JPH0328815B2 - - Google Patents

Info

Publication number
JPH0328815B2
JPH0328815B2 JP56209240A JP20924081A JPH0328815B2 JP H0328815 B2 JPH0328815 B2 JP H0328815B2 JP 56209240 A JP56209240 A JP 56209240A JP 20924081 A JP20924081 A JP 20924081A JP H0328815 B2 JPH0328815 B2 JP H0328815B2
Authority
JP
Japan
Prior art keywords
gas
mass flow
flow rate
reaction
air valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56209240A
Other languages
Japanese (ja)
Other versions
JPS58111314A (en
Inventor
Tamotsu Sasaki
Yukio Misonoo
Yoshiaki Ishii
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP20924081A priority Critical patent/JPS58111314A/en
Publication of JPS58111314A publication Critical patent/JPS58111314A/en
Publication of JPH0328815B2 publication Critical patent/JPH0328815B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45561Gas plumbing upstream of the reaction chamber
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/14Feed and outlet means for the gases; Modifying the flow of the reactive gases

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Flow Control (AREA)
  • Pipeline Systems (AREA)

Description

【発明の詳細な説明】 本発明はCVD装置のためのガス流量制御方法
および装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a gas flow rate control method and apparatus for a CVD apparatus.

一般に、半導体装置の製造過程において半導体
基板(ウエハ)上に多結晶シリコン、シリコン酸
化膜、窒化膜等を形成する場合、その1つとして
これらを化学的反応により気相中で反応物質とし
て堆積させるCVD(Chemical Vapor
Deposition)法が用いられている。
Generally, when forming polycrystalline silicon, silicon oxide films, nitride films, etc. on semiconductor substrates (wafers) in the manufacturing process of semiconductor devices, one of the steps is to deposit these as reactants in the gas phase through chemical reactions. CVD (Chemical Vapor)
Deposition method is used.

この方法の場合、反応ガスとしてモノシラン
(SiH4)やジクロルシラン(SiH2Cl2)、アンモニ
ア(NH3)等がCVD装置の反応管の中に供給さ
れるが、反応ガスの流量を適正に制御しないと、
ガス流量の変化により反応条件が変動し、均一な
デポジシヨンを得ることができず、膜厚の変動に
よる特性不良を生じてしまう。
In this method, monosilane (SiH 4 ), dichlorosilane (SiH 2 Cl 2 ), ammonia (NH 3 ), etc. are supplied as reaction gases into the reaction tube of the CVD device, but the flow rate of the reaction gas must be properly controlled. If you don't,
The reaction conditions vary due to changes in the gas flow rate, making it impossible to obtain a uniform deposition, and resulting in poor characteristics due to variations in film thickness.

そこで、従来は反応ガスの流量をマスフローコ
ントローラ(M.F.C.)により制御しながら反応
管に供給してデポジシヨン処理を行つている。と
ころが、反応ガスがガス供給系内で空気等と反応
して塵芥が発生し、この塵芥がマスフローコント
ローラに詰まつたりする結果、反応ガスの流量に
変動が生じ、前記したような不具合を起こすこと
がある。
Therefore, conventionally, deposition processing has been carried out by supplying the reaction gas to the reaction tube while controlling the flow rate of the reaction gas using a mass flow controller (MFC). However, the reactant gas reacts with air, etc. in the gas supply system, generating dust, which clogs the mass flow controller, resulting in fluctuations in the flow rate of the reactant gas, which can cause the problems described above. There is.

しかしながら、従来はマスフローコントローラ
が正常に機能しているかどうかを事前に確認する
ことができず、製品のデポジシヨンの具合から事
後的に確認する他なかつた。そのため、反応ガス
の流量変動により膜厚が不均一になつて特性不良
を起こすことがあり、特に1回のバツチ処理で大
量のウエハにCVD処理を施こす場合には、一度
反応ガスの流量変動が生じると、そのバツチ分の
ウエハ全部が膜厚不均一による特性不良をひき起
こすという問題があつた。
However, in the past, it was not possible to check in advance whether the mass flow controller was functioning properly, and the only option was to check after the fact based on the condition of the product's deposition. Therefore, due to fluctuations in the flow rate of the reaction gas, the film thickness may become non-uniform, resulting in poor characteristics.Especially when performing CVD processing on a large number of wafers in one batch process, fluctuations in the flow rate of the reaction gas may When this occurs, there is a problem in that all the wafers in that batch suffer from poor characteristics due to non-uniform film thickness.

本発明の目的は、前記した問題点を解決し、反
応ガスの流量が正常であるかどうかをCVD処理
の前に確認して常に均一な膜厚を得ることのでき
るガス流量制御方法および装置を提供することに
ある。
The purpose of the present invention is to solve the above-mentioned problems and provide a gas flow rate control method and device that can check whether the flow rate of the reaction gas is normal before CVD processing and always obtain a uniform film thickness. It is about providing.

この目的を達成するため、本発明においては、
デポジシヨンを行う前にマスフロメータおよびマ
スフローコントローラに不活性ガスを連通させ、
両者が各々内蔵しているガス流量測定手段により
上記不活性ガスの流量値を各別に測定する。
In order to achieve this objective, in the present invention,
Before performing the deposition, communicate inert gas to the mass flow meter and mass flow controller.
The flow rate value of the inert gas is measured separately by the gas flow rate measuring means built into each of them.

両者の測定値に有意差がない場合には、マスフ
ローコントローラのセンサ部やバルブ等に反応ガ
ス通過に伴う堆積物等の付着がなく、マスフロー
コントローラが反応ガスの流量制御手段として有
効に機能していることとなる。
If there is no significant difference between the two measured values, it means that there are no deposits attached to the mass flow controller's sensor section or valve, etc. due to the passage of the reaction gas, and that the mass flow controller is functioning effectively as a means for controlling the flow rate of the reaction gas. There will be.

一方、有意差がある場合には、堆積物の付差等
により反応ガスの流量測定機能が損なわれている
ので、正常なCVDが行えない。
On the other hand, if there is a significant difference, the function of measuring the flow rate of the reaction gas is impaired due to differences in deposits, etc., and therefore normal CVD cannot be performed.

よつて、前者の場合には、反応ガスを反応等へ
導入してCVD処理を行うことが可能であり、後
者の場合には、マスフローコントローラの部品交
換を行う等した後でなければCVD処理はできな
いことになる。
Therefore, in the former case, it is possible to introduce the reaction gas into the reaction and perform CVD processing, and in the latter case, CVD processing must be performed after replacing parts of the mass flow controller, etc. It turns out you can't do it.

本発明の要旨は、第1の反応ガスと第2の反応
ガスをCVD用反応管16へ供給し、前記第1の
反応ガスの流量を制御しながら前記第1の反応ガ
スを前記反応管へ供給するガス流量制御方法にお
いて、前記第1の反応ガスは第1の反応ガス源4
から第1のガス供給管、第1のエアバルブ6、第
2のガス供給管、、マスフローコントローラ9お
よび第3のガス供給管を経由して前記反応管19
に供給され、不活性ガスは不活性ガス源3、第4
のガス供給管、マスフローメータ35、第5のガ
ス供給管、第2のエアバルブ37および第6のガ
ス供給管を経由して前記マスフローコントローラ
9に供給され、前記第1のエアバルブ6および前
記第2のエアバルブ37はその一方がバルブ開の
ときは他方がバルブ閉となるように相補的に構成
され、前記第2のエアバルブ開の状態で前記不活
性ガスを前記不活性ガス源3から前記マスフロー
メータ35および前記マスフローコントローラ9
へ流通させ、前記マスフローメータ35における
前記不活性ガスの流量値と前記マスフローコント
ローラ9における前記不活性ガスの流量値を検出
および比較し、前記不活性ガスの前記マスフロー
メータ35における流量値と前記マスフローコン
トローラ9における流量値との差に有意差がない
場合にのみ、その次の工程で第1の反応ガスを前
記反応管16へ供給することを特徴とするガス流
量制御方法にある。
The gist of the present invention is to supply a first reaction gas and a second reaction gas to a CVD reaction tube 16, and to supply the first reaction gas to the reaction tube while controlling the flow rate of the first reaction gas. In the supply gas flow rate control method, the first reaction gas is supplied to a first reaction gas source 4.
to the reaction tube 19 via the first gas supply pipe, the first air valve 6, the second gas supply pipe, the mass flow controller 9, and the third gas supply pipe.
and the inert gas is supplied to inert gas sources 3 and 4.
is supplied to the mass flow controller 9 via the gas supply pipe, the mass flow meter 35, the fifth gas supply pipe, the second air valve 37, and the sixth gas supply pipe, and the first air valve 6 and the second gas supply pipe are The air valves 37 are configured to be complementary so that when one valve is open, the other valve is closed, and when the second air valve is open, the inert gas is supplied from the inert gas source 3 to the mass flow meter. 35 and the mass flow controller 9
The flow rate value of the inert gas in the mass flow meter 35 and the flow rate value of the inert gas in the mass flow controller 9 are detected and compared, and the flow rate value of the inert gas in the mass flow meter 35 and the mass flow are detected and compared. The gas flow rate control method is characterized in that the first reaction gas is supplied to the reaction tube 16 in the next step only when there is no significant difference between the flow rate value and the flow rate value in the controller 9.

以下、本発明を図面に示す一実施例にしたがつ
て詳細に説明する。
Hereinafter, the present invention will be explained in detail according to an embodiment shown in the drawings.

図は本発明によるガス流量制御装置を組み込ん
だCVD装置の一実施例の系統図である。
The figure is a system diagram of an embodiment of a CVD apparatus incorporating a gas flow rate control device according to the present invention.

本実施例においては、反応ガスとしてジクロル
シラン(SiH2Cl2)とアンモニア(NH3)を供給
して反応管(石英管)内のウエハ上にシリコンナ
イトライド(Si3N4)膜を生成するものである。
そのため、本実施例では、ジクロルシランガス源
1とアンモニアガス源2が設けられ、またパージ
用の不活性ガスとしてN2ガスをジクロルシラン
ガス供給系に供給するためのN2ガス源3が設け
られている。
In this example, dichlorosilane (SiH 2 Cl 2 ) and ammonia (NH 3 ) are supplied as reaction gases to form a silicon nitride (Si 3 N 4 ) film on a wafer in a reaction tube (quartz tube). It is something.
Therefore, in this embodiment, a dichlorosilane gas source 1 and an ammonia gas source 2 are provided, and an N 2 gas source 3 is provided for supplying N 2 gas to the dichlorosilane gas supply system as an inert gas for purging. It is being

ジクロルシランガス供給系は、ジクロルシラン
ガス源1に接続されたボールバルブ4、圧力計
5、エアバルブ6、ボールバルブ7、フイルタ
8、マスフローコントローラ9、フイルタ10、
ボールバルブ11、エアバルブ12、フイルタ1
3、バルブ14、圧力計15を経てCVD処理用
の反応管16に連通している。また、エアバルブ
17、チエツクバルブ18を経てスクラツパ(図
示せず)に導びかれている。エアバルブ12,1
7は一方が開の時は他方が閉となり、図の場合に
はエアバルブ12が閉、17が開の状態である。
また、エアバルブ6も後述のように不活性ガス供
給系のエアバルブ37と交互に開閉される。
The dichlorosilane gas supply system includes a ball valve 4 connected to a dichlorosilane gas source 1, a pressure gauge 5, an air valve 6, a ball valve 7, a filter 8, a mass flow controller 9, a filter 10,
Ball valve 11, air valve 12, filter 1
3, a valve 14, and a pressure gauge 15 to communicate with a reaction tube 16 for CVD processing. It is also led to a scraper (not shown) via an air valve 17 and a check valve 18. Air valve 12,1
When one valve 7 is open, the other valve is closed, and in the case shown, the air valve 12 is closed and the valve 17 is open.
Further, the air valve 6 is also opened and closed alternately with the air valve 37 of the inert gas supply system, as will be described later.

アンモニアガス供給系は、アンモニアガス源2
に接続されたボールバルブ19、圧力計20、エ
アバルブ21、ボールバルブ22、フイルタ2
3、マスフローコントローラ24、フイルタ2
5、ボールバルブ26、流量計27、エアバルブ
28、ボールバルブ28Aを経て反応管16に連
通している。また、前記エアバルブ28と交互に
開閉されるエアバルブ29、チエツクバルブ30
を経てスクラツバ(図示せず)連通している。
The ammonia gas supply system is the ammonia gas source 2.
Ball valve 19, pressure gauge 20, air valve 21, ball valve 22, filter 2 connected to
3. Mass flow controller 24, filter 2
5, communicates with the reaction tube 16 via a ball valve 26, a flow meter 27, an air valve 28, and a ball valve 28A. Also, an air valve 29 and a check valve 30 are opened and closed alternately with the air valve 28.
It communicates with the scrubber (not shown) through the.

また、N2ガス供給系は、N2ガス源3に接続さ
れたボールバルブ31、フイルタ32、レギユレ
ータ33、圧力計34、マスフローメータ35、
チエツクバルブ36、前記ジクロルシランガス供
給系のエアバルブ6と交互に開閉されるエアバル
ブ37を経て前記ジクロルシランガス供給系のマ
スフローコントローラ9よりも上流側に合流して
いる。また、N2ガス供給系は、圧力計34の下
流から圧力スイツチ38を経て流量計39とエア
バルブ40および流量計41とエアバルブ42の
側にも分岐しており、両エアバルブ40,42は
交互に開閉される。
The N 2 gas supply system also includes a ball valve 31 connected to the N 2 gas source 3, a filter 32, a regulator 33, a pressure gauge 34, a mass flow meter 35,
It merges upstream of the mass flow controller 9 of the dichlorosilane gas supply system through a check valve 36 and an air valve 37 that is alternately opened and closed with the air valve 6 of the dichlorosilane gas supply system. Further, the N 2 gas supply system branches from the downstream side of the pressure gauge 34 through the pressure switch 38 to the flow meter 39 and air valve 40, and the flow meter 41 and air valve 42, and both air valves 40 and 42 are connected alternately. It is opened and closed.

N2ガスは、マスフローメータ35とマスフロ
ーコントローラ9を連通して流される。N2ガス
のマスフローメータ35における流量値とマスフ
ローコントローラ9における流量値がそれぞれ検
出され、両者の間に差があるか否かを確認するた
めに、コンピユータ43がマスフローメータ35
およびマスフローコントローラ9はコンピユータ
43に接続されている。コンピユータ43は、こ
れらのガス流量間に差がない場合には、ジクロル
シランガスの流量が正常なものであるので、反応
管16内のウエハに対してデポジシヨンを行うた
めの命令を発生する。前記ガス流量間に差がある
ときは、ジクロルシランガスの流量が正常ではな
く、マスフローコントローラ9の目詰まり等の異
常が発生していることになるので、デポジシヨン
はその異常の原因が取り除かれるまで行われな
い。この異常発生を知らせるため、コンピユータ
43には警報装置44が接続されている。
N 2 gas is passed through the mass flow meter 35 and the mass flow controller 9 in communication with each other. The flow rate value of the N2 gas in the mass flow meter 35 and the flow rate value in the mass flow controller 9 are detected, and in order to confirm whether there is a difference between the two, the computer 43
And the mass flow controller 9 is connected to the computer 43. If there is no difference between these gas flow rates, the flow rate of dichlorosilane gas is normal, and the computer 43 generates a command to perform deposition on the wafer in the reaction tube 16. If there is a difference between the gas flow rates, it means that the flow rate of dichlorosilane gas is not normal and that an abnormality such as clogging of the mass flow controller 9 has occurred, so the deposition should be continued until the cause of the abnormality is removed. Not done. An alarm device 44 is connected to the computer 43 to notify of the occurrence of this abnormality.

なお、図の符号45は反応管16のための排気
系であり、排気用の回転ポンプ等を含んでいる。
Note that the reference numeral 45 in the figure is an exhaust system for the reaction tube 16, which includes a rotary pump for exhaust and the like.

次に、本実施例の作用について説明する。通常
のデポジシヨンを行う場合、ジクロルシランガス
源1からジクロルシランガス、またアンモニアガ
ス源2からアンモニアガスをそれぞれのガス供給
系を経て反応管16の中に供給し、該反応管16
内のウエハ上にシリコンナイトライド膜を生成す
る。この場合、各ガス供給系のガス流量はそれぞ
れマスフローコントローラ9,24により制御す
る。ところが、ジクロルシランガスは空気等との
反応により塵芥を発生してマスフローコントロー
ラ9の目詰まり等を生じ、ジクロルモノシランガ
スの流量が変動して反応条件が変化する可能性が
ある。
Next, the operation of this embodiment will be explained. When performing normal deposition, dichlorosilane gas from the dichlorosilane gas source 1 and ammonia gas from the ammonia gas source 2 are supplied into the reaction tube 16 through their respective gas supply systems.
A silicon nitride film is produced on the wafer within the wafer. In this case, the gas flow rate of each gas supply system is controlled by mass flow controllers 9 and 24, respectively. However, the dichlorosilane gas generates dust due to its reaction with air, etc., which may cause clogging of the mass flow controller 9, etc., and the flow rate of the dichloromonosilane gas may fluctuate, thereby changing the reaction conditions.

そこで、本実施例では、N2ガス供給系を利用
してN2ガス源3から各デポジシヨンの前にN2
スをパージガスとして供給すると共に、このN2
ガスの流量値をマスフローメータ35およびマス
フローコントローラ9において各別に検出し、流
量値の差の有無を確認する。
Therefore, in this embodiment, an N 2 gas supply system is used to supply N 2 gas as a purge gas from the N 2 gas source 3 before each deposition.
The gas flow rate values are detected separately by the mass flow meter 35 and the mass flow controller 9, and the presence or absence of a difference in the flow rate values is confirmed.

両者に有意差がない場合には、マスフローコン
トローラは正常に機能していると認定できるの
で、反応管16へ反応ガスを導入してCVD動作
を行うことが可能である。
If there is no significant difference between the two, it can be determined that the mass flow controller is functioning normally, so it is possible to introduce the reaction gas into the reaction tube 16 and perform the CVD operation.

両者に有意差がある場合には、マスフローコン
トローラ9に目詰まり等の異常が発生しているこ
とになり、ジクロルシランガスの流量不足等で反
応条件が変化し、シリコンナイトライド膜の厚さ
が所望値ではなくなつてしまう。したがつて、こ
の場合には警報装置44で異常発生を知らせ、デ
ポジシヨンは異常の原因が取り除かれるまで行わ
れない。
If there is a significant difference between the two, it means that an abnormality such as clogging has occurred in the mass flow controller 9, and the reaction conditions have changed due to insufficient flow of dichlorosilane gas, causing the thickness of the silicon nitride film to decrease. The value will no longer be the desired value. Therefore, in this case, the alarm device 44 notifies the user of the occurrence of the abnormality, and the deposition is not performed until the cause of the abnormality is removed.

その結果、本実施例によれば、ジクロルシラン
ガスの流量の適否を各デポジシヨン前に確認し、
正常な流量の時にのみデポジシヨンを行うので、
膜厚のばらつきがなく、特性不良の発生を防止で
きる。
As a result, according to this example, the suitability of the flow rate of dichlorosilane gas is confirmed before each deposition,
Deposition is performed only when the flow rate is normal, so
There is no variation in film thickness, and the occurrence of characteristic defects can be prevented.

なお、アンモニアガスの場合には空気とは反応
しないので、マスフローメータはアンモニアガス
供給系には設けられていないが、必要であれば同
様にして設けてもよい。
Note that in the case of ammonia gas, since it does not react with air, a mass flow meter is not provided in the ammonia gas supply system, but it may be provided in a similar manner if necessary.

また、本発明はモノシラン(SiH4)ガスを反
応ガスとして用いてポリシリコン膜を生成する場
合等にも同様に適用できる。
Further, the present invention can be similarly applied to cases where a polysilicon film is produced using monosilane (SiH 4 ) gas as a reaction gas.

以上説明したように、本発明によれば、反応ガ
スの流量の変動をなくし、常に均一な膜厚を得る
ことができ、膜厚のばらつきによる特性不良を排
除できる。
As described above, according to the present invention, it is possible to eliminate fluctuations in the flow rate of the reactant gas, to always obtain a uniform film thickness, and to eliminate characteristic defects due to variations in film thickness.

【図面の簡単な説明】[Brief explanation of drawings]

図は本発明によるガス流量制御装置を組み込ん
だCVD装置の一例の系統図である。 1……ジクロルシランガス源、2……アンモニ
アガス源、3……N2ガス源、9……マスフロー
コントローラ、16……反応管、35……マスフ
ローメータ、43……コンピユータ。
The figure is a system diagram of an example of a CVD device incorporating a gas flow rate control device according to the present invention. DESCRIPTION OF SYMBOLS 1...Dichlorosilane gas source, 2...Ammonia gas source, 3... N2 gas source, 9...Mass flow controller, 16...Reaction tube, 35...Mass flow meter, 43...Computer.

Claims (1)

【特許請求の範囲】[Claims] 1 第1の反応ガスと第2の反応ガスをCVD用
反応管16へ供給し、前記第1の反応ガスの流量
を制御しながら前記第1の反応ガスを前記反応管
へ供給するガス流量制御方法において、前記第1
の反応ガスは第1の反応ガス源4から第1のガス
供給管、第1のエアバルブ6、第2のガス供給
管、マスフローコントローラ9および第3のガス
供給管を経由して前記反応管16に供給され、不
活性ガスは不活性ガス源3、第4のガス供給管、
マスフローメータ35、第5のガス供給管、第2
のエアバルブ37および第6のガス供給管を経由
して前記マスフローコントローラ9に供給され、
前記第1のエアバルブ6および前記第2のエアバ
ルブ37はその一方がバルブ開のときは他方がバ
ルブ閉となるように相補的に構成され、前記第2
のエアバルブ開の状態で前記不活性ガスを前記不
活性ガス源3から前記マスフローメータ35およ
び前記マスフローコントローラ9へ流通させ、前
記マスフローメータ35における前記不活性ガス
の流量値と前記マスフローコントローラ9におけ
る前記不活性ガスの流量値を検出および比較し、
前記不活性ガスの前記マスフローメータ35にお
ける流量値と前記マスフローコントローラ9にお
ける流量値との差に有意差がない場合にのみ、そ
の次の工程で第1の反応ガスを前記反応管16へ
供給することを特徴とするガス流量制御方法。
1. Gas flow rate control for supplying a first reaction gas and a second reaction gas to the CVD reaction tube 16, and supplying the first reaction gas to the reaction tube while controlling the flow rate of the first reaction gas. In the method, the first
The reaction gas is supplied from the first reaction gas source 4 to the reaction tube 16 via a first gas supply pipe, a first air valve 6, a second gas supply pipe, a mass flow controller 9 and a third gas supply pipe. The inert gas is supplied to an inert gas source 3, a fourth gas supply pipe,
Mass flow meter 35, fifth gas supply pipe, second
is supplied to the mass flow controller 9 via the air valve 37 and the sixth gas supply pipe,
The first air valve 6 and the second air valve 37 are configured to be complementary so that when one of them is open, the other is closed, and
With the air valve open, the inert gas is caused to flow from the inert gas source 3 to the mass flow meter 35 and the mass flow controller 9, and the flow rate value of the inert gas in the mass flow meter 35 and the flow rate value in the mass flow controller 9 are changed. detect and compare inert gas flow values,
Only when there is no significant difference between the flow rate value of the inert gas in the mass flow meter 35 and the flow rate value in the mass flow controller 9, the first reaction gas is supplied to the reaction tube 16 in the next step. A gas flow rate control method characterized by:
JP20924081A 1981-12-25 1981-12-25 Method and apparatus for controlling gas flow rate Granted JPS58111314A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20924081A JPS58111314A (en) 1981-12-25 1981-12-25 Method and apparatus for controlling gas flow rate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20924081A JPS58111314A (en) 1981-12-25 1981-12-25 Method and apparatus for controlling gas flow rate

Publications (2)

Publication Number Publication Date
JPS58111314A JPS58111314A (en) 1983-07-02
JPH0328815B2 true JPH0328815B2 (en) 1991-04-22

Family

ID=16569675

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20924081A Granted JPS58111314A (en) 1981-12-25 1981-12-25 Method and apparatus for controlling gas flow rate

Country Status (1)

Country Link
JP (1) JPS58111314A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0240440U (en) * 1988-09-08 1990-03-19
JP2906624B2 (en) * 1990-09-27 1999-06-21 株式会社島津製作所 Thin film forming equipment

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54144867A (en) * 1978-05-04 1979-11-12 Hitachi Ltd Gas phase growth method of semiconductor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54144867A (en) * 1978-05-04 1979-11-12 Hitachi Ltd Gas phase growth method of semiconductor

Also Published As

Publication number Publication date
JPS58111314A (en) 1983-07-02

Similar Documents

Publication Publication Date Title
US11053591B2 (en) Multi-port gas injection system and reactor system including same
US7195930B2 (en) Cleaning method for use in an apparatus for manufacturing a semiconductor device
TWI760208B (en) Methods and assemblies for gas flow ratio control
KR20190128562A (en) Thin film forming method and substrate processing apparatus
JP5300261B2 (en) Gas flow splitting system and method for semiconductor manufacturing
US7625609B2 (en) Formation of silicon nitride film
JP2019209322A (en) Gas distribution system and reactor system including the same
US7953512B2 (en) Substrate processing system, control method for substrate processing apparatus and program stored on medium
JP2009076807A (en) Gas supply device for semiconductor manufacturing apparatus
KR100875333B1 (en) Semiconductor manufacturing apparatus and semiconductor manufacturing method
TWI725717B (en) Manufacturing method of semiconductor device, substrate processing device and recording medium
CN108624864A (en) Manufacturing method, substrate processing device and the recording medium of semiconductor devices
US7413914B2 (en) Method and apparatus for manufacturing semiconductor device, method and apparatus for controlling the same, and method and apparatus for simulating manufacturing process of semiconductor device
JPH0758032A (en) Apparatus and method for controlling pressure
US20070269596A1 (en) Valve failure detection
JPH0328815B2 (en)
JP2542695B2 (en) Plasma etching equipment
JP3070728B2 (en) Thin film vapor deposition equipment
CN108048819B (en) A kind of chemical vapor deposition process
TWI849644B (en) Methods and assemblies for gas flow ratio control
JPS6350848Y2 (en)
JPH0774166A (en) Heat treatment equipment
JPH0265226A (en) Atmospheric film forming device
KR900000757B1 (en) Gas supply system of a chemical vapour deposition in a low pressure for a refractory metal
JPH0542811B2 (en)