JPH03288022A - Drive coupling device for four wheel drive - Google Patents

Drive coupling device for four wheel drive

Info

Publication number
JPH03288022A
JPH03288022A JP8541290A JP8541290A JPH03288022A JP H03288022 A JPH03288022 A JP H03288022A JP 8541290 A JP8541290 A JP 8541290A JP 8541290 A JP8541290 A JP 8541290A JP H03288022 A JPH03288022 A JP H03288022A
Authority
JP
Japan
Prior art keywords
temperature
oil
oil chamber
hydraulic
rotor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8541290A
Other languages
Japanese (ja)
Inventor
Takao Tamagawa
玉川 隆雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koyo Seiko Co Ltd
Original Assignee
Koyo Seiko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koyo Seiko Co Ltd filed Critical Koyo Seiko Co Ltd
Priority to JP8541290A priority Critical patent/JPH03288022A/en
Publication of JPH03288022A publication Critical patent/JPH03288022A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To promote temperature fall of working fluid to realize quick return to normal conductive character by providing a constraining means which is installed on an engaging piston, deformed in response to that when the working fluid reaches a second temperature lower than a first temperature which constrains returning action produced on the engaging piston, following release of receiving pressure. CONSTITUTION:When working fluid in a hydraulic pump 3 rises in temperature and reaches to a first temperature, an energizing means 70 is deformed in responding thereto, a control spool 7 in a first oil chamber 5 formed to a casing moves, generated oil pressure of the hydraulic pump is induced into a second oil chamber 6 formed to the casing as well, an engaging piston 8 in the second oil chamber is slided by reception of this oil pressure to engage with a part of a rotor, relative rotation between the rotor and the casing is suppressed, and the transmission of driving force between both is ensured, while the temperature fall of the working fluid is promoted. When the temperature of the working fluid becomes lower than a second temperature by this promotion of temperature fall, the engaging piston is returned with release of deformation by a constraining means 9, and transmission of driving force is resumed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、前、後輪の一方から他方への駆動力の伝達を
、両輪間に構成された油圧ポンプの発生油圧を媒介とし
て行わせる4輪駆動用駆動連結装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention transmits driving force from one of the front and rear wheels to the other using the hydraulic pressure generated by a hydraulic pump configured between the two wheels. The present invention relates to a drive coupling device for four-wheel drive.

〔従来の技術〕[Conventional technology]

エンジンの駆動力を前、後輪双方に伝達して走行する4
輪駆動車は、路面状況、天候等の自然条件、及び走行状
態の如何に拘わらず安定した走行を実現し得るものとし
て脚光を浴びている。近年の4輪駆動車は、前、後輪間
に生しる回転速度差に応じて両輪へ駆動力を配分する機
能を有する駆動連結装置を備え、実質的に常時4輪駆動
状態を得るべく構威されたフルタイム4輪駆動車が主流
となっており、この種の駆動連結装置の一つに油圧ポン
プの発生油圧を利用するものがある。これは、前、後輪
の一方と連動回転すべくなしたロータを、他方と連動回
転すべくなしたケーシング内に収納して油圧ポンプ(例
えばベーンポンプ)を構威し、両輪間の回転速度差に対
応する相対回転をロータとケーシングとの間に生ぜしめ
、この油圧ポンプの内部に油圧が発生するようになした
ものである。この際の発生油圧は、前記相対回転の大き
さに対応し、この相対回転を抑止すべくロータとケーシ
ングとの間に作用するから、この油圧を媒介として、前
、後輪の一方から他方へ両輪の回転速度差に応じた駆動
力が伝達されることになり、所望の4輪駆動状態が実現
される。
Drives by transmitting the engine's driving force to both the front and rear wheels 4
Wheel drive vehicles have been in the spotlight as vehicles that can realize stable driving regardless of road conditions, natural conditions such as weather, and driving conditions. Recent four-wheel drive vehicles are equipped with a drive coupling device that has the function of distributing driving force to both wheels according to the difference in rotational speed between the front and rear wheels, so that four-wheel drive can be achieved virtually all the time. Full-time four-wheel drive vehicles have become mainstream, and one type of drive coupling device uses hydraulic pressure generated by a hydraulic pump. This is achieved by housing a rotor designed to rotate in conjunction with one of the front and rear wheels in a casing designed to rotate in conjunction with the other, and then using a hydraulic pump (e.g. vane pump) to create a rotor that rotates in conjunction with the other wheel. A relative rotation corresponding to the rotational speed is generated between the rotor and the casing, and hydraulic pressure is generated inside the hydraulic pump. The hydraulic pressure generated at this time corresponds to the magnitude of the relative rotation and acts between the rotor and the casing to suppress this relative rotation, so this hydraulic pressure is used as a medium to move from one of the front and rear wheels to the other. A driving force corresponding to the rotational speed difference between the two wheels is transmitted, and a desired four-wheel drive state is realized.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

さてこの駆動連結装置においては、ロータのみならずケ
ーシングもまた回転するため、前記油圧ポンプの作動油
を外部から供給することが難しく、前記ケーシングとこ
れの外側に嵌着された筒体との間に該ケーシングと一体
的に回転する油タンクを形成して、この油タンク内の封
入油を油圧ポンプの作動油として循環使用している。と
ころが、前記油タンクの内容積は装置全体の小型化のた
め限定されることから、例えば、山道走行時、雪道走行
時等、前、後輪間に大きい回転速度差が生した状態が長
期に亘って継続するような条件下において前記作動油の
温度上昇が避けられず、該作動油の体積膨脂及び粘性低
下を招来する問題がある。
Now, in this drive coupling device, since not only the rotor but also the casing rotates, it is difficult to supply hydraulic oil for the hydraulic pump from the outside, and there is a gap between the casing and the cylindrical body fitted on the outside of the casing. An oil tank is formed which rotates integrally with the casing, and the oil sealed in the oil tank is circulated and used as hydraulic oil for the hydraulic pump. However, since the internal volume of the oil tank is limited due to the miniaturization of the entire device, for example, when driving on mountain roads or snowy roads, a state where a large rotational speed difference occurs between the front and rear wheels may occur for a long period of time. Under such conditions that continue for a long period of time, the temperature of the hydraulic oil inevitably rises, resulting in a problem of volumetric expansion and viscosity reduction of the hydraulic oil.

前者の問題、即ち作動油の体積膨脂に対しては、米国特
許第3393583号及び本願出願人等による特開平1
−250662号等に開示されている如く、油タンクの
内部に配されたダイヤフラムの変形、又は、油タンクの
内部若しくは油圧ポンプの一部に配されたピストン部材
の移動により前記体積膨脂を吸収する体積膨脂吸収機構
を備える等、種々の有効な提案がなされており、既に実
用化されているのに対し、後者の問題、即ち作動油の粘
性低下を直接的に解消することは不可能であり、この粘
性低下に伴って油圧ポンプの圧力特性が低下することか
ら、走行中に伝動特性が低下するという難点が生じてい
た。
The former problem, that is, the volumetric expansion of hydraulic oil, can be solved by U.S. Pat.
As disclosed in No. 250662, etc., the volumetric fat is absorbed by deformation of a diaphragm disposed inside the oil tank or movement of a piston member disposed inside the oil tank or a part of the hydraulic pump. Although various effective proposals have been made and have already been put into practical use, such as providing a volumetric fat absorption mechanism that increases the volumetric fat absorption, it is impossible to directly solve the latter problem, that is, the decrease in viscosity of hydraulic fluid. As the viscosity decreases, the pressure characteristics of the hydraulic pump deteriorate, resulting in a problem in that the transmission characteristics deteriorate during driving.

前述した如く作動油の昇温は、山道走行時、雪道走行時
等、特に強固な4輪駆動状態が要求される場合に生じる
ものであり、粘性低下に伴う伝動特性の低下を解消する
ことは重要である。例えば、この伝動特性の低下が放置
されたまま、雪溜り。
As mentioned above, the temperature of the hydraulic fluid increases when a particularly strong four-wheel drive condition is required, such as when driving on mountain roads or snowy roads, and it is necessary to eliminate the decrease in transmission characteristics caused by the decrease in viscosity. is important. For example, if this deterioration of transmission characteristics is left untreated, snow accumulates.

砂溜り等への突っ込みにより前、後輪の一方が空転状態
に至った場合(所謂スタック状態に至った場合)、グリ
ップを確保している他方へ十分な駆動力の伝達がなされ
ず、スタック状態からの速やかな脱出が困難となる。ま
た特性低下状態の継続が作動油の更なる昇温を招来し、
油圧ポンプの吸込側でのキャビテーションの発生等、駆
動連結装置の正常な動作を阻害する新たな不都合が生じ
る上、昇温に伴う作動油の体積膨脂が前記体積変化吸収
機構の吸収限界を超えて、油タンク内に封入された作動
油の外部への漏出しを招来する虞さえあった。
If one of the front or rear wheels becomes idling due to running into a sand puddle, etc. (a so-called stuck condition), sufficient driving force is not transmitted to the other wheel that maintains grip, resulting in a stuck condition. It becomes difficult to escape quickly. In addition, the continuation of the deterioration of characteristics will cause the temperature of the hydraulic oil to rise further,
In addition to causing new problems such as the occurrence of cavitation on the suction side of the hydraulic pump, which inhibits the normal operation of the drive coupling device, the volumetric expansion of the hydraulic fluid due to temperature rise exceeds the absorption limit of the volume change absorption mechanism. There was even a risk that the hydraulic oil sealed in the oil tank might leak to the outside.

本発明は斯かる事情に鑑みてなされたものであり、作動
油の昇温により伝動特性が低下したとき、この低下分を
補償して4輪駆動状態の維持を可能とすると共に、作動
油の降温を促進して正規の伝動特性への速やかな復帰を
実現する4輪駆動用駆動連結装置を提供することを目的
とする。
The present invention has been made in view of the above circumstances, and is capable of compensating for the decrease in transmission characteristics when the temperature of the hydraulic oil increases, thereby making it possible to maintain a four-wheel drive state, and also to reduce the temperature of the hydraulic oil. It is an object of the present invention to provide a four-wheel drive drive coupling device that promotes temperature reduction and quickly returns to normal transmission characteristics.

〔課題を解決するための手段〕[Means to solve the problem]

本発明に係る4輪駆動用駆動連結装置は、前後輪の一方
と連動回転するロータを他方と連動回転するケーシング
内に収納して油圧ポンプを構威し、この油圧ポンプ内を
循環する作動油に、前記ロータとケーシングとの間の相
対回転に応じて発生する油圧を媒介として前、後輪を連
結する4輪駆動用駆動連結装置において、前記ケーシン
グの一部に共に形成してあり、前記油圧ポンプの発生油
圧が導入された第1油室及びこれに並設された第2油室
と、前記第1油室内に配してあり、該油室内での移動に
より、第1.第2油室間を連通又は遮断する制御スプー
ルと、該制御スプールに付設してあり、前記作動油の第
1の温度への到達に感応して変形し、前記制御スプール
の前記連通側への移動を付勢する付勢手段と、前記第2
油室内に配してあり、前記第1油室からの導入油圧を受
圧して摺動し、前記ロータの一部と係合して前記相対回
転を抑止する係合ピストンと、該係合ピストンに付設し
てあり、前記作動油が前記第1の温度よりも低い第2の
温度へ達したとき、これに感応して変形し、前記受圧の
解除に伴い前記係合ピストンに生じる復帰動作を拘束す
る拘束手段とを具備することを特徴とする。
The four-wheel drive drive coupling device according to the present invention includes a hydraulic pump in which a rotor that rotates in conjunction with one of the front and rear wheels is housed in a casing that rotates in conjunction with the other, and hydraulic oil that circulates within the hydraulic pump. In a four-wheel drive drive coupling device that connects front and rear wheels using hydraulic pressure generated in response to relative rotation between the rotor and the casing, the four-wheel drive coupling device is formed on a part of the casing; A first oil chamber into which the hydraulic pressure generated by the hydraulic pump is introduced and a second oil chamber arranged in parallel thereto are arranged within the first oil chamber, and movement within the oil chamber causes the first oil chamber to flow into the first oil chamber. a control spool that communicates or cuts off communication between the second oil chambers; and a control spool that is attached to the control spool and deforms in response to the reaching of the first temperature of the hydraulic oil, so that the communication side of the control spool is connected to the communication side of the control spool. a biasing means for biasing movement; and a biasing means for biasing the movement;
an engagement piston that is disposed in an oil chamber, receives hydraulic pressure introduced from the first oil chamber and slides, and engages a portion of the rotor to suppress the relative rotation; and the engagement piston. is attached to the hydraulic fluid and deforms in response to the temperature when the hydraulic fluid reaches a second temperature lower than the first temperature, and causes a return movement that occurs in the engagement piston as the received pressure is released. It is characterized by comprising a restraining means for restraining.

〔作用〕[Effect]

本発明においては、油圧ポンプの作動油が昇温して第1
の温度に達したとき、これに感応して前記付勢手段が変
形し、ケーシングに形成された第1油室内の制御スプー
ルが移動して、同じくケーシングに形成された第2油室
に油圧ポンプの発生油圧が導入され、この油圧の受圧に
より第2油室内の係合ピストンが摺動してロータの一部
と係合し、該ロータと前記ケーシングとの相対回転を抑
止して、両者間の伝達駆動力を確保すると共に作動油の
降温を促進する。そしてこの降温の促進により、作動油
の温度が第1の温度を下回ったとき、前記付勢手段の変
形解除により前記制御スプールが逆に移動して、第1油
室と第2油室との連通が遮断され、更に作動油の温度が
第2の温度を下回ったとき、前記拘束手段の変形解除に
より係合ピストンが復帰し、前記係合の解除により油圧
ポンプの発生圧力を媒介とする駆動力伝達が再開される
In the present invention, the temperature of the hydraulic oil of the hydraulic pump rises and the first
When the temperature reaches , the biasing means is deformed in response to this, and the control spool in the first oil chamber formed in the casing moves, and the hydraulic pump is transferred to the second oil chamber also formed in the casing. The generated hydraulic pressure is introduced, and the engagement piston in the second oil chamber slides and engages a part of the rotor due to the received pressure of this hydraulic pressure, suppressing the relative rotation between the rotor and the casing, and creating a gap between the two. It secures the transmitted driving force and promotes cooling of the hydraulic oil. When the temperature of the hydraulic oil falls below the first temperature due to the acceleration of this temperature drop, the control spool moves in the opposite direction due to the deformation of the biasing means being released, and the first oil chamber and the second oil chamber are connected to each other. When the communication is cut off and the temperature of the hydraulic oil falls below the second temperature, the engagement piston returns to its original position by releasing the deformation of the restraint means, and the release of the engagement causes the drive to be driven using the pressure generated by the hydraulic pump as a medium. Force transmission is resumed.

〔実施例〕〔Example〕

以下本発明をその実施例を示す図面に基づいて詳述する
。第1図は本発明に係る4輪駆動用駆動連結装置(以下
本発明装置という)の縦断面図である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail below based on drawings showing embodiments thereof. FIG. 1 is a longitudinal sectional view of a four-wheel drive drive coupling device (hereinafter referred to as the device of the present invention) according to the present invention.

本発明装置は、前、後輪の一方と連動回転する入力軸1
と、他方と連動回転する出力軸2との間に、両軸1.2
の回転速度差、即ち、前、後輪間の回転速度差に応じた
油圧を発生する油圧ポンプを構成し、通常時には、これ
の発生油圧を媒介として人力軸1から出力軸2へ駆動力
を伝達するものであり、前記油圧ポンプとしては、例え
ば、図示の如きベーンポンプ3が用いられる。
The device of the present invention has an input shaft 1 that rotates in conjunction with one of the front and rear wheels.
and the output shaft 2 which rotates in conjunction with the other, both shafts 1.2
A hydraulic pump is constructed that generates oil pressure according to the rotational speed difference between the front and rear wheels, that is, the rotational speed difference between the front and rear wheels, and under normal conditions, the driving force is transmitted from the human power shaft 1 to the output shaft 2 using the generated oil pressure as a medium. As the hydraulic pump, for example, a vane pump 3 as shown in the figure is used.

このベーンポンプ3は、入力軸1に後述の如く連結され
たケーシングの内部に、出力軸2に後述の如く連結され
たロータを同軸回動自在に収納してなる。ベーンポンプ
3のケーシングは、円形の外周と、円形の周囲に複数の
凹所を等配してなる内周とを有する短寸筒形のカムリン
グ31の両側に、厚肉の中抜き円板形をなすプレッシャ
プレート32、及び中抜き円板形をなすサイドプレート
33を夫々同軸的に位置決めし、サイドプレート33及
びカムリング31を夫々の厚さ方向に貫通してプレッシ
ャプレート32に螺合する複数本(1本のみ図示)の固
定ボルト34,34・・・により、これらを一体内に結
合せしめて構成されている。前記入力軸1は、図中に2
点鎖線にて示す如く中空をなしており、この人力軸lと
の連結のため、サイドプレート33の外側面には、その
外周に多数の係合歯36,36・・・を有する短寸円筒
形の連結部35が同軸的に突設しである。そして前記連
結は、入力軸1の一端部を前記連結部35に外嵌し、前
記端部内因に形成された係合歯10.10・・・と前記
係合歯36,36・・・とを相互に係合せしめることに
より実現されており、これによりベーンポンプ3のケー
シングは、出力軸2の回転に連動してその軸心廻りに回
転する。
This vane pump 3 has a rotor connected to an output shaft 2 as described below, housed inside a casing connected to an input shaft 1 as described later, so as to be able to rotate coaxially therewith. The casing of the vane pump 3 has a thick-walled hollow disc-shaped cam ring 31 on both sides of a short cylindrical cam ring 31 having a circular outer periphery and an inner periphery formed by distributing a plurality of recesses evenly distributed around the circular periphery. A pressure plate 32 having a hollow shape and a side plate 33 having a hollow disc shape are respectively positioned coaxially, and a plurality of screws ( These are integrally connected by fixing bolts 34, 34, . . . (only one is shown). The input shaft 1 is indicated by 2 in the figure.
As shown by the dotted chain line, the side plate 33 is hollow, and for connection with the human power shaft l, the outer surface of the side plate 33 has a short cylinder having a large number of engagement teeth 36, 36, . . . on its outer periphery. A shaped connecting portion 35 is coaxially protruded. The connection is made by fitting one end of the input shaft 1 onto the connection part 35, and connecting the engagement teeth 10, 10, . . . formed inside the end with the engagement teeth 36, 36... The casing of the vane pump 3 rotates about its axis in conjunction with the rotation of the output shaft 2.

一方ベーンポンプ3のロータは、カムリング31と略等
長の短寸円筒形をなすロータ本体30と、これの回転軸
である中空のロータ軸4とを備えてなる。ロータ本体3
0は、公知の如く、半径方向に所定の深さを有して周方
向に等配された複数の溝を備え、これら夫々に進退自在
に収納された矩形平板形のベーン30aをコイルばね3
0bにて半径方向外向きに付勢した構成となっており、
カムリング31の内側に収納しである。ロータ軸4は、
プレッシャプレート32及びサイドプレート33の中抜
き部に内嵌されて、これらと同軸上にて支承してあり、
前記ロータ本体30とは両支承位置間にてスプライン結
合されている。これによりロータ本体30は、カムリン
グ31の内側にこれと同軸をなして位置し、該カムリン
グ31内周の前記凹所の相当位置に、両側をプレッシャ
プレート32とサイドプレート33とにて囲繞された複
数のポンプ室を形成している。
On the other hand, the rotor of the vane pump 3 includes a short cylindrical rotor body 30 having approximately the same length as the cam ring 31, and a hollow rotor shaft 4 that is a rotation axis of the rotor body 30. Rotor body 3
As is well known, the coil spring 3 includes a plurality of grooves having a predetermined depth in the radial direction and equally spaced in the circumferential direction, and a rectangular flat plate-shaped vane 30a housed in each of these grooves so as to be able to move forward and backward.
It has a structure in which it is biased outward in the radial direction at 0b,
It is stored inside the cam ring 31. The rotor shaft 4 is
It is fitted into the hollow portions of the pressure plate 32 and the side plate 33 and is supported coaxially therewith.
The rotor body 30 is spline-coupled between both supporting positions. As a result, the rotor main body 30 is located inside the cam ring 31 coaxially therewith, and is surrounded on both sides by a pressure plate 32 and a side plate 33 at a position corresponding to the recess on the inner periphery of the cam ring 31. It forms multiple pump chambers.

ロータ軸4の中空部には、図中に2点鎖線にて示す前記
出力軸2が内嵌されて、両者は同軸上にてスプライン結
合されている。従ってロータ本体30は、出力軸2の回
転に連動して回転することになり、カムリング31とロ
ータ本体30との間、即ちベーンポンプ3のケーシング
とロータとの間には、入力軸1と出力軸2との間、即ち
前、後輪間の回転速度差に対応する相対回転が生じ、前
記ポンプ室内に後述の如く油圧が発生する。
The output shaft 2 shown by the two-dot chain line in the figure is fitted into the hollow portion of the rotor shaft 4, and both are coaxially connected by spline. Therefore, the rotor body 30 rotates in conjunction with the rotation of the output shaft 2, and there is a gap between the input shaft 1 and the output shaft between the cam ring 31 and the rotor body 30, that is, between the casing of the vane pump 3 and the rotor. 2, that is, between the front and rear wheels, a relative rotation occurs corresponding to the rotational speed difference between the front and rear wheels, and hydraulic pressure is generated in the pump chamber as described below.

前記ケーシングの外側には、これの略全体を囲繞する態
様にて薄肉の筒体37が嵌装してあり、ベーンポンプ3
の作動油は、この筒体37の内周とケーシングの外周と
の間に環状をなして形成された油タンクT内に封入しで
ある。プレッシャプレート32には、この油タンクT内
にその一端を開口させて半径方向内向きに形成され、同
向きの流れのみを許容する一対のチエツク弁41.42
を、その中途に並設してなる複数(1つのみ図示)の油
路40゜40・・・が形成しである。これらの油路40
,40・・・は、夫々の一対のチエツク弁41.42間
において前記ポンプ室内に、また夫々の先端部において
前記ベーン30a 、 30a・・・の収納溝の底部に
夫々連通させてあり、前記ケーシングとロータとの間の
相対回転の方向に応じて、吸込油路又は吐出油路として
機能するものである。またプレッシャプレート32の中
抜き部は、該プレッシャプレート32を半径方向に貫通
し、その中途に絞り手段を備えた図示しない還流油路に
より前記油タンクTに連通させである。
A thin-walled cylindrical body 37 is fitted on the outside of the casing in such a manner that it almost entirely surrounds the casing, and the vane pump 3
The hydraulic oil is sealed in an oil tank T formed in an annular shape between the inner periphery of the cylindrical body 37 and the outer periphery of the casing. The pressure plate 32 includes a pair of check valves 41 and 42 that are formed radially inward with one end open in the oil tank T and allow flow only in the same direction.
A plurality of (only one shown) oil passages 40° 40 . . . are formed in parallel along the middle of the oil passages. These oil passages 40
, 40... are communicated with the pump chamber between the pair of check valves 41, 42, and the bottoms of the storage grooves of the vanes 30a, 30a... are communicated at their respective tips, and the It functions as a suction oil passage or a discharge oil passage depending on the direction of relative rotation between the casing and the rotor. Further, the hollow portion of the pressure plate 32 passes through the pressure plate 32 in the radial direction, and is communicated with the oil tank T through a return oil passage (not shown) that is provided with a throttling means in the middle.

而して、前、後輪間に回転速度差が生じ、ベーンポンプ
3のロータとケーシングとの間、即ちロータ本体30と
カムリング31との間に、この回転速度差に相当する速
度での相対回転が生じると、両者間に形成された各ポン
プ室内には、夫々に前記相対回転方向上流側にて連通ず
る前記油路40を経て油タンクTから作動油が流入し、
この流入油は、互いに相隣するベーン30a、30a間
に封止されて、ロータ本体30の回転により回転せしめ
られて昇圧し、夫々のポンプ室に前記相対回転方向下流
側にて連通ずる前記油路40内に吐出され、該油路40
内を半径方向内向きに流れてベーン30a、30a・・
・の収納溝底部に導入され、更に前記還流油路を経て油
タンクTに還流する。前記収納溝底部への導入油は、前
記コイルばね30bの付勢力とにより各ベーン30a 
、 30a・・・を半径方向外向きに押圧し、夫々の先
端をカムリング31の内周面に押し付け、相隣するベー
ン30a 、 30a間での作動油の封止を確実化する
作用をなす。このような作動油の循環により、各ポンプ
室の内部には、この循環経路での流路抵抗、主として前
記還流油路の絞り手段における流路抵抗に抗して、前記
相対回転の大きさに対応する油圧が発生し、ロータ本体
30とカムリング31との間に両者の相対回転を抑止す
べく作用するこの油圧を媒介として、後者に連結された
入力軸1から前者に連結された出力軸2へ、前、後輪間
の回転速度差に応じた駆動力が伝達される。
As a result, a rotational speed difference occurs between the front and rear wheels, and a relative rotation occurs between the rotor and the casing of the vane pump 3, that is, between the rotor body 30 and the cam ring 31 at a speed corresponding to this rotational speed difference. When this occurs, hydraulic oil flows into each pump chamber formed between the two from the oil tank T via the oil passages 40 communicating with each other on the upstream side in the relative rotation direction, and
This inflowing oil is sealed between adjacent vanes 30a, 30a, rotated by the rotation of the rotor main body 30, and pressurized, and the oil communicates with each pump chamber on the downstream side in the relative rotation direction. is discharged into the oil passage 40, and the oil passage 40
The flow flows radially inward inside the vanes 30a, 30a...
The oil is introduced into the bottom of the storage groove, and is further refluxed to the oil tank T via the reflux oil path. The oil introduced into the bottom of the storage groove is applied to each vane 30a by the biasing force of the coil spring 30b.
, 30a, . Due to this circulation of the hydraulic oil, there is a flow resistance inside each pump chamber in response to the magnitude of the relative rotation, against the flow path resistance in this circulation path, mainly the flow path resistance in the throttling means of the return oil path. Corresponding hydraulic pressure is generated and acts between the rotor body 30 and the cam ring 31 to prevent relative rotation between the two. Through this hydraulic pressure, the input shaft 1 connected to the latter is connected to the output shaft 2 connected to the former. A driving force corresponding to the difference in rotational speed between the front and rear wheels is transmitted to the front and rear wheels.

このように油タンクTと各ポンプ室との間の作動油の循
環は、昇圧と減圧とを順次繰返しつつ行われるから、前
、後輪間の回転速度差が大きく、ロータ本体30とカム
リング31との間に大なる相対回転が生じた状態が連続
する場合、作動油の昇温は避けられず、これに伴う粘性
低下にまりベーンポンプ3の各ポンプ室における圧力特
性が低下し、これを媒介として前述の如く行われる駆動
力の伝達特性が低下する。本発明装置においては、この
伝動特性の低下を補償するための補償手段が、前記プレ
ッシャプレート32の第1図とは異なる周方向断面に構
成されている。
In this way, the circulation of the hydraulic oil between the oil tank T and each pump chamber is performed by repeatedly increasing and decreasing the pressure, so the difference in rotational speed between the front and rear wheels is large, and the difference between the rotor body 30 and the cam ring 3 If a state in which a large relative rotation occurs continuously between As a result, the transmission characteristics of the driving force performed as described above deteriorate. In the device of the present invention, compensating means for compensating for this reduction in transmission characteristics is configured in a circumferential cross section of the pressure plate 32 that is different from that in FIG. 1.

第2図及び第3図は、本発明装置の特徴たるこの補償手
段の構成を示す拡大断面図である。前記補償手段は、プ
レッシャプレート32に形成された第1油室5及び第2
油室6、並びに、これらの油室5及び6内に夫々配され
た制御スプール7及び係合ピストン8を備えてなる。図
示の如く第1油室5は、プレッシャプレート32の外周
から半径方向に適宜の深さを有して形成された円孔の開
口端をねじ蓋50の螺着により液密に閉塞してなる円形
断面の室であり、導圧孔51により、プレッシャプレー
ト32の内側面において前記ベーン30a、30a・・
・の収納溝の底部に連通せしめてあり、第1油室5の内
部には、この導圧孔51を介してベーンポンプ3の発生
油圧が導入されている。前記制御スプール7は、第1油
室5の内径と等しい外径を有し、該油室5に摺動自在に
内嵌された円筒形の部材であり、第1油室5の内奥側端
面と前記ねじ蓋50の端面との間にコイルばね70及び
コイルばね71を介して挾持されており、両ばね70.
71の伸縮に応して第1油室5の軸長方向に摺動する。
FIGS. 2 and 3 are enlarged sectional views showing the structure of this compensating means, which is a feature of the apparatus of the present invention. The compensation means includes a first oil chamber 5 and a second oil chamber formed in the pressure plate 32.
It comprises an oil chamber 6, and a control spool 7 and an engagement piston 8 disposed in the oil chambers 5 and 6, respectively. As shown in the figure, the first oil chamber 5 is formed by liquid-tightly closing the open end of a circular hole formed with an appropriate depth in the radial direction from the outer periphery of the pressure plate 32 by screwing a screw cap 50. The chamber has a circular cross section, and the vanes 30a, 30a, . . .
The hydraulic pressure generated by the vane pump 3 is introduced into the first oil chamber 5 through the pressure guiding hole 51. The control spool 7 is a cylindrical member having an outer diameter equal to the inner diameter of the first oil chamber 5 and is slidably fitted into the oil chamber 5, and is located on the inner back side of the first oil chamber 5. A coil spring 70 and a coil spring 71 are sandwiched between the end face and the end face of the screw cap 50, and both springs 70.
71 slides in the axial direction of the first oil chamber 5.

ねじ蓋50側の一方のコイルばね71は、通常のばね鋼
製であり、これに作用する外力により伸縮するのに対し
、他方のコイルばね70は、常温状態においては第2図
に示す如く縮短しており、所定温度に達すると共にこれ
に感応して変形し、第3図に示す如く伸長する形状記憶
合金製のばねである。従って制御スプール7は、第1油
室5内に導入される作動油の温度に感応して移動し、該
作動油の温度が前記所定温度以下である場合には、コイ
ルばね71にて付勢されて、第2図に示す如く第1油室
5の内奥側に位置し、前記作動油の温度が所定温度を超
えると共に、これに感応して生じるコイルばね70の伸
長変形により、第3図に示す如くねじ蓋50側に変位す
る。コイルばね70に変形が生じる温度(第1の温度)
T、は、作動油の粘性低下に伴うベーンポンプ3の圧力
特性の低下が問題となる温度、例えば150℃前後に設
定してあり、このことはコイルばね70をCu−A 1
系の形状記憶合金製とすることにより達成される。
One coil spring 71 on the screw cap 50 side is made of ordinary spring steel and expands and contracts due to external force acting on it, while the other coil spring 70 contracts and contracts at room temperature as shown in FIG. It is a shape memory alloy spring that deforms and expands as shown in FIG. 3 when it reaches a predetermined temperature. Therefore, the control spool 7 moves in response to the temperature of the hydraulic oil introduced into the first oil chamber 5, and is biased by the coil spring 71 when the temperature of the hydraulic oil is below the predetermined temperature. As shown in FIG. As shown in the figure, it is displaced toward the screw cap 50 side. Temperature at which the coil spring 70 deforms (first temperature)
T is set at a temperature at which a decrease in the pressure characteristics of the vane pump 3 due to a decrease in the viscosity of the hydraulic oil becomes a problem, for example, around 150°C.
This is achieved by making the shape memory alloy.

以上の如き構成の第1油室5の一側には、プレッシャプ
レート32を半径方向に貫通し、外側に長寸の大径部3
8aと内側に短寸の小径部38bとを有する円孔38が
形成してあり、前記第2油室6は、この円孔38に係合
ピストン8を内嵌し、また大径部38aの開口端をねじ
蓋60の螺着により液密に閉塞して、該ねじ蓋60と前
記係合ピストン8との間に、第1油室5と並設された態
様にて形成されている。第1油室5と第2油室6とは連
通孔52を介して連通されているが、第1油室5側にお
ける連通孔52の開口端は、該油室5に内嵌された前記
制御スプール7にて閉塞されている。制御スプール7の
外周には、狭幅の環状溝72と広幅の環状溝73とが軸
長方向に適長離隔して並設してあり、制御スプール7が
第1油室5の内奥側に位置する場合、該油室5内への前
記連通孔52の開口端は環状溝72に一致し、逆にねし
蓋50側に位置する場合、前記連通孔52の開口端は環
状溝73に夫々一致するようになしである。環状:a7
2は制御スプール7の内側に連通されているのに対し、
環状溝73は制御スプール7の内側に連通されておらず
、制御スプール7が前者の摺動位置にある場合、第2油
室6は、第2図に示す如く連通孔52及び環状溝72を
介して第1油室5に連通されて、核油室5の内圧、即ち
ベーンポンプ3の発生油圧が第2油室6に導入される一
方、制御スプール7が後者の摺動位置にある場合、第2
油室6は、第3図に示す如く連通孔52及び環状溝73
、並びに連通孔52の半径方向外側に並設された連通孔
53を介して、プレッシャプレート32の外側に前述の
如く形成され、た油タンクTに連通され、第2油室6に
は、油タンクTの内圧が導入される。
On one side of the first oil chamber 5 configured as described above, a large diameter portion 3 extending radially through the pressure plate 32 is provided.
8a and a short small-diameter portion 38b inside, the second oil chamber 6 fits the engagement piston 8 into the circular hole 38, and the second oil chamber 6 has a small-diameter portion 38b inside thereof. The opening end is liquid-tightly closed by screwing a screw cap 60 , and it is formed between the screw cap 60 and the engagement piston 8 in parallel with the first oil chamber 5 . The first oil chamber 5 and the second oil chamber 6 communicate with each other through a communication hole 52, and the open end of the communication hole 52 on the first oil chamber 5 side The control spool 7 is closed. On the outer periphery of the control spool 7, a narrow annular groove 72 and a wide annular groove 73 are arranged in parallel at an appropriate distance apart in the axial direction, and the control spool 7 is located on the inner back side of the first oil chamber 5. , the opening end of the communication hole 52 into the oil chamber 5 coincides with the annular groove 72 , and conversely, when the communication hole 52 is located on the side of the lid 50 , the opening end of the communication hole 52 coincides with the annular groove 73 . None to match each other. Annular: a7
2 is connected to the inside of the control spool 7, whereas
The annular groove 73 is not communicated with the inside of the control spool 7, and when the control spool 7 is in the former sliding position, the second oil chamber 6 communicates with the communication hole 52 and the annular groove 72 as shown in FIG. The internal pressure of the core oil chamber 5, that is, the hydraulic pressure generated by the vane pump 3 is introduced into the second oil chamber 6, and when the control spool 7 is in the latter sliding position, Second
The oil chamber 6 has a communication hole 52 and an annular groove 73 as shown in FIG.
, and communicates with the oil tank T formed on the outside of the pressure plate 32 as described above through the communication hole 53 arranged in parallel on the radially outer side of the communication hole 52. The internal pressure of tank T is introduced.

前記係合ピストン8は、前記大径部38aに嵌合する短
寸の大径円筒部8aの両側に、前記小径部38bに嵌合
する長寸の小径円筒部8bと、これよりも小径の短寸円
筒形をなすストッパ部8cとを夫々同軸的に連設してな
り、前記小径円筒部8bの先端は、プレッシャプレート
32の内側に支承された前記ロータ軸4の外周面に対向
せしめである。また係合ピストン8は、第2油室6の内
圧と円孔38との間に介装されたコイルばね80のばね
力とにより、プレッシャプレート32の半径方向に互い
に逆向きに付勢されており、両者のカバランスに応じて
摺動するようになしである。而して、第2油室6が前記
油タンクTに連通されており、該油室6の内圧が低い場
合、係合ピストン8は、コイルばね80のばね力により
半径方向外向きに押圧されて、第2図に示す如くストッ
パ部8cの端面をねじM2Oの端面に当接させた状態に
あるが、第2油室6が第1油室5に連通されており、該
油室6にベーンポンプ3の発生油圧が導入されている場
合、係合ピストン8は、この導入油圧にて押圧されて、
コイルばね80の付勢力に抗して半径方向内向きに摺動
し、このとき小径円筒部8bの先端がプレッシャプレー
ト32の中抜き部内に突出して、ロータ軸4の外周面に
形成された嵌合孔4aに第3図に示す如く嵌合する。こ
れによりプレッシャプレート32とロータ軸4とは、換
言すればベーンポンプ3のケーシングとロータとは係合
ピストン8を介して直結される。
The engagement piston 8 has a short large diameter cylindrical part 8a that fits in the large diameter part 38a, and a long small diameter cylindrical part 8b that fits in the small diameter part 38b, and a smaller diameter cylindrical part 8b on both sides of the short large diameter cylindrical part 8a that fits in the large diameter part 38a. Short cylindrical stopper portions 8c are coaxially connected to each other, and the tip of the small diameter cylindrical portion 8b is opposed to the outer peripheral surface of the rotor shaft 4 supported inside the pressure plate 32. be. Furthermore, the engagement piston 8 is biased in opposite directions in the radial direction of the pressure plate 32 by the internal pressure of the second oil chamber 6 and the spring force of a coil spring 80 interposed between the circular hole 38. There is no sliding movement depending on the coverage between the two. The second oil chamber 6 is in communication with the oil tank T, and when the internal pressure of the oil chamber 6 is low, the engagement piston 8 is pressed radially outward by the spring force of the coil spring 80. As shown in FIG. 2, the end face of the stopper portion 8c is in contact with the end face of the screw M2O, but the second oil chamber 6 is in communication with the first oil chamber 5; When the hydraulic pressure generated by the vane pump 3 is introduced, the engagement piston 8 is pressed by this introduced hydraulic pressure, and
It slides radially inward against the biasing force of the coil spring 80, and at this time, the tip of the small diameter cylindrical portion 8b protrudes into the hollow portion of the pressure plate 32, and the fitting formed on the outer peripheral surface of the rotor shaft 4 It fits into the matching hole 4a as shown in FIG. Thereby, the pressure plate 32 and the rotor shaft 4, in other words, the casing of the vane pump 3 and the rotor are directly connected via the engagement piston 8.

さて、この係合ピストン8には、前述の如く生じる摺動
を拘束する拘束手段9が付設しである。
Now, this engaging piston 8 is attached with a restraining means 9 for restraining the sliding movement that occurs as described above.

第2図及び第3図に示す拘束手段9は、大径円筒部8a
に周設した環状溝内に巻着された変形リング9aと、こ
の変形リング9aの外側に巻装されて円孔38の大径部
38a内周に弾接するOリング9bとからなる。第4図
は拘束手段9の動作説明のための平面図である。本図に
示す如く変形リング9aは、部を切欠いた円環状をなす
形状記憶合金製のリングであり、常温時には左側に示す
如く係合ピストン8の大径円筒部8a、具体的には大径
円筒部8aに形成された前記環状溝の底部に密に巻着さ
れた状態にあるが、所定温度に達すると共にこれに感応
して、右側に示す如く切欠きの幅及び直径を増すように
変形するようになしである。そしてこの変形により前記
Oリング9bは、大径円筒部8aの外側に張り出すよう
に押し拡げられるが、この張り出しは、前記円孔38の
大径部38a内周により拘束されており、変形リング9
aに前述の変形が生じた場合、Oリング9bは大径部3
8aの内周に強く押し付けられ、両者間の摺接抵抗によ
り係合ピストン8の前述した摺動が拘束される。変形リ
ング9aに変形が生じる温度、即ち拘束手段9の拘束動
作が生じる温度(第2の温度)T2は、第1油室5の内
部に配した形状記憶合金製のコイルばね71に変形が生
じ、制御スプール7に半径方向外向きの摺動が生じる前
記第1の温度T1よりも低く、作動油の粘性低下に伴う
ベーンポンプ3の圧力特性の低下が殆ど問題にならない
温度、例えば80℃前後に設定しである。このことは変
形リング9aをNi−Ti系の形状記憶合金製とするこ
とにより達成される。
The restraining means 9 shown in FIGS. 2 and 3 has a large diameter cylindrical portion 8a.
The O-ring 9b is wound around the outside of the deformable ring 9a and comes into elastic contact with the inner periphery of the large diameter portion 38a of the circular hole 38. FIG. 4 is a plan view for explaining the operation of the restraint means 9. As shown in this figure, the deformable ring 9a is a shape memory alloy ring having an annular shape with a notched portion. The notch is tightly wrapped around the bottom of the annular groove formed in the cylindrical portion 8a, but as it reaches a predetermined temperature, it deforms to increase the width and diameter of the notch as shown on the right side. There is nothing like that. As a result of this deformation, the O-ring 9b is pushed outward to the outside of the large-diameter cylindrical portion 8a, but this overhang is restrained by the inner periphery of the large-diameter portion 38a of the circular hole 38, and the deformed ring 9
If the aforementioned deformation occurs in the O-ring 9b, the large diameter portion 3
The engagement piston 8 is strongly pressed against the inner periphery of the engagement piston 8a, and the above-mentioned sliding movement of the engagement piston 8 is restricted due to the sliding resistance between the two. The temperature at which the deformation ring 9a is deformed, that is, the temperature (second temperature) at which the restraint operation of the restraint means 9 is caused, is the temperature at which the shape memory alloy coil spring 71 disposed inside the first oil chamber 5 is deformed. , lower than the first temperature T1 at which the control spool 7 slides outward in the radial direction, and at which a decrease in the pressure characteristics of the vane pump 3 due to a decrease in the viscosity of the hydraulic oil hardly becomes a problem, for example, around 80 degrees Celsius. It is set. This is achieved by making the deformable ring 9a made of a Ni-Ti type shape memory alloy.

また拘束手段9が発生する拘束力は、変形リング9aの
変形荊後の形状設定及び0リング9bの材質選定等によ
って、第2油室6の内圧により係合ピストン8に生じる
半径方向内向きの摺動、即ち、前記嵌合孔4aとの嵌合
が生じる向きの摺動は拘束せず、コイルばね80のばね
力により生じる半径方向外向きの摺動、即ち前記嵌合状
態からの復帰動作のみを拘束する大きさに設定されてい
る。
Furthermore, the restraint force generated by the restraint means 9 is determined by the shape setting of the deformation ring 9a after deformation and the selection of the material of the O-ring 9b, etc. The restraint force generated by the restraint means 9 is determined by the radially inward force generated on the engagement piston 8 due to the internal pressure of the second oil chamber 6. Sliding, that is, sliding in the direction in which the fitting occurs with the fitting hole 4a is not restricted, but sliding outward in the radial direction caused by the spring force of the coil spring 80, that is, return operation from the fitted state. The size is set to restrict only the

以上の如き構成の本発明装置において、前述の如く、ベ
ーンポンプ3の各ポンプ室と油タンクTとの間の循環に
より作動油の温度が上昇し、前記第1の温度T、を超え
ると共に、第1油室5内に導入されているこの作動油の
温度に感応して形状記憶合金製のコイルばね70が伸長
し、制御スプール7は第3図に示す如くねじ蓋50側に
変位する。
In the device of the present invention having the above configuration, as described above, the temperature of the hydraulic oil increases due to the circulation between each pump chamber of the vane pump 3 and the oil tank T, and exceeds the first temperature T. In response to the temperature of the hydraulic oil introduced into the oil chamber 5, the coil spring 70 made of a shape memory alloy expands, and the control spool 7 is displaced toward the screw cap 50 as shown in FIG.

そしてこの変位により連通孔52を介して第1油室5と
第2油室6とが連通される結果、第2油室6内にはベー
ンポンプ3の発生油圧が導入され、該油室6内に配され
た係合ピストン8は、導入油圧の受圧により半径方向外
向きに摺動して、プレッシャプレート32の内側に突出
する小径円筒部8bの先端がロータ軸4の外周の嵌合孔
4aに嵌合し、プレッシャプレート32とロータ軸4と
が、即ちベーンポンプ3のケーシングとロータとが直結
される。
As a result of this displacement, the first oil chamber 5 and the second oil chamber 6 are communicated with each other through the communication hole 52, and as a result, the hydraulic pressure generated by the vane pump 3 is introduced into the second oil chamber 6. The engagement piston 8, which is arranged at The pressure plate 32 and the rotor shaft 4, that is, the casing of the vane pump 3 and the rotor are directly connected.

そしてこの直結により、入力軸1から出力軸2への十分
な駆動力の伝達が確保されると共に、ケーシングとロー
タとの間の相対回転が完全に抑止されて、これに伴う循
環の停止により作動油の降温が促進される。第2油室6
には、第1油室5との連通前においても前記連通孔53
及び連通孔52を介して油タンク部内の低圧の作動油が
導入されており、この作動油が前記第1の温度T1より
も低い前記第2の温度T2に達した時点において、この
温度に感応して形状記憶合金製の変形リング9aに生し
る変形により係合ピストン8の摺動は拘束された状態に
あるが、前述した如くこの拘束力は、第1油室5からの
導入油圧の受圧により係合ピストン8に生しる摺動を拘
束し得る大きさを有しておらず、ケーシングとロータと
の直結状態は支障なく得られる。
This direct connection ensures the transmission of sufficient driving force from the input shaft 1 to the output shaft 2, and also completely suppresses the relative rotation between the casing and the rotor, resulting in activation due to the stoppage of circulation. The temperature of the oil is accelerated. 2nd oil chamber 6
, even before communicating with the first oil chamber 5, the communication hole 53
Low-pressure hydraulic oil is introduced into the oil tank through the communication hole 52, and when this hydraulic oil reaches the second temperature T2, which is lower than the first temperature T1, the temperature is The sliding movement of the engaging piston 8 is restrained due to the deformation of the deformable ring 9a made of shape memory alloy, but as mentioned above, this restraining force is caused by the hydraulic pressure introduced from the first oil chamber 5. It does not have a size that can restrict the sliding movement that occurs in the engagement piston 8 due to the received pressure, and the casing and rotor can be directly connected without any problem.

さて前記直結に伴う作動油の降温により、該作動油の温
度が前記第1の温度T1以下となると共に、コイルばね
70は縮短し、他方のコイルばね71のばね力により制
御スプール7が第1油室5の底部側に変位する結果、第
2油室6は油タンクTに連通され、核油室6の内圧は低
下する。このとき係合ピストン8は、コイルばね80の
ばね力により半径方向外向きに付勢されるが、作動油の
温度が前記第2の温度T2を上回っている間は拘束手段
9が拘束力を発生しており、この拘束力は、コイルばね
80のばね力に抗するだけの大きさを有しているために
、ベーンポンプ3のケーシングとロータとの間に係合ピ
ストン8を介して生じている直結状態がそのまま維持さ
れ、作動油の更なる降温が促進される。そして作動油の
温度が第2の温度T2以下にまで降温すると共に、前記
変形リング9aの原状前(第4図の左側に示す状態)へ
の復帰により、拘束手段9の拘束力が取り除かれて、係
合ピストン8が半径方向外向きに摺動し、前記嵌合孔4
aからの小径円筒部8bの離脱により、ベーンポンプ3
のケーシングとロータとの間、即ち入力軸1と出力軸2
との間の直結状態が解除され、以後両者間の駆動力伝達
は、ベーンポンプ3の各ポンプ室内に発生する油圧を媒
介としてなされる。
Now, as the temperature of the hydraulic oil decreases due to the direct connection, the temperature of the hydraulic oil becomes lower than the first temperature T1, the coil spring 70 contracts, and the spring force of the other coil spring 71 causes the control spool 7 to move to the first temperature T1. As a result of the displacement to the bottom side of the oil chamber 5, the second oil chamber 6 is communicated with the oil tank T, and the internal pressure of the core oil chamber 6 is reduced. At this time, the engagement piston 8 is biased radially outward by the spring force of the coil spring 80, but while the temperature of the hydraulic oil exceeds the second temperature T2, the restraining means 9 exerts a restraining force. This restraining force is generated between the casing of the vane pump 3 and the rotor via the engagement piston 8 because it has a magnitude sufficient to resist the spring force of the coil spring 80. The directly connected state is maintained as it is, and the temperature of the hydraulic fluid is further reduced. Then, as the temperature of the hydraulic oil falls to below the second temperature T2, the deformable ring 9a returns to its original state (the state shown on the left side of FIG. 4), and the restraining force of the restraining means 9 is removed. , the engagement piston 8 slides radially outward and engages the fitting hole 4.
Due to the separation of the small diameter cylindrical portion 8b from a, the vane pump 3
between the casing and the rotor, that is, the input shaft 1 and the output shaft 2
The direct connection between the vane pump 3 and the vane pump 3 is released, and thereafter the driving force is transmitted between the two through the hydraulic pressure generated in each pump chamber of the vane pump 3.

このように本発明装置においては、ベーンポンプ3内を
循環する作動油の温度が第1の温度T。
As described above, in the device of the present invention, the temperature of the hydraulic oil circulating within the vane pump 3 is the first temperature T.

に達すると共に該ベーンポンプ3のケーシングとロータ
とが係合ピストン8を介して係合され、油温上昇に伴う
ベーンポンプ3の圧力特性の低下により、入力軸1から
出力軸2への伝動特性の低下が生じた場合においても、
この低下分が前記係合により補償される。またこの係合
状態は、拘束手段9の動作により、作動油の温度が第2
の温度T2にまで降温するまでの間維持されるから、作
動油の温度を、粘性低下に伴うベーンポンプ3の圧力特
性の低下が殆ど問題とならないという条件下にて設定さ
れた前記第2の温度T2にまで速やかに降温せしめるこ
とができ、ベーンポンプ3の発生油圧を媒介とする正規
の伝動特性への速やかな復帰が実現される。
As soon as the casing and rotor of the vane pump 3 are engaged with each other via the engagement piston 8, the pressure characteristics of the vane pump 3 decrease as the oil temperature increases, resulting in a decrease in the transmission characteristics from the input shaft 1 to the output shaft 2. Even if this occurs,
This reduction is compensated for by the engagement. Further, in this engaged state, the temperature of the hydraulic oil reaches the second level due to the operation of the restraining means 9.
Since the temperature of the hydraulic oil is maintained until the temperature drops to the temperature T2 of The temperature can be quickly lowered to T2, and the normal transmission characteristics can be quickly restored using the hydraulic pressure generated by the vane pump 3 as a medium.

第5図及び第6図は本発明装置の他の実施例を示す要部
拡大断面図である。第5図においては、係合ピストン8
の小径円筒部8aの先端に摩擦板8dを固着すると共に
、この固着位置に整合するロータ軸4の外側全周に摩擦
板4bを周設して、係合ピストン8の半径方向内向きの
摺動により摩擦板8dを摩擦板4bに押し付け、両者間
に生じる摩擦力に°よりケーシングとロータとの係合状
態を得る構成としである。また第6図においては、第1
油室5内における制御スプール7を付勢するコイルばね
70と同様、係合ピストン8を半径方向内向きに付勢す
る形状記憶合金製のコイルばね9Cを設け、該コイルば
ね9cの変形により係合ピストン8の復帰動作を拘束す
る構成としである。この場合、大径円筒部8aに巻着さ
れたOリング8bは、第2油室6の封止手段としての作
用のみをなしている。
FIGS. 5 and 6 are enlarged sectional views of main parts showing other embodiments of the apparatus of the present invention. In FIG. 5, the engagement piston 8
A friction plate 8d is fixed to the tip of the small-diameter cylindrical portion 8a, and a friction plate 4b is provided around the entire outer circumference of the rotor shaft 4 that is aligned with this fixed position, so that the engagement piston 8 slides inward in the radial direction. The friction plate 8d is pressed against the friction plate 4b by motion, and the engagement state between the casing and the rotor is obtained by the frictional force generated between the two. Also, in Figure 6, the first
Similar to the coil spring 70 that biases the control spool 7 in the oil chamber 5, a shape memory alloy coil spring 9C that biases the engagement piston 8 radially inward is provided, and the engagement is caused by deformation of the coil spring 9c. The structure is such that the returning movement of the mating piston 8 is restricted. In this case, the O-ring 8b wound around the large-diameter cylindrical portion 8a only functions as a means for sealing the second oil chamber 6.

〔効果〕〔effect〕

以上詳述した如く本発明装置においては、油圧ポンプの
作動油が昇温して第1の温度に達したとき、これに感応
して第1油室内の制御スプールが移動し、第2油室に油
圧ポンプの発生油圧が導入されて、この油圧の受圧によ
り第2油室内の係合ピストンが摺動して、前記油圧ポン
プのケーシングとロータとの間に係合状態が得られ、両
者間に十分な伝達駆動力を確保することができ、作動油
の昇温による油圧ポンプの圧力特性の低下に起因する伝
動特性の低下が確実に補償される。また前記係合により
ケーシングとロータとの間の相対回転が抑止されて、作
動油の循環が停止せしめられ、該作動油の降温が促進さ
れるが、この温度が第2の温度を下回るまで拘束手段の
動作により係合ピストンの復帰動作が拘束される結果、
前記係合状態が維持され、油圧ポンプの発生圧力を媒介
とする正規の伝動特性への速やかな復帰が実現される等
、本発明は優れた効果を奏する。
As described in detail above, in the device of the present invention, when the temperature of the hydraulic oil of the hydraulic pump rises to reach the first temperature, the control spool in the first oil chamber moves in response to this, and the control spool moves in the second oil chamber. The hydraulic pressure generated by the hydraulic pump is introduced, and the engagement piston in the second oil chamber slides due to the received pressure of this hydraulic pressure, so that an engaged state is obtained between the casing of the hydraulic pump and the rotor, and the relationship between the two is established. A sufficient transmission driving force can be ensured, and a decrease in transmission characteristics caused by a decrease in the pressure characteristics of the hydraulic pump due to an increase in the temperature of the hydraulic oil can be reliably compensated for. Further, the engagement suppresses the relative rotation between the casing and the rotor, stopping the circulation of the hydraulic oil, and promoting the temperature drop of the hydraulic oil, which is restrained until the temperature drops below the second temperature. As a result of the movement of the means restricting the return movement of the engagement piston,
The present invention has excellent effects, such as maintaining the engaged state and quickly returning to normal transmission characteristics using the pressure generated by the hydraulic pump.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明装置の全体構成を示す縦断面図、第2図
及び第3図は本発明装置の特徴部分の一実施例を示す拡
大断面図、第4図は係合ピストンの復帰動作を拘束する
拘束手段の動作説明図、第5図及び第6図は本発明装置
の特徴部分の他の実施例を示す拡大断面図である。 1・・・人力軸  2・・・出力軸  3・・・ベーン
ポンプ  4・・・ロータ軸  5・・・第1油室  
6・・・第2油室  7・・・制御制御スプール  8
・・・係合ピストン  9・・・拘束手段  30・・
・ロータ本体31・・・カムリング  32・・・プレ
ンシャプレート33・・・サイドプレート  T・・・
油タンク特 許 出願人  光洋精工株式会社
FIG. 1 is a longitudinal sectional view showing the overall configuration of the device of the present invention, FIGS. 2 and 3 are enlarged sectional views showing an embodiment of the characteristic parts of the device of the present invention, and FIG. 4 is the return operation of the engaging piston. 5 and 6 are enlarged sectional views showing other embodiments of the characteristic parts of the device of the present invention. 1... Human power shaft 2... Output shaft 3... Vane pump 4... Rotor shaft 5... First oil chamber
6...Second oil chamber 7...Control control spool 8
...Engaging piston 9...Restraint means 30...
・Rotor body 31...Cam ring 32...Pressure plate 33...Side plate T...
Oil tank patent applicant Koyo Seiko Co., Ltd.

Claims (1)

【特許請求の範囲】 1、前、後輪の一方と連動回転するロータを他方と連動
回転するケーシング内に収納して油圧ポンプを構成し、
この油圧ポンプ内を循環する作動油に、前記ロータとケ
ーシングとの間の相対回転に応じて発生する油圧を媒介
として前、後輪を連結する4輪駆動用駆動連結装置にお
いて、 前記ケーシングの一部に共に形成してあり、前記油圧ポ
ンプの発生油圧が導入された第1油室及びこれに並設さ
れた第2油室と、 前記第1油室内に配してあり、該油室内で の移動により、第1,第2油室間を連通又は遮断する制
御スプールと、 該制御スプールに付設してあり、前記作動 油の第1の温度への到達に感応して変形し、前記制御ス
プールの前記連通側への移動を付勢する付勢手段と、 前記第2油室内に配してあり、前記第1油 室からの導入油圧を受圧して摺動し、前記ロータの一部
と係合して前記相対回転を抑止する係合ピストンと、 該係合ピストンに付設してあり、前記作動 油が前記第1の温度よりも低い第2の温度へ達したとき
、これに感応して変形し、前記受圧の解除に伴い前記係
合ピストンに生じる復帰動作を拘束する拘束手段と を具備することを特徴とする4輪駆動用駆 動連結装置。
[Claims] 1. A hydraulic pump is constructed by housing a rotor that rotates in conjunction with one of the front and rear wheels in a casing that rotates in conjunction with the other;
In a four-wheel drive drive coupling device that connects front and rear wheels using hydraulic oil circulating in the hydraulic pump and hydraulic pressure generated in response to relative rotation between the rotor and the casing, one of the casings is connected to the front and rear wheels. a first oil chamber, into which the hydraulic pressure generated by the hydraulic pump is introduced, and a second oil chamber installed in parallel with the first oil chamber; a control spool attached to the control spool that communicates or cuts off communication between the first and second oil chambers by the movement of the hydraulic fluid; a biasing means for biasing the movement of the spool toward the communication side; and a biasing means disposed in the second oil chamber, which slides when receiving hydraulic pressure introduced from the first oil chamber, and is configured to move a portion of the rotor. an engagement piston that is attached to the engagement piston to engage with the hydraulic fluid to suppress the relative rotation; A drive coupling device for four-wheel drive, comprising a restraining means for deforming and restraining a return movement occurring in the engagement piston upon release of the received pressure.
JP8541290A 1990-03-30 1990-03-30 Drive coupling device for four wheel drive Pending JPH03288022A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8541290A JPH03288022A (en) 1990-03-30 1990-03-30 Drive coupling device for four wheel drive

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8541290A JPH03288022A (en) 1990-03-30 1990-03-30 Drive coupling device for four wheel drive

Publications (1)

Publication Number Publication Date
JPH03288022A true JPH03288022A (en) 1991-12-18

Family

ID=13858092

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8541290A Pending JPH03288022A (en) 1990-03-30 1990-03-30 Drive coupling device for four wheel drive

Country Status (1)

Country Link
JP (1) JPH03288022A (en)

Similar Documents

Publication Publication Date Title
US6378682B1 (en) Multi-function control valve for hydraulic coupling
US20060222552A1 (en) Torque limited lube pump for power transfer devices
JPS6242172B2 (en)
US4076110A (en) Quick disengagement viscous drive coupling
JPH03288022A (en) Drive coupling device for four wheel drive
US5404977A (en) Fluid friction coupling
JP3025240B2 (en) Hydrodynamic torque converter with throttle element
JP2000337403A (en) Hydraulic power transmission joint
JP3807586B2 (en) Hydraulic power transmission coupling
JP2886816B2 (en) Hydraulic power transmission coupling
JPH01250624A (en) Driving coupler
JPH04366034A (en) Drive connecting device for four-wheel drive
JP4253792B2 (en) Drain mechanism of hydraulic power transmission joint
JPH04136333U (en) 4-wheel drive drive coupling device
JPH01250662A (en) Oil-sealed driving connecting device
JP2885486B2 (en) Driving force transmission device for four-wheel drive vehicles
JP2554813Y2 (en) Drive coupling device for four-wheel drive
CA2602531A1 (en) Torque limited lube pump for power transfer devices
JPH04366033A (en) Drive connecting device for four-wheel drive
JPH03266724A (en) Driving linking device for four-wheel drive
JPH0297734A (en) Driving-connecting device for four wheel drive
JPH1047384A (en) Rotating speed difference-sensing joint
JPH0266325A (en) Hydraulic power transmission joint
JPH0483920A (en) Hydraulic power transmission joint
JPH03266726A (en) Driving linking device for four-wheel drive