JPH0328806A - Method for coupling optical wavecuide and optical fiber - Google Patents

Method for coupling optical wavecuide and optical fiber

Info

Publication number
JPH0328806A
JPH0328806A JP10412690A JP10412690A JPH0328806A JP H0328806 A JPH0328806 A JP H0328806A JP 10412690 A JP10412690 A JP 10412690A JP 10412690 A JP10412690 A JP 10412690A JP H0328806 A JPH0328806 A JP H0328806A
Authority
JP
Japan
Prior art keywords
optical
optical fiber
guide groove
waveguide
optical waveguide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10412690A
Other languages
Japanese (ja)
Other versions
JPH0563768B2 (en
Inventor
Yasubumi Yamada
泰文 山田
Masao Kawachi
河内 正夫
Morio Kobayashi
盛男 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP10412690A priority Critical patent/JPH0328806A/en
Publication of JPH0328806A publication Critical patent/JPH0328806A/en
Publication of JPH0563768B2 publication Critical patent/JPH0563768B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/30Optical coupling means for use between fibre and thin-film device
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/255Splicing of light guides, e.g. by fusion or bonding
    • G02B6/2551Splicing of light guides, e.g. by fusion or bonding using thermal methods, e.g. fusion welding by arc discharge, laser beam, plasma torch

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

PURPOSE:To improve the efficiency and reliability by forming a positioning guide groove for aligning the optical fiber with optical waveguide on a quartz glass optical waveguide substrate. CONSTITUTION:When the optical waveguide 2 and optical fiber 7 are coupled with each other, the optical fiber 7 is charged in the groove 6 first and end surfaces of the core layer 4 of the opticalwaveguide 2 and the core layer 7a of the optical fiber 7 are made to about on each other on the substrate 1 and then connected to each other. This guide groove 6 has its pattern formed on the waveguide by photolithography simultaneously with the patterning of an optical circuit. Then when the optical waveguide 2 and optical fiber 7 are connected by fusion splicing, the end surface join part is heated by CO2 laser irradiation or an oxyhydrogen burner, etc. Consequently, the optical fiber is aligned only by being inserted into the guide groove 6, the time required for the connection is shortened, and the strength reliability of the connection part is improved.

Description

【発明の詳細な説明】 本発明は、光通信において必要な光ファイバと石英ガラ
ス系光導波路との直接接続法に関するものである. 例えば光分岐素子、光分波器等の導波形光部品を光通信
システムに導入する場合、これらの光部品と光ファイバ
との接続法としては、効率が良く、信頼性が高く、かつ
短時間で行なえる方法が要求される.従来は、只単に光
ファイバ端面と光導波路端面とを直接つき合わせて接続
する端面接続が主として行なわれている。しかし、この
方法には(i)接続に先立ち、導波路端面の切断ならび
に研磨が必要である、(ii)光ファイバと光導波路と
の精密な位置合わせが別途必要であって、接続に時間が
かかる、(iii)接続部の機械的位置信頼性に欠ける
、(iv)光入出力の位置が導波路基板の端面に限られ
、基板内の任意の位置からの入出力ができない、(v)
石英ガラス系光導波路には端面接続の際に光ファイバと
の融着を行なえる可能性があるが、光ファイバどうしの
融着と異なり光ファイバと光導波路との間に大きな熱容
量差があるため、光ファイバのみが変形し、高精度の位
置合わせが困難になる、等の欠点があった。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for directly connecting an optical fiber and a silica glass optical waveguide, which is necessary in optical communication. For example, when introducing waveguide optical components such as optical branching elements and optical demultiplexers into an optical communication system, the connection method between these optical components and optical fibers is efficient, reliable, and short. A method that can be used is required. Conventionally, end-face connection has been mainly performed, in which the end face of the optical fiber and the end face of the optical waveguide are simply brought into direct contact and connected. However, this method requires (i) cutting and polishing of the end face of the waveguide prior to connection, and (ii) separate and precise alignment of the optical fiber and optical waveguide, which takes time. (iii) mechanical position reliability of the connection part is lacking; (iv) the position of optical input/output is limited to the end face of the waveguide substrate, and input/output cannot be performed from any position within the substrate; (v)
Silica glass optical waveguides have the potential to be fused with optical fibers when end-connecting, but unlike fusion bonding between optical fibers, there is a large difference in heat capacity between the optical fiber and the optical waveguide. , only the optical fiber is deformed, making it difficult to align with high precision.

本発明は、これら従来の問題を解消するために、石英ガ
ラス系光導波路基板上に光ファイバと光導波路との位置
合わせ用のガイド溝を形成して、この溝を利用しての結
合を行なうようにしたものである. 以下、本発明を図面に基づいて詳細に説明する.第1図
、第2図および第3図は、本発明の一実施例として、石
英系光導波路に外径125μm、コア径50μmの光フ
ァイバを接続する場合の方法を示している。同図中にお
いて、1は石英ガラス基板2は光導波路であり、その光
導波路2の構造は、バソファ層3、コア層4および保護
層5よりなる。各層の材質および厚さは、バッファ層3
、3102  82 03   P z Os  ( 
3 7.  5 μm)コア層4、Si○Z  TiO
z  Bz03  Pg○s  (50μm):  保
gI層5、Sing  BtOi   P z Os 
 (3 μm)である。6はガイド溝である。7は光フ
ァイバであり、7aはそのコア層である。
In order to solve these conventional problems, the present invention forms a guide groove for positioning the optical fiber and the optical waveguide on a silica glass optical waveguide substrate, and performs coupling using this groove. This is how it was done. Hereinafter, the present invention will be explained in detail based on the drawings. FIGS. 1, 2, and 3 show a method for connecting an optical fiber having an outer diameter of 125 μm and a core diameter of 50 μm to a silica-based optical waveguide as an embodiment of the present invention. In the figure, reference numeral 1 indicates a quartz glass substrate 2 that is an optical waveguide, and the structure of the optical waveguide 2 includes a bathophage layer 3, a core layer 4, and a protective layer 5. The material and thickness of each layer are as follows: buffer layer 3
, 3102 82 03 P z Os (
3 7. 5 μm) Core layer 4, Si○Z TiO
z Bz03 Pg○s (50 μm): GI layer 5, Sing BtOi P z Os
(3 μm). 6 is a guide groove. 7 is an optical fiber, and 7a is its core layer.

光導波路2と光ファイバ7との接合に際しては、まず、
ガイド溝6の中に光ファイバ7を挿入し、光導波路2の
コア層4と光ファイバ7のコアN7aの端面を基板工上
にて互いにつき合わせ、それからそれらの端面を接続す
る。第2図および第3図は、そのようにして接続した光
ファイバ7のコアN1aと、光導波路2のコア層4との
位置関係を表わしている。第2図は側面図、第3図は平
面図である。光導波路2の各層の厚さを上記のように設
定したことによりガイド溝6のなかに光ファイバ7を挿
入したとき、第2図において光ファイバ7のコア層7a
の高さが光導波i2のコア層4の高さと一致する。また
、ガイド溝6の位置は第3図に示すようにガイド溝6の
中に光ファイバ7を挿入した時に、その光ファイバ7の
コアIJ7aと光導波路2のコア14との位置が一致す
るように設定してある。したがって、接続に際しては、
ガイド溝6の中に光ファイバ7を挿入するだけでその軸
合わせができる。
When joining the optical waveguide 2 and the optical fiber 7, first,
The optical fiber 7 is inserted into the guide groove 6, the end surfaces of the core layer 4 of the optical waveguide 2 and the core N7a of the optical fiber 7 are brought into contact with each other on a substrate, and then the end surfaces are connected. 2 and 3 show the positional relationship between the core N1a of the optical fiber 7 connected in this way and the core layer 4 of the optical waveguide 2. FIG. FIG. 2 is a side view, and FIG. 3 is a plan view. By setting the thickness of each layer of the optical waveguide 2 as described above, when the optical fiber 7 is inserted into the guide groove 6, the core layer 7a of the optical fiber 7 in FIG.
The height matches the height of the core layer 4 of the optical waveguide i2. The position of the guide groove 6 is set so that when the optical fiber 7 is inserted into the guide groove 6, the core IJ7a of the optical fiber 7 and the core 14 of the optical waveguide 2 are aligned. It is set to . Therefore, when connecting,
Just by inserting the optical fiber 7 into the guide groove 6, its axis can be aligned.

上記のようなガイド溝6は、例えば、以下のように光回
路のパターン化と同時に形戒することができる.第4図
において、8はマスクガラス、2aは光回路パターン(
本例ではY分岐)、6aはガイド溝パターンである。フ
ォトリソグラフィ技術を用いて、このパターンを導波路
に形成する。
The guide groove 6 as described above can be shaped simultaneously with the patterning of the optical circuit, for example, as follows. In FIG. 4, 8 is a mask glass, 2a is an optical circuit pattern (
(Y branch in this example), and 6a is a guide groove pattern. This pattern is formed into a waveguide using photolithography technology.

本実施例では、アモルファスStをマスクとし、C.F
. 、C.H.の混合ガスを反応ガスとする反応性スバ
ッタエッチング法により、石英ガラスをエッチングして
パターンを形成した.反応性スパッタエッチング法は、
エッチング部分のアンダーカットのほとんどない方法で
あり、これにより第2図において導波路端面2Cの垂直
性がとれ、θ=8 5’〜88″が実現できる。エッチ
ングにあたっては、第2図に示すように、光導波路と光
ファイバのコア層の高さが一致するように90.5μm
の深さにエッチングすればよい。このように、光回路と
同時にガイド溝6を形戒することは、パターン化した光
回路の切り出しが容易となるといった利点を生じる。
In this example, amorphous St is used as a mask, and C. F
.. ,C. H. A pattern was formed by etching silica glass using a reactive spatter etching method using a mixed gas of The reactive sputter etching method is
This is a method with almost no undercut in the etched area, and as a result, the verticality of the waveguide end face 2C in FIG. 2 can be maintained, and θ=85' to 88'' can be achieved. 90.5 μm so that the height of the optical waveguide and the core layer of the optical fiber match.
It is sufficient to etch to a depth of . In this way, shaping the guide groove 6 at the same time as the optical circuit has the advantage that cutting out the patterned optical circuit becomes easy.

第5図は、基板上に複数個形成された中から切り出され
た光分岐回路として、ガイド溝のない従来のものを示し
、同図中、■は石英ガラス基板、2bは光回路、9aは
切断面である。この例において、端面接続を行なうため
には、切断面9aが光回路2b内の伝搬方向に対して垂
直で、かつ滑らかになっていなくてはならない。このた
め、切断時に高い精度が要求される。これに対して、ガ
イド溝が形戒されたものを第6図に示す。同図中1は石
英ガラス基板、2bは光回路、6bはガイド溝、9bは
切断面である。この例にあっては、仮に切断面9bの精
度が悪く、また、表面の荒れがあったとしても光ファイ
バとの接続には影響がない。このため、部品の切り出し
が容易である。
Fig. 5 shows a conventional optical branch circuit without a guide groove, which is cut out from a plurality of optical branch circuits formed on a substrate. It is a cut surface. In this example, in order to perform end-face connection, the cut surface 9a must be perpendicular to the propagation direction within the optical circuit 2b and must be smooth. For this reason, high precision is required during cutting. On the other hand, FIG. 6 shows a case in which the guide groove is shaped. In the figure, 1 is a quartz glass substrate, 2b is an optical circuit, 6b is a guide groove, and 9b is a cut surface. In this example, even if the precision of the cut surface 9b is poor or the surface is rough, it will not affect the connection with the optical fiber. Therefore, parts can be easily cut out.

さらに、本接続方法によれば、導波路基板上のの任意の
位置からの光入出力が可能となり、光回路設計の自由度
を大幅に増すことになる。第7図は、第5図、第6図と
同様な光分岐回路である。
Furthermore, according to this connection method, it becomes possible to input and output light from any position on the waveguide substrate, greatly increasing the degree of freedom in optical circuit design. FIG. 7 shows an optical branching circuit similar to FIGS. 5 and 6.

第7図中、1は石英ガラス基板、2bは光回路、6bは
ガイド溝、9bは切断面である。この実施例の場合、ガ
イド溝6bを用いることにより、所望の位置で光入出力
ができるので分岐後の光導波路に曲がりをつけることな
く光回路を形成できる。
In FIG. 7, 1 is a quartz glass substrate, 2b is an optical circuit, 6b is a guide groove, and 9b is a cut surface. In the case of this embodiment, by using the guide groove 6b, light can be input and output at a desired position, so that an optical circuit can be formed without bending the optical waveguide after branching.

これに対して従来の端面接続の場合、第5図に示したよ
うに、出力部が基板の端面にあることが必要で、しかも
、.2本の導波路を平行にすることが必要なので、光導
波路の曲がりは避けられない。
On the other hand, in the case of conventional end surface connection, as shown in FIG. 5, it is necessary that the output section be located on the end surface of the board, and... Since it is necessary to make the two waveguides parallel, bending of the optical waveguide is unavoidable.

第8図は、本発明の別の実施例である。同図中1は石英
ガラス基板、2bは光回路、6b,6c,6dはガイド
溝、9bは切断面である。この実施例は、一枚の基板の
中央付近にガイド溝6c,6dを設け、6c及び6d間
に光ファイバを接続するようにしたものである。このよ
うにして、一枚の基板内に形成した導波路間で立体交差
させることが可能となる。
FIG. 8 is another embodiment of the invention. In the figure, 1 is a quartz glass substrate, 2b is an optical circuit, 6b, 6c, and 6d are guide grooves, and 9b is a cut surface. In this embodiment, guide grooves 6c and 6d are provided near the center of one substrate, and an optical fiber is connected between 6c and 6d. In this way, it becomes possible to cross three-dimensionally the waveguides formed within one substrate.

なお、第1図の例において、光導波路2と光ファイバ7
とを融着接続する場合には、C○2レーザー照射あるい
は酸水素バーナー等によって端面接合部を加熱すればよ
い。また、上記したように導波路端面の垂直性がよいの
で、光ファイバ7のコア層7aの端面と光導波路2のコ
ア層2aの端面とのすき間は、光ファイバ7をガイド溝
6bに挿入して軸合せをした時点でl〜3μm程度であ
る.したがって、融着時に光ファ・イバを軽く押せばこ
のすき間は完全になくなり、しかもそれに伴なう軸ずれ
はほとんどおこらない。また、従来の端面接続では、融
着の際に熱容量の小さい光ファイバのみが一方的に変形
してしまうという問題があったが、本実施例では、光フ
ァイバ7は石英ガラスのガイド溝6の中にあり、しかも
、石英ガラス基板1上にあるので、熱容量差の問題が解
決できる。今述べた融着接続の他に、光導波路2と光フ
ァイバ7との接続にあたり、接着剤による接着ももちろ
ん可能である。また、ガイド溝6は接続部の保護の働き
もするので、接続部の強度信頼性も高められる。そして
本実施例では結合効率90〜95%が得られた。
In addition, in the example of FIG. 1, the optical waveguide 2 and the optical fiber 7
In the case of fusion splicing, the end surface joint may be heated by C○2 laser irradiation, an oxyhydrogen burner, or the like. In addition, as described above, since the waveguide end face has good perpendicularity, the gap between the end face of the core layer 7a of the optical fiber 7 and the end face of the core layer 2a of the optical waveguide 2 is sufficient for inserting the optical fiber 7 into the guide groove 6b. When the axis is aligned, the difference is about 1 to 3 μm. Therefore, if the optical fiber is lightly pressed during fusing, this gap will be completely eliminated, and the resulting axis deviation will hardly occur. Furthermore, in the conventional end face connection, there was a problem in that only the optical fiber with a small heat capacity was unilaterally deformed during fusion splicing, but in this embodiment, the optical fiber 7 is connected to the guide groove 6 of the quartz glass. Moreover, since it is located inside the quartz glass substrate 1, the problem of heat capacity difference can be solved. In addition to the above-mentioned fusion splicing, it is of course possible to bond the optical waveguide 2 and the optical fiber 7 together using an adhesive. Further, since the guide groove 6 also serves to protect the connection portion, the strength and reliability of the connection portion is also improved. In this example, a coupling efficiency of 90 to 95% was obtained.

以上説明したように、本発明では、光ファイバと石英ガ
ラス系光導波路との軸合せ用のガイド溝を導波路基板上
に形成し、そしてそのガイド溝を利用しての結合を行な
うので、そのガイド溝の中に光ファイバを挿入するだけ
で軸合わせができて、接続に要する時間の大幅な短縮が
できる。しかも、同時にそのガイドは、接続部を保護す
る役割をも果すので、接続部の強度信頼性も高められる
。さらに、ガイド溝の採用により、導波路基板上の所望
の位置からの光入出力が可能となるので、光回路設計上
の自由度を大幅に増すことができる.また、融着の際に
問題となる光ファイバと光導波路との熱容量差がなくな
り、信頼性の高い融着接続ができる等の効果を奏する。
As explained above, in the present invention, a guide groove for aligning the optical fiber and the silica glass optical waveguide is formed on the waveguide substrate, and the coupling is performed using the guide groove. Just by inserting the optical fiber into the guide groove, the axis can be aligned, greatly reducing the time required for connection. Furthermore, since the guide also serves to protect the connection section, the strength and reliability of the connection section can be improved. Furthermore, by using guide grooves, it is possible to input and output light from any desired position on the waveguide substrate, greatly increasing the degree of freedom in optical circuit design. Further, the heat capacity difference between the optical fiber and the optical waveguide, which is a problem during fusion splicing, is eliminated, and highly reliable fusion splicing can be achieved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図乃至第3図はこの発明を説明するための光導波路
と光ファイバとの結合部分を示し、第1図は斜視図、第
2図は側面図、第3図は平面図、第4図は光回路とガイ
ド溝が同時に書き込まれたマスクガラスの平面図、第5
図は光回路のみが形成された基板の部分平面図、第6図
は光回路と共にガイド溝が形成された基板の部分平面図
、第7図は光回路と共にガイド溝が形成された基板の部
分平面図、第8図は、導波路基板の中央付近にガイド溝
を有した光回路の平面図である。 l・・・・・・石英ガラス基板、,2・・・・・・石英
系光導波路、6・・・・・・ガイド溝、7・・・・・・
光ファイバ.第5図 第6図 第4図 2a 第7図
1 to 3 show a coupling portion between an optical waveguide and an optical fiber for explaining the present invention, FIG. 1 is a perspective view, FIG. 2 is a side view, FIG. 3 is a plan view, and FIG. The figure is a plan view of the mask glass on which optical circuits and guide grooves are written simultaneously.
The figure is a partial plan view of a substrate on which only an optical circuit is formed, FIG. 6 is a partial plan view of a substrate on which a guide groove is formed together with an optical circuit, and FIG. 7 is a partial plan view of a substrate on which a guide groove is formed together with an optical circuit. The plan view, FIG. 8, is a plan view of an optical circuit having a guide groove near the center of a waveguide substrate. 1...Quartz glass substrate, 2...Quartz-based optical waveguide, 6...Guide groove, 7...
Optical fiber. Figure 5 Figure 6 Figure 4 Figure 2a Figure 7

Claims (1)

【特許請求の範囲】[Claims] 光導波路基板上に、石英ガラス系光導波路のパターン化
と同時に、その光導波路の端部に接続すべき光ファイバ
の端部を位置決めするガイド溝をフォトリソグラフィ技
術によって形成し、その後、そのガイド溝内に光ファイ
バの端部を位置決めして、その光ファイバの端部と光導
波路の端部とを結合することを特徴とする光導波路と光
ファイバとの結合方法。
At the same time as patterning the silica glass optical waveguide on the optical waveguide substrate, a guide groove for positioning the end of the optical fiber to be connected to the end of the optical waveguide is formed using photolithography technology, and then the guide groove is 1. A method for coupling an optical waveguide and an optical fiber, the method comprising: positioning the end of the optical fiber within the interior of the optical fiber, and coupling the end of the optical fiber to the end of the optical waveguide.
JP10412690A 1990-04-19 1990-04-19 Method for coupling optical wavecuide and optical fiber Granted JPH0328806A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10412690A JPH0328806A (en) 1990-04-19 1990-04-19 Method for coupling optical wavecuide and optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10412690A JPH0328806A (en) 1990-04-19 1990-04-19 Method for coupling optical wavecuide and optical fiber

Publications (2)

Publication Number Publication Date
JPH0328806A true JPH0328806A (en) 1991-02-07
JPH0563768B2 JPH0563768B2 (en) 1993-09-13

Family

ID=14372428

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10412690A Granted JPH0328806A (en) 1990-04-19 1990-04-19 Method for coupling optical wavecuide and optical fiber

Country Status (1)

Country Link
JP (1) JPH0328806A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2777359A1 (en) * 1998-04-09 1999-10-15 Corning Inc CONNECTION OF OPTICAL FIBER AND OPTICAL WAVEGUIDE BY MERGER
JP2012247701A (en) * 2011-05-30 2012-12-13 Hitachi Chem Co Ltd Optical fiber connector and method for manufacturing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2777359A1 (en) * 1998-04-09 1999-10-15 Corning Inc CONNECTION OF OPTICAL FIBER AND OPTICAL WAVEGUIDE BY MERGER
WO1999053351A1 (en) * 1998-04-09 1999-10-21 Corning Incorporated Method for connecting optical fiber and optical waveguide
JP2002511599A (en) * 1998-04-09 2002-04-16 コーニング インコーポレイテッド Connection method between optical fiber and optical waveguide
JP2012247701A (en) * 2011-05-30 2012-12-13 Hitachi Chem Co Ltd Optical fiber connector and method for manufacturing the same

Also Published As

Publication number Publication date
JPH0563768B2 (en) 1993-09-13

Similar Documents

Publication Publication Date Title
US5297228A (en) Method of connecting an optical fiber to an optical waveguide
JP3116979B2 (en) Optical coupling structure between optical waveguides
JP2771167B2 (en) Optical integrated circuit mounting method
JPH0328806A (en) Method for coupling optical wavecuide and optical fiber
JP3201864B2 (en) Method for manufacturing quartz optical waveguide component
JPS6360413A (en) Coupling method for light emitting element and optical fiber and optical waveguide type coupling device
JPH05173038A (en) Connecting mechanism between optical waveguide and optical fiber
JPS6017406A (en) Method for coupling optical waveguide and optical fiber together
JPS63163308A (en) Optical element and its manufacture
JPS61117513A (en) Optical circuit with fiber guide and its production
JPS6243609A (en) Optical circuit element
JPS61260208A (en) Light guide with fiber guide
JPH01234806A (en) Light guide device
JP2889241B2 (en) Optical waveguide component connection
JPH02113212A (en) Waveguide type optical module
JPH02251916A (en) Method for connecting quartz-based optical waveguide circuit and optical fiber
WO2023233534A1 (en) Optical module
JP3228614B2 (en) Connection structure between optical fiber and optical waveguide
JP2781888B2 (en) Optical waveguide components
JPH0815544A (en) Method for splicing optical waveguide with optical fiber
JPH05264832A (en) Production of optical waveguide with guide groove
JP2002221637A (en) Optical fiber array and coupling method using this array
JPH0772347A (en) Production of optical waveguide with guide groove
JPH0285807A (en) Optical integrated circuit
JPS63125907A (en) Manufacture of optical fiber type directional coupler