.--Low melting point glass layer, 5.--.Base material for press mold, 6-..thin film, 7.--Convex lens (micro optical element) array 8. ... Thin film transistor, 9...Transparent electrode, 10...Polarizing plate, 11...-Transparent glass substrate, 12...
Common electrode, 13...Color filter, 14.
...Polarizing plate, 15...Liquid crystal material, 16.
...Incoming light.

Claims (5)

【特許請求の範囲】[Claims] (1)高融点の透明ガラス基板の上に、低融点ガラス層
と低融点ガラスからなりアレー状に形成された微小光学
素子とを設けた光学素子。
(1) An optical element in which a low melting point glass layer and micro optical elements formed in an array of low melting point glass are provided on a high melting point transparent glass substrate.
(2)表面に低融点ガラス層を形成した高融点の透明ガ
ラス基板を、所望の微小光学素子アレーの形状に加工し
たプレス成形用金型により熱間でプレス成形する光学素
子の製造方法。
(2) A method for producing an optical element, in which a high melting point transparent glass substrate with a low melting point glass layer formed on its surface is hot press-molded using a press molding die processed into the shape of a desired microscopic optical element array.
(3)プレス成形用金型が化学的に安定な薄膜で被覆さ
れた請求項(2)記載の光学素子の製造方法。
(3) The method for manufacturing an optical element according to claim (2), wherein the press molding die is coated with a chemically stable thin film.
(4)薄膜が貴金属、タングステン、タンタル、レニウ
ム、ハフニウムの単体またはそれらの合金である請求項
(3)記載の光学素子の製造方法。
(4) The method for manufacturing an optical element according to claim (3), wherein the thin film is made of a noble metal, tungsten, tantalum, rhenium, or hafnium, or an alloy thereof.
(5)少なくとも画素を構成する表示物質とその表示物
質を保持する高融点の透明ガラス基板とを備えた表示素
子において、高融点の透明ガラス基板の上に低融点ガラ
ス層および各画素に対応するように低融点ガラスからな
る微小光学素子アレーを形成してなる光学素子を用いた
表示素子。
(5) In a display element comprising at least a display material constituting a pixel and a high melting point transparent glass substrate holding the display material, a low melting point glass layer and a low melting point glass layer on the high melting point transparent glass substrate and corresponding to each pixel are provided. A display element using an optical element formed by forming a micro optical element array made of low melting point glass.
JP2090802A 1990-04-05 1990-04-05 Optical element manufacturing method Expired - Fee Related JP3018387B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2090802A JP3018387B2 (en) 1990-04-05 1990-04-05 Optical element manufacturing method
EP19910302211 EP0450780A3 (en) 1990-04-05 1991-03-14 Optical microelement array and its production method
US07/678,155 US5276538A (en) 1990-04-05 1991-04-02 Display device with micro lens array

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2090802A JP3018387B2 (en) 1990-04-05 1990-04-05 Optical element manufacturing method

Publications (2)

Publication Number Publication Date
JPH03288801A true JPH03288801A (en) 1991-12-19
JP3018387B2 JP3018387B2 (en) 2000-03-13

Family

ID=14008724

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2090802A Expired - Fee Related JP3018387B2 (en) 1990-04-05 1990-04-05 Optical element manufacturing method

Country Status (1)

Country Link
JP (1) JP3018387B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002144348A (en) * 2000-10-31 2002-05-21 Eastman Kodak Co Method for manufacturing precision mold
JP2002205310A (en) * 2000-10-31 2002-07-23 Eastman Kodak Co Method of manufacturing mold for micro-lens array
WO2004114001A1 (en) * 2003-06-20 2004-12-29 Casio Computer Co., Ltd. Display device and manufacturing method of the same
JP2018035033A (en) * 2016-08-31 2018-03-08 日本電気硝子株式会社 Manufacturing method of optical element
CN113696524A (en) * 2021-08-11 2021-11-26 苏州易锐光电科技有限公司 Micro-nano processing method of optical device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002144348A (en) * 2000-10-31 2002-05-21 Eastman Kodak Co Method for manufacturing precision mold
JP2002205310A (en) * 2000-10-31 2002-07-23 Eastman Kodak Co Method of manufacturing mold for micro-lens array
WO2004114001A1 (en) * 2003-06-20 2004-12-29 Casio Computer Co., Ltd. Display device and manufacturing method of the same
US7227599B2 (en) 2003-06-20 2007-06-05 Casio Computer Co., Ltd. Display device and manufacturing method of the same
JP2018035033A (en) * 2016-08-31 2018-03-08 日本電気硝子株式会社 Manufacturing method of optical element
CN113696524A (en) * 2021-08-11 2021-11-26 苏州易锐光电科技有限公司 Micro-nano processing method of optical device

Also Published As

Publication number Publication date
JP3018387B2 (en) 2000-03-13

Similar Documents

Publication Publication Date Title
US5276538A (en) Display device with micro lens array
EP0444872B1 (en) A liquid crystal display device
CN102428048B (en) Glass material for press forming, method for manufacturing glass optical element using same, and glass optical element
US8652639B2 (en) Method for strengthening glass and glass using the same
US5405652A (en) Method of manufacturing a die for use in molding glass optical elements having a fine pattern of concavities and convexities
JP5364568B2 (en) Glass material for press molding, method for manufacturing glass material for press molding, and method for manufacturing optical element
WO2005040864A1 (en) Optical device having antireflective structure and process for producing the same
US9069107B2 (en) Rod lens and methods for producing same
US6965478B2 (en) Microlens arrays
KR950024009A (en) Method and apparatus for manufacturing liquid crystal alignment control film
JPH03288801A (en) Optical element, its production, and display element using the same
JP4714627B2 (en) Method for producing structure having fine uneven structure on surface
JPH03288802A (en) Optical element, its production, and display element using the same
JPH04163524A (en) Optical element and manufacuter thereof as well as display element
JPH049901A (en) Microoptical element, production thereof and display element
JPH0436701A (en) Glass element, display element and production thereof
US10921491B2 (en) Method of making a surface with improved mechanical and optical properties
JP2000056101A (en) Fly eye lens and its manufacture
JP2014089228A (en) Microlens array manufacturing method and microlens array
CN113241293B (en) Anti-halation glass assembly with ultrahigh cathode sensitivity and preparation method and application thereof
US20220082750A1 (en) Wire-grid polarizer and process for producing the same
JPH04170516A (en) Optical element, panel for liquid crystal light bulb, liquid crystal light bulb, and projection type display
JPH04181218A (en) Optical element
JP3185299B2 (en) Glass lens molding die and glass lens molding device
TWI261685B (en) Microlens arrays

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees