JP2554813Y2 - Drive coupling device for four-wheel drive - Google Patents

Drive coupling device for four-wheel drive

Info

Publication number
JP2554813Y2
JP2554813Y2 JP1991043807U JP4380791U JP2554813Y2 JP 2554813 Y2 JP2554813 Y2 JP 2554813Y2 JP 1991043807 U JP1991043807 U JP 1991043807U JP 4380791 U JP4380791 U JP 4380791U JP 2554813 Y2 JP2554813 Y2 JP 2554813Y2
Authority
JP
Japan
Prior art keywords
throttle
oil passage
pressure
spool
generated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1991043807U
Other languages
Japanese (ja)
Other versions
JPH04128920U (en
Inventor
晶彦 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koyo Seiko Co Ltd
Original Assignee
Koyo Seiko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koyo Seiko Co Ltd filed Critical Koyo Seiko Co Ltd
Priority to JP1991043807U priority Critical patent/JP2554813Y2/en
Publication of JPH04128920U publication Critical patent/JPH04128920U/en
Application granted granted Critical
Publication of JP2554813Y2 publication Critical patent/JP2554813Y2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Arrangement And Driving Of Transmission Devices (AREA)

Description

【考案の詳細な説明】[Detailed description of the invention]

【0001】[0001]

【産業上の利用分野】本考案は、前,後輪の一方側から
他方側への駆動力の伝達を、両者間に介装した油圧ポン
プの発生油圧により行わせて4輪駆動状態を実現する4
輪駆動用駆動連結装置に関する。
This invention realizes a four-wheel drive state by transmitting the driving force from one side of the front and rear wheels to the other side by the hydraulic pressure generated by a hydraulic pump interposed between the two. Do 4
The present invention relates to a drive coupling device for wheel drive.

【0002】[0002]

【従来の技術】エンジンの駆動力を前,後輪双方に伝達
して走行する4輪駆動車は、天候,路面状況等の自然条
件及び走行状態の如何に拘わらず安定した走行を実現し
得るものとして脚光を浴びている。
2. Description of the Related Art A four-wheel drive vehicle that travels by transmitting the driving force of an engine to both front and rear wheels can realize stable traveling irrespective of natural conditions such as weather and road surface conditions and traveling conditions. It is in the spotlight as a thing.

【0003】近年の4輪駆動車は、前,後輪への伝動系
の中途に、両輪への駆動力配分を両輪間に生じる回転速
度差に応じて自動的に変更する動作をなす駆動連結装置
を介装して、実質的に常時4輪駆動状態を得るべく構成
されたフルタイム4輪駆動車が主流となっており、この
ような動作をなす駆動連結装置の一つとして、油圧ポン
プの発生油圧を利用するものが知られている。
In recent years, four-wheel drive vehicles have a drive connection in which a drive force distribution to both wheels is automatically changed in accordance with a rotational speed difference generated between the two wheels in a transmission system to front and rear wheels. The mainstream is a full-time four-wheel drive vehicle configured to obtain a substantially four-wheel drive state by interposing devices, and one of the drive coupling devices that performs such operation is a hydraulic pump. There is known a device that utilizes generated hydraulic pressure.

【0004】これは、前,後輪夫々への伝動軸に各別に
連動連結されたロータとケーシングとを同軸上にて組み
合わせて油圧ポンプ(一般的にはベーンポンプ)を構成
したものである。この構成により、ロータとケーシング
との間には、前,後輪の回転速度差に対応する相対回転
が生じ、両者間に形成されたポンプ室内に、前記相対回
転、即ち、前,後輪間の回転速度差に応じた油圧が発生
し、ロータとケーシングとの間に両者の相対回転を抑止
すべく作用するこの油圧を媒介として、前,後輪の一方
から他方へのトルク伝達が行われ、4輪駆動状態が実現
される。
[0004] This is a hydraulic pump (generally a vane pump) constructed by coaxially combining a rotor and a casing, which are separately and interlocked with a transmission shaft to each of a front wheel and a rear wheel. With this configuration, a relative rotation corresponding to the rotational speed difference between the front and rear wheels is generated between the rotor and the casing, and the relative rotation, that is, between the front and rear wheels, is formed in a pump chamber formed therebetween. A hydraulic pressure is generated in accordance with the rotational speed difference between the front and rear wheels, and torque is transmitted from one of the front and rear wheels to the other through the hydraulic pressure acting between the rotor and the casing to suppress relative rotation between the two. A four-wheel drive state is realized.

【0005】ところで、4輪駆動車に要求される伝動特
性は走行状態に応じて異なり、旋回走行時に前,後輪の
旋回半径の相違に起因して生じるタイトコーナブレーキ
ング現象の発生を抑制するため、旋回走行時に生じると
予想される程度の比較的小さい回転速度差範囲において
は、回転速度差に対する伝動トルクの変化率が小さく、
前,後輪間にルーズな連結状態が得られていることが望
ましい一方、例えば、雪溜り,砂溜り等への突入により
前,後輪の一方が空転状態に陥ったとき、この状態から
の脱出を可能とするため非空転側へ十分なトルク伝達を
要し、前,後輪間の回転速度差が大きい範囲においては
逆に、回転速度差に対する伝動トルクの変化率が大き
く、リジッドな連結状態が得られていることが望まし
い。
[0005] The transmission characteristics required of a four-wheel drive vehicle differ depending on the traveling state, and the occurrence of tight corner braking caused by the difference in the turning radii of the front and rear wheels during turning is suppressed. Therefore, in a relatively small rotation speed difference range that is expected to occur during turning, the rate of change of the transmission torque with respect to the rotation speed difference is small,
It is desirable that a loose connection between the front and rear wheels be obtained. On the other hand, when one of the front and rear wheels falls into an idling state due to entry into a snow puddle, a sand puddle, etc. Sufficient torque transmission to the non-idling side is required to enable escape, and in the range where the rotational speed difference between the front and rear wheels is large, conversely, the rate of change of the transmission torque with respect to the rotational speed difference is large, rigid connection It is desirable that a state be obtained.

【0006】油圧ポンプを用いてなる前述の駆動連結装
置においては、駆動力伝達の媒介となる油圧は、前,後
輪の回転速度差に応じて前記油圧ポンプから吐出される
油が低圧部に還流するまでの間における吐出側油路の通
流抵抗に抗して発生する。本願出願人はこのことに着目
し、前述した如き所望の伝動特性が得られる4輪駆動用
駆動連結装置を、特開平2-120521号及び実開平2-122228
号に夫々提案した。図4及び図5は、実開平2-122228号
に提案した4輪駆動用駆動連結装置の特徴部分の構成を
示す要部拡大断面図である。
[0006] In the above-mentioned drive coupling device using a hydraulic pump, the hydraulic pressure that acts as a medium for transmitting the driving force is such that the oil discharged from the hydraulic pump is supplied to the low-pressure portion in accordance with the rotational speed difference between the front and rear wheels. It is generated against the flow resistance of the discharge-side oil passage until reflux occurs. The applicant of the present application has paid attention to this fact, and has disclosed a drive coupling device for four-wheel drive capable of obtaining desired transmission characteristics as described above in Japanese Patent Application Laid-Open No. H2-120521 and Japanese Utility Model Application Laid-Open No. 2-122228.
No. each proposed. FIGS. 4 and 5 are enlarged cross-sectional views of a main part showing a configuration of a characteristic portion of the four-wheel drive drive coupling device proposed in Japanese Utility Model Laid-Open No. 2-122228.

【0007】この4輪駆動用駆動連結装置は、油圧ポン
プの吐出油路42の中途に、該油路42の通油面積を油圧ポ
ンプ内部の発生油圧の増大に伴って減じる動作をなす絞
り手段6を構成したものであり、この絞り手段6は、前
記吐出油路42の低圧部への連通側(図の上側)を大径化
して形成されたスプール室43の内部に、前記発生油圧
受圧して摺動する有底円筒形の絞りスプール60と、該絞
りスプール60の摺動範囲を制限する制限部材61,62とを
配設してなる。
This four-wheel drive drive coupling device is provided with a throttle means which operates in the middle of the discharge oil passage 42 of the hydraulic pump to reduce the oil passage area of the oil passage 42 with an increase in the hydraulic pressure generated inside the hydraulic pump. The throttle means 6 is configured to store the generated hydraulic pressure in a spool chamber 43 formed by increasing the diameter of the communication side (upper side in the figure) of the discharge oil passage 42 to the low-pressure portion. A cylindrical throttle spool 60 with a bottom that slides upon receiving pressure, and limiting members 61 and 62 that limit the sliding range of the throttle spool 60 are provided.

【0008】一方の制限部材61は、スプール室43の内奥
側端部に圧入固定してあり、この制限部材61の軸心位置
に立設された案内杆 61bに摺動自在に外嵌された絞りス
プール60は、前記案内杆 61bの軸心を貫通する導圧孔 6
1cを経て導入される油圧ポンプの発生油圧をその内側底
面に受圧し、低圧部との連通側に向けて押圧される。ま
た、短寸薄肉の有底円筒状をなす他方の制限部材62は、
その底部を低圧部側に向けてスプール室43に嵌入され、
該スプール室43の低圧部への連通端近傍に係着されたス
ナップリング63により低圧部へ向けての移動を拘束して
あり、絞りスプール60は、この制限部材62との間に介装
されたコイルばね64により、吐出油路42との連通側(図
の下側)に向けて付勢されている。
The one limiting member 61 is press-fitted and fixed to the inner rear end of the spool chamber 43, and is slidably fitted on a guide rod 61b provided upright at the axial center of the limiting member 61. The throttle spool 60 has a pressure guide hole 6 penetrating the axis of the guide rod 61b.
The hydraulic pressure generated by the hydraulic pump introduced via 1c is received on the inner bottom surface, and is pressed toward the communication side with the low pressure portion. In addition, the other limiting member 62, which has a cylindrical shape with a short thin wall and a bottom,
The bottom part is fitted into the spool chamber 43 with the low pressure part side,
The movement toward the low pressure portion is restrained by a snap ring 63 engaged near the communication end of the spool chamber 43 with the low pressure portion, and the throttle spool 60 is interposed between the restriction member 62 and the throttle member 60. The coil spring 64 is urged toward the communication side (lower side in the figure) with the discharge oil passage 42.

【0009】而してこの絞り手段6においては、油圧ポ
ンプ内部の発生油圧とコイルばね64の付勢力とのバラン
スにより絞りスプール60が摺動し、この摺動により、絞
りスプール60の周壁を内外に貫通する通油孔 60aと、前
記案内杆 61bの周壁を内外に貫通する通油孔 61aとの連
通面積が変化する。
In the throttle means 6, the throttle spool 60 slides due to the balance between the hydraulic pressure generated inside the hydraulic pump and the urging force of the coil spring 64, and the sliding causes the peripheral wall of the throttle spool 60 to move inside and outside. The communication area between the oil passage hole 60a penetrating through the inner wall and the oil passage hole 61a penetrating the peripheral wall of the guide rod 61b in and out changes.

【0010】即ち、油圧ポンプ内部の発生油圧が低く、
絞りスプール60が制限部材61に押付けられた状態にある
場合、図4に示す如く、通油孔 60a,61aは略全面に亘っ
て連通し、吐出油路42全体の通油抵抗は最小となる。逆
に、油圧ポンプ内部の発生油圧が高く、この油圧を受圧
するスプール60がコイルばね64の付勢力に抗して摺動し
て他方の制限部材62に押付けられた状態にある場合、通
油孔 60a,61a間の連通部が、図5に示す如く略完全に閉
止される結果、吐出油路42全体の通油抵抗は最大とな
る。なお、このときの低圧部への作動油の流れは、絞り
スプール60の底面中央に形成された小径の絞り孔 60bを
経て生じる。
That is, the generated hydraulic pressure inside the hydraulic pump is low,
When the throttle spool 60 is pressed against the restricting member 61, as shown in FIG. 4, the oil passage holes 60a and 61a communicate over substantially the entire surface, and the oil passage resistance of the entire discharge oil passage 42 is minimized. . Conversely, if the generated oil pressure inside the hydraulic pump is high and the spool 60 receiving the oil pressure slides against the urging force of the coil spring 64 and is pressed against the other limiting member 62, As a result of the communication between the holes 60a and 61a being substantially completely closed as shown in FIG. 5, the oil flow resistance of the entire discharge oil passage 42 is maximized. At this time, the flow of the hydraulic oil to the low-pressure portion is generated via a small-diameter throttle hole 60b formed in the center of the bottom surface of the throttle spool 60.

【0011】従って、この絞り手段6を備えた4輪駆動
用駆動連結装置においては、前,後輪間の回転速度差が
小さく、油圧ポンプ内部の発生油圧による絞りスプール
60の押圧力がコイルばね64の付勢力を下回る範囲におい
ては、吐出油路42の小なる通油抵抗により、前, 後輪の
一方から他方への伝達トルクが回転速度差の増大に対し
緩やかに増大する部分(第1の漸増部)が現出する。
た、発生油圧がコイルばね64の付勢力を超えて絞りスプ
ール60が摺動を開始し、制限部材62に当接するまでの間
おいては、発生油圧の増加に応じて吐出油路42の通油
抵抗が増し、この通油抵抗の増加が発生油圧の増加を促
進して、回転速度差の増大に対し伝達トルクが急増する
部分(急増部)が現出する。更に、前記当接により通油
孔 60a,61a間の連通部が全閉した後においては、前記絞
り孔 60bの通油面積により定まる増加率を有して比較的
緩やかに増大する部分(第2の漸増部)が現出する。こ
の結果、図6に示す如き伝動特性が得られることとな
り、このような特性が4輪駆動用駆動連結装置における
所望の伝動特性であることは前述した如くである。
Therefore, in the four-wheel drive drive coupling device provided with the throttle means 6, the rotational speed difference between the front and rear wheels is small, and the throttle spool is generated by the hydraulic pressure generated inside the hydraulic pump.
Placed in a range where the pressing force of 60 is less than the biasing force of the coil spring 64
Te is the small becomes oil passing resistance of the discharge oil passage 42, before the portion transmitted torque from one of the rear wheels to the other is increased gradually to increase the rotational speed difference (first gradually increasing section) is revealing I do. Further, the hydraulic pressure generated spool 60 squeezed beyond the urging force of the coil spring 64 starts sliding, Oite between <br/> until abuts against the limiting member 62 is discharged in accordance with the increase in the hydraulic pressure generated The oil passage resistance of the oil passage 42 increases, and this increase in the oil passage resistance promotes an increase in the generated oil pressure, and a portion (sudden increase portion) where the transmission torque suddenly increases with the increase in the rotational speed difference appears. Furthermore, Oite after the contact by passing oil holes 60a, the communicating portion between 61a is fully closed, a portion that increases a rate of increase determined by oil passing area of the throttle hole 60b relatively slowly (the 2) . This
As a result, it a Rukoto such transmission characteristics can be obtained is shown in FIG. 6
As described above , such a characteristic is a desired transmission characteristic in the four-wheel drive drive coupling device.

【0012】[0012]

【考案が解決しようとする課題】ところが、前記油圧ポ
ンプの発生油圧は、一般的に脈動成分を含んでおり、こ
の発生油圧を受圧する絞りスプール60が、前述した摺動
に際し、前記脈動成分の作用により不安定な挙動を示す
ことから、この摺動の間に得られる伝達トルクの急増部
が安定せず、一定の回転速度差下にて生じる伝達トルク
の変動により、運転者に違和感を与える虞があった。
However, the hydraulic pressure generated by the hydraulic pump generally includes a pulsating component.
Since the throttle spool 60 receiving the generated hydraulic pressure exhibits unstable behavior due to the action of the pulsating component during the above-described sliding, the portion where the transmission torque suddenly increases during this sliding is not stable, Fluctuations in the transmission torque that occur under a constant rotational speed difference may cause the driver to feel uncomfortable.

【0013】また、絞りスプール60が油圧ポンプ内部に
発生する高圧を受圧することから、伝達トルクの急増部
と第1,第2の漸増部との間の遷移点が所望の回転速度
差において生じる図6に示す如き伝動特性を得るために
は、絞りスプール60の受圧面の面積、案内杆 61bとの嵌
合部の隙間等、絞り手段6の各部を高い寸法精度を有し
て加工する必要があり、加工工数の増加を招来する難点
がある。
Further, since the throttle spool 60 receives the high pressure generated inside the hydraulic pump, a transition point between the portion where the transmission torque sharply increases and the first and second gradually increasing portions occurs at a desired rotational speed difference. In order to obtain the transmission characteristics as shown in FIG. 6, it is necessary to process each part of the throttle means 6 with high dimensional accuracy, such as the area of the pressure receiving surface of the throttle spool 60, the clearance of the fitting portion with the guide rod 61b, and the like. However, there is a disadvantage that the number of processing steps is increased.

【0014】本考案は斯かる事情に鑑みてなされたもの
であり、実開平2-122228号公報に開示された4輪駆動用
駆動連結装置を更に発展させ、油圧ポンプの吐出側油路
の中途に配した絞り手段において、前記油圧ポンプの発
生油圧を受圧する絞りスプールの移動が安定して生じる
ようにし、所望の伝動特性を安定的に得ることが可能な
4輪駆動用駆動連結装置を提供することを目的とする。
The present invention has been made in view of such circumstances, and further develops the four-wheel drive drive coupling device disclosed in Japanese Utility Model Laid-Open No. 2-122228 to provide a hydraulic pump discharge side oil passage.
Oite of the throttle means arranged in the middle, calling of the hydraulic pump
The movement of the throttle spool that receives the raw oil pressure occurs stably
Thus, an object of the present invention is to provide a four-wheel drive drive coupling device capable of stably obtaining desired transmission characteristics.

【0015】[0015]

【課題を解決するための手段】本考案に係る4輪駆動用
駆動連結装置は、前,後輪間の回転速度差に応じた油圧
をその内部に発生して両輪を連結する油圧ポンプの吐出
油路の中途に、該油圧ポンプの発生油圧を受圧して生
じる絞りスプールの移動により前記吐出側油路の通油面
積を減じる絞り手段を備えてなり、前記発生油圧の上昇
に伴って前記吐出側油路の通油抵抗を増す構成とした4
輪駆動用駆動連結装置において、前記吐出側油路の前記
絞り手段の上流側に配してあり、前記発生油圧を前記絞
りスプールの受圧前に減圧すると共に、前記発生油圧に
含まれる脈動成分を軽減する固定絞りを具備することを
特徴とする。
SUMMARY OF THE INVENTION A drive coupling device for a four-wheel drive according to the present invention generates a hydraulic pressure according to a rotational speed difference between a front wheel and a rear wheel and discharges a hydraulic pump for coupling the two wheels. the middle of the side oil passage, it includes a throttle means for reducing the oil passage area of the discharge-side oil passage by the movement of the diaphragm spool caused by pressure generated hydraulic pressure of the hydraulic pump, the with increasing the hydraulic pressure generated A structure that increases the oil flow resistance of the discharge-side oil passage 4
In the drive coupling device for a wheel drive, the discharge-side oil passage is disposed upstream of the throttle unit, and the generated hydraulic pressure is reduced by the throttle.
The pressure is reduced before receiving the spool pressure, and
It is characterized by having a fixed throttle for reducing a pulsating component contained therein .

【0016】[0016]

【作用】本考案においては、油圧ポンプ内部の発生油圧
は、絞り手段の上流側に配した固定絞りの通過により脈
動成分を軽減され、また適宜に減圧された状態となって
絞りスプールに作用する。これにより、絞りスプールの
不安定な動作が抑制されると共に、絞り手段各部におけ
る加工精度を緩和でき、加工工数が削減される。
[Action] In the present invention, the occurrence hydraulic internal hydraulic pump diaphragm is reduced pulsation components by passage of the fixed throttle arranged on the upstream side of the unit, also stop <br/> in a state of being reduced to an appropriate Acts on the spool . As a result, the unstable operation of the aperture spool is suppressed, and the processing accuracy in each part of the aperture means can be reduced, thereby reducing the number of processing steps.

【0017】[0017]

【実施例】以下本考案をその実施例を示す図面に基づい
て詳述する。図1は本考案に係る4輪駆動用駆動連結装
置(以下本案装置という)の縦断面図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail with reference to the drawings showing an embodiment thereof. FIG. 1 is a longitudinal sectional view of a four-wheel drive drive connection device (hereinafter referred to as the device of the present invention) according to the present invention.

【0018】図中1は、前,後輪の一方と連動回転する
入力軸であり、また2は、他方と連動回転する出力軸で
ある。本案装置は、入力軸1と出力軸2との間に、両軸
1,2の回転速度差、即ち前,後輪間に生じる回転速度
差に応じた油圧を発生する油圧ポンプであるベーンポン
プ3を構成し、このベーンポンプ3内部の発生油圧を媒
介として、入力軸1側から出力軸2側へ駆動力を伝達す
るものである。
In the figure, reference numeral 1 denotes an input shaft that rotates in conjunction with one of the front and rear wheels, and 2 denotes an output shaft that rotates in conjunction with the other. The vane pump 3 is a hydraulic pump that generates a hydraulic pressure between the input shaft 1 and the output shaft 2 according to the rotational speed difference between the two shafts 1 and 2, ie, the rotational speed difference generated between the front and rear wheels. And the driving force is transmitted from the input shaft 1 side to the output shaft 2 side through the hydraulic pressure generated inside the vane pump 3.

【0019】ベーンポンプ3のロータ30は、公知の如
く、矩形平板形のベーン 30a,30a…複数枚を半径方向へ
の進退自在に備え、これらのベーン 30a,30a…を各別の
コイルばね 30b,30b…により外向きに付勢した短寸円筒
形の部材である。またベーンポンプ3のケーシングは、
ロータ30と略同長の偏肉円筒形のカムリング31と、厚肉
の中抜き円板状をなすプレッシャプレート32と、中抜き
円板の内周側に短寸の円筒を同軸的に連設した形状を共
に有するサイドプレート33及び押え板34とを備えてな
り、サイドプレート33の円筒部に押え板34の円筒部を外
嵌して両者を一体化させ、これらとプレッシャプレート
32とをカムリング31の両側に同軸的に位置決めし、押え
板34及びサイドプレート33の円板部とカムリング31とを
厚さ方向に貫通してプレッシャプレート32に螺合する複
数本の固定ボルト35,35…により、これら全てを一体的
に結合した構成となっている。
As is well known, the rotor 30 of the vane pump 3 is provided with a plurality of rectangular flat vanes 30a, 30a... Which can be moved back and forth in the radial direction, and these vanes 30a, 30a. A short cylindrical member urged outward by 30b. The casing of the vane pump 3 is
A cylindrical cam ring 31 with the same thickness as the rotor 30 and a pressure plate 32 in the form of a thick hollow disk, and a short cylinder coaxially connected to the inner peripheral side of the hollow disk Side plate 33 and a holding plate 34 having the same shape.The cylindrical portion of the holding plate 34 is externally fitted to the cylindrical portion of the side plate 33 to integrate them, and these and the pressure plate
32 are coaxially positioned on both sides of the cam ring 31, and a plurality of fixing bolts 35 which penetrate the disc portions of the holding plate 34 and the side plate 33 and the cam ring 31 in the thickness direction and are screwed to the pressure plate 32. , 35,..., Are all integrally connected.

【0020】ロータ30の回転軸であるロータ軸4は、サ
イドプレート33の円筒部及びプレッシャプレート32の中
抜き部にサイドプレート33側から挿入され、プレッシャ
プレート32の中抜き部に嵌着された玉軸受と、サイドプ
レート33の円筒部内側に嵌着された針状ころ軸受とによ
り、カムリング31の両側において図示の如く支承されて
いる。
The rotor shaft 4, which is the rotating shaft of the rotor 30, is inserted into the hollow portion of the side plate 33 and the hollow portion of the pressure plate 32 from the side plate 33 side, and is fitted to the hollow portion of the pressure plate 32. As shown in the figure, both sides of the cam ring 31 are supported by a ball bearing and a needle roller bearing fitted inside the cylindrical portion of the side plate 33.

【0021】ロータ30は、プレッシャプレート32とサイ
ドプレート33とにより両側を挾まれてカムリング31の内
側に形成された空洞部内に収納され、前述した支承位置
間にてロータ軸4にスプライン結合してあり、このロー
タ軸4の回転に伴ってカムリング31の内側にて同軸的に
回転するようになしてある。カムリング31の内周は、円
形の周囲に複数個所の凹所を形成してなる軸断面形状を
有し、前記各凹所の形成位置にロータ30の外周とにて囲
まれた複数の室を形成しており、これらの各室がロータ
30とカムリング31との間に後述の如く生じる相対回転に
応じて油圧を発生するポンプ室として機能する。
The rotor 30 is housed in a cavity formed inside the cam ring 31 with both sides sandwiched by a pressure plate 32 and a side plate 33, and is spline-connected to the rotor shaft 4 between the above-described bearing positions. The rotation of the rotor shaft 4 causes the cam ring 31 to rotate coaxially inside the cam ring 31. The inner circumference of the cam ring 31 has an axial cross-sectional shape in which a plurality of recesses are formed around a circle, and a plurality of chambers surrounded by the outer circumference of the rotor 30 are formed at positions where the respective recesses are formed. Each of these chambers is
It functions as a pump chamber that generates hydraulic pressure in accordance with the relative rotation generated between the cam ring 31 and the cam ring 31 as described later.

【0022】前記入力軸1は、サイドプレート33側に突
出するロータ軸4の端部に、また前記出力軸2は、プレ
ッシャプレート32の外側面に夫々フランジ結合してあ
る。これにより、ロータ30は入力軸1の回転に連動して
回転し、プレッシャプレート33をその一部とするケーシ
ングは出力軸2の回転に連動して回転するから、ロータ
30とケーシングとの間には、入力軸1と出力軸2との間
の回転速度差、即ち前,後輪間の回転速度差に相当する
相対回転が生じる。
The input shaft 1 is flanged to the end of the rotor shaft 4 projecting toward the side plate 33, and the output shaft 2 is flanged to the outer surface of the pressure plate 32. As a result, the rotor 30 rotates in conjunction with the rotation of the input shaft 1, and the casing including the pressure plate 33 as a part thereof rotates in conjunction with the rotation of the output shaft 2.
A relative rotation corresponding to a rotation speed difference between the input shaft 1 and the output shaft 2, that is, a rotation speed difference between the front and rear wheels, is generated between the casing 30 and the casing.

【0023】ケーシングの外側には薄肉の筒体36が嵌着
してあり、ベーンポンプ3の作動油は、この筒体36とケ
ーシング外周との間に環状をなして形成された油タンク
Tの内部に封入されている。カムリング31内側の複数の
ポンプ室は夫々、押え板34及びサイドプレート33の円板
部を厚さ方向に貫通し、各ポンプ室への流入のみを許容
するチェック弁をその中途に嵌装してなる各別の吸込油
路40,40…(1本のみ図示)により、前記油タンクTに
連通させてある。
A thin cylinder 36 is fitted on the outside of the casing, and hydraulic oil for the vane pump 3 is supplied to the inside of an oil tank T formed in an annular shape between the cylinder 36 and the outer periphery of the casing. It is enclosed in. The plurality of pump chambers inside the cam ring 31 each penetrate the disc portion of the holding plate 34 and the side plate 33 in the thickness direction, and a check valve that allows only inflow to each pump chamber is fitted in the middle thereof. .. (Only one is shown) are connected to the oil tank T.

【0024】一方、プレッシャプレート32には、各ポン
プ室の内に夫々の一端を開口させ、半径方向内側に折り
返してロータ30の内周側のベーン 30a,30a…の基部に連
通し、各ポンプ室からの流出のみを許容するチェック弁
をその中途に嵌装してなる各別の導油路41,41…(1本
のみ図示)が形成してあり、これらにより各ポンプ室の
吐出側に一括的に連通されたベーン 30a,30a…の基部
は、吐出油路42を介してケーシング外側の前記油タンク
Tに連通させてある。
On the other hand, one end of each of the pump chambers is opened in the pressure plate 32, and the pressure plate 32 is turned radially inward to communicate with the base of the vanes 30a, 30a,. .. (Only one is shown) formed by fitting a check valve which allows only outflow from the chamber in the middle thereof, and these are provided on the discharge side of each pump chamber. The bases of the vanes 30a, 30a,..., Which are collectively connected, are connected to the oil tank T outside the casing via a discharge oil passage.

【0025】図示の如く吐出油路42は、プレッシャプレ
ート32内側面のベーン 30a,30a…の基部の相当位置にそ
の一端を開口させ、プレッシャプレート32の厚さ方向に
適宜の深さを有して穿設された孔と、プレッシャプレー
ト32の外周面から半径方向内向きに適宜の深さを有して
穿設された孔とを、略直角に交叉させた態様をなしてお
り、該吐出油路42の油タンクTとの連通側には絞り手段
5が構成してある。
As shown in the figure, the discharge oil passage 42 has one end opened at a position corresponding to the base of the vanes 30a on the inner surface of the pressure plate 32, and has an appropriate depth in the thickness direction of the pressure plate 32. And a hole formed at an appropriate depth radially inward from the outer peripheral surface of the pressure plate 32 so as to intersect at a substantially right angle. The throttle means 5 is provided on the side of the oil passage 42 communicating with the oil tank T.

【0026】図2及び図3は、本案装置の特徴部分であ
る絞り手段5近傍の拡大断面図である。絞り手段5は、
図4及び図5に示す従来の絞り手段6と同様、吐出油路
42の油タンクTとの連通側、即ち、吐出油路42の下流側
を大径化して形成されたスプール室43の内部に、ベーン
ポンプ3の動作により吐出油路42内に発生する油圧を
圧して摺動する絞りスプール50を備えてなる。
FIGS. 2 and 3 are enlarged sectional views of the vicinity of the diaphragm means 5, which is a characteristic part of the apparatus of the present invention. The aperture means 5 is
As with the conventional throttle means 6 shown in FIGS.
42 communicating side of the oil tank T, i.e., the inside of the spool chamber 43 to the downstream side is formed by increasing the diameter of the discharge passage 42, the vane
A throttle spool 50 that slides by receiving hydraulic pressure generated in the discharge oil passage 42 by the operation of the pump 3 is provided.

【0027】有底円筒形をなす前記絞りスプール50は、
その底部を内奥側に向けてスプール室43に遊嵌され、該
スプール室43の開口側に嵌着した制限部材51の軸心位置
に立設された案内杆 51bに摺動自在に外嵌してあり、該
制限部材51との間に介装されたコイルばね54により、内
奥側、即ち吐出油路42との連通側に向けて付勢されてい
る。制限部材51は、スプール室43の油タンクTへの連通
端近傍に係着されたスナップリング53により油タンクT
側に向けての移動を拘束してあり、前記コイルばね54の
ばね力は、絞りスプール50をスプール室43の底部に押し
付けるべく作用し、このとき絞りスプール50は、図2に
示す如く、スプール室43の底部に開口する吐出油路42と
の連通端の全面を閉塞し、この閉塞面に吐出油路42の内
圧を受圧して、コイルばね54のばね力に抗して摺動す
る。
The throttle spool 50 having a cylindrical shape with a bottom is
The bottom of the spool chamber 43 is loosely fitted in the spool chamber 43 with the bottom facing inward, and is slidably externally fitted on a guide rod 51b erected at the axial center of the limiting member 51 fitted on the opening side of the spool chamber 43. It is urged toward the inner side, that is, the side communicating with the discharge oil passage 42, by a coil spring 54 interposed between the restriction member 51 and the coil spring 54. The restriction member 51 is connected to the oil tank T by a snap ring 53 attached near the end of the spool chamber 43 communicating with the oil tank T.
Side movement, the spring force of the coil spring 54 acts to press the throttle spool 50 against the bottom of the spool chamber 43. At this time, as shown in FIG. The entire surface of the communication end of the chamber 43 with the discharge oil passage 42 that opens to the bottom is closed, and the closed surface receives the internal pressure of the discharge oil passage 42 and slides against the spring force of the coil spring 54.

【0028】絞りスプール50は、その周壁の所定位置を
内外に貫通する通油孔 50aと、底面の略中央を内外に貫
通する小径の絞り孔 50bとを備えており、またこの絞り
スプール50の摺動を案内する案内杆 51bは、軸心部を貫
通する導油孔 51cと、周壁の所定位置を内外に貫通する
通油孔 51aとを備えている。絞りスプール50側の通油孔
50aと案内杆 51b側の通油孔 51aとは、絞りスプール50
が吐出油路42の開口端を全閉する位置にある場合、図2
に示す如く略全面に亘って連通し、絞りスプール50に前
述の如く生じる摺動に伴って、図3に示す如く連通面積
を減じるように形成してある。
The throttle spool 50 is provided with an oil passage hole 50a penetrating a predetermined position of the peripheral wall in and out, and a small-diameter throttle hole 50b penetrating the center of the bottom surface in and out. The guide rod 51b for guiding the sliding includes an oil guide hole 51c penetrating the shaft center portion, and an oil passage hole 51a penetrating a predetermined position of the peripheral wall in and out. Oil passage hole on the throttle spool 50 side
50a and the oil passage hole 51a on the guide rod 51b side
2 is located at a position where the opening end of the discharge oil passage 42 is fully closed.
As shown in FIG. 3, the communication is formed over substantially the entire surface, and the communication area is reduced as shown in FIG.

【0029】さて本案装置においては、前記絞り手段5
をその下流端に構成してなる吐出油路42の中途に固定絞
り7が配してあることを特徴とする。固定絞り7は、ベ
ーンポンプ3の吐出側油路を構成する吐出油路42の中途
であって、絞り手段5の上流側であればいかなる位置に
配してもよいが、ベーンポンプ3の複数のポンプ室から
の吐出油の合流位置よりも下流側に配するのが合理的で
ある。
In the apparatus according to the present invention, the aperture means 5
The fixed throttle 7 is arranged in the middle of the discharge oil passage 42 formed at the downstream end. The fixed throttle 7 is located in the middle of the discharge oil passage 42 that constitutes the discharge-side oil passage of the vane pump 3 and may be arranged at any position on the upstream side of the throttle means 5. It is reasonable to arrange it downstream of the merged position of the discharge oils from the plurality of pump chambers.

【0030】固定絞り7は、短寸円柱形の絞り部材70の
軸心部に軸長方向に貫通する細径の絞り孔71を形成して
なり、吐出油路42の中途への前述した配設は、例えば図
2及び図3に示す如く、前記吐出油路42のプレッシャプ
レート32の内側面との連通端を大径化して形成された円
形断面の嵌着孔44に前記絞り部材70を嵌着することによ
り実現される。
The fixed throttle 7 is formed by forming a small-diameter throttle hole 71 penetrating in the axial direction in the axial center portion of a short cylindrical throttle member 70. For example, as shown in FIGS. 2 and 3, the restricting member 70 is inserted into a fitting hole 44 having a circular cross section formed by increasing the diameter of the communication end of the discharge oil passage 42 with the inner surface of the pressure plate 32. This is realized by fitting.

【0031】以上の如く構成された本案装置において、
入力軸1と出力軸2との間、即ち、前,後輪間に回転速
度差が生じた場合、この回転速度差に相当する速度での
相対回転がベーンポンプ3のロータ30とカムリング31と
の間に生じ、両者間に形成さてた各ポンプ室には、夫々
の相対回転方向上流側に開口する吸込油路40を経て油タ
ンクT内に封入された作動油が導入される。
In the apparatus of the present invention configured as described above,
When a rotation speed difference occurs between the input shaft 1 and the output shaft 2, that is, between the front and rear wheels, the relative rotation at a speed corresponding to this rotation speed difference causes the rotor 30 of the vane pump 3 and the cam ring 31 to rotate. Hydraulic oil sealed in the oil tank T is introduced into the pump chambers formed between them and formed between the two via the suction oil passages 40 that open to the upstream side in the respective relative rotation directions.

【0032】ベーンポンプ3の各ポンプ室内において
は、ロータ30のベーン 30a,30a…が、各別のコイルばね
30b,30bの付勢によりカムリング31の内周面に押し付け
られ、ロータ30の回転に伴って回転しており、ポンプ室
に導入された作動油は、互いに相隣する2枚のベーン 3
0a,30a間に封止され、これらと共に回転せしめられて昇
圧する。このとき各ポンプ室内部に発生する油圧は、ロ
ータ30とカムリング31との間にこれらの相対回転を抑止
すべく作用し、入力軸1から出力軸2へ、即ち、前,後
輪の一方から他方へ、前記油圧を媒介としてトルク伝達
がなされ、4輪駆動状態が実現される。
In each of the pump chambers of the vane pump 3, the vanes 30a, 30a.
The hydraulic fluid introduced into the pump chamber is pressed against the inner peripheral surface of the cam ring 31 by the urging of the vanes 30b and 30b, and introduced into the pump chamber.
It is sealed between 0a and 30a, and is rotated together with them to increase the pressure. At this time, the hydraulic pressure generated in each pump chamber acts between the rotor 30 and the cam ring 31 so as to suppress the relative rotation between them, and from the input shaft 1 to the output shaft 2, that is, from one of the front and rear wheels. On the other hand, torque is transmitted via the hydraulic pressure, and a four-wheel drive state is realized.

【0033】各ポンプ室内にて昇圧された油は、相対回
転方向下流側に開口する導油路41を経てベーン 30a,30a
…の底部に導入され、前記コイルばね 30b,30bの付勢力
との相乗作用により各ベーン 30a,30a…を外向きに押圧
し、カムリング31の内周に押し付ける作用をなした後、
吐出油路42を経て油タンクTに還流する。なおこの還流
油は、ベーンポンプ3の各ポンプ室に再度吸込まれて循
環使用される。
The oil that has been pressurized in each pump chamber passes through the oil guide passage 41 that opens to the downstream side in the relative rotation direction, so that the vanes 30a, 30a
., And presses each of the vanes 30a, 30a... Outward by a synergistic action with the urging force of the coil springs 30b, 30b.
It returns to the oil tank T via the discharge oil passage 42. The recirculated oil is sucked into the pump chambers of the vane pump 3 again and used for circulation.

【0034】以上の如き動作において、ロータ30とカム
リング31との相対回転に応じて各ポンプ室内に発生し、
駆動トルクの伝達媒介となる油圧は、前述した如き作動
油の循環に際しての通油抵抗、主として吐出油路42での
通油抵抗に抗して発生する。吐出油路42の通油抵抗は、
前述した如き動作をなす絞り手段5及びこれの上流側に
配された固定絞り7における通油抵抗に依存する。
In the operation as described above, the pressure is generated in each pump chamber in accordance with the relative rotation between the rotor 30 and the cam ring 31,
The hydraulic pressure that acts as a medium for transmitting the drive torque is generated against the oil flow resistance in the circulation of the hydraulic oil as described above, mainly against the oil flow resistance in the discharge oil passage 42. The oil flow resistance of the discharge oil passage 42 is
It depends on the oil flow resistance in the throttle means 5 operating as described above and the fixed throttle 7 arranged upstream of the throttle means 5.

【0035】絞り手段5の絞りスプール50が図2に示す
位置にある場合、該絞り手段5における通油路は絞りス
プール50の底面に形成された絞り孔 50bのみに限定さ
れ、絞り手段5は大きい通油抵抗を有するが、ベーンポ
ンプ3内部に油圧が発生し、これが固定絞り7を経て作
用すると、この油圧の受圧によりコイルばね54のばね力
に抗して絞りスプール50が浮き上がり、これの底面とス
プール室43の底面との間の隙間、スプール室42の内部、
前記通油孔 50a,51a間の連通部、及び案内杆 51b内側の
導油孔 51cからなり、図3中に矢符にて示す油路が形成
される。
When the throttle spool 50 of the throttle means 5 is at the position shown in FIG. 2, the oil passage in the throttle means 5 is limited to only the throttle hole 50b formed on the bottom surface of the throttle spool 50. Although it has a large oil flow resistance, when a hydraulic pressure is generated inside the vane pump 3 and acts through the fixed throttle 7, the throttle spool 50 rises against the spring force of the coil spring 54 due to the pressure received by this hydraulic pressure, Between the bottom of the spool chamber 43 and the inside of the spool chamber 42,
An oil passage indicated by an arrow in FIG. 3 is formed by a communication portion between the oil passage holes 50a and 51a and an oil passage hole 51c inside the guide rod 51b.

【0036】前述の如く通油孔 50a,51a間の連通面積
は、絞りスプール50の摺動量が増すに従って減少し、絞
りスプール50の摺動量の大小は、これに作用する油圧の
高低に対応する。従って、ポンプ室内部の発生油圧が低
く、絞りスプール50がわずかに浮動した状態にある場
合、通油孔 50a,51a間の連通部は略全開状態にあり、絞
り手段5での通油抵抗が小さいことから、回転速度差の
増大に伴う伝達駆動力の増大割合は小さく維持されて、
前記図6に示す第1の漸増部が得られる。
As described above, the communication area between the oil passage holes 50a and 51a decreases as the sliding amount of the throttle spool 50 increases, and the amount of sliding of the throttle spool 50 corresponds to the level of the hydraulic pressure acting on it. . Therefore, when the hydraulic pressure generated inside the pump chamber is low and the throttle spool 50 is slightly floating, the communication portion between the oil passage holes 50a and 51a is substantially fully opened, and the oil passage resistance in the throttle means 5 is reduced. Since it is small, the rate of increase in the transmission driving force with the increase in the rotational speed difference is kept small,
The first gradually increasing portion shown in FIG. 6 is obtained.

【0037】回転速度差の増大に伴って発生油圧が高く
なり、この油圧を固定絞り7を経て受圧する絞りスプー
ル50の摺動量が増して、通油孔 50a,51a間の連通面積が
小さくなった場合、絞り手段5での通油抵抗の増大に応
じてベーンポンプ3内部の発生油圧が高くなり、これに
応じた絞りスプール50の摺動量の増加により絞り手段5
の通油抵抗が更に増す結果となり、通油孔 50a,51a間の
連通部が完全に閉止されるまでの間においては、回転速
度差の増大に対する伝達トルクの増大割合が非常に大き
く、図6に示す如き伝達トルクの急増部が得られる。
As the difference in rotation speed increases, the generated oil pressure increases, the sliding amount of the throttle spool 50 that receives the oil pressure via the fixed throttle 7 increases, and the communication area between the oil passage holes 50a and 51a decreases. In this case, the hydraulic pressure generated inside the vane pump 3 increases in accordance with the increase in the oil flow resistance in the throttle means 5, and the sliding amount of the throttle spool 50 increases in accordance with this.
As a result, the rate of increase of the transmission torque with respect to the increase in the rotational speed difference is very large until the communication between the oil passage holes 50a and 51a is completely closed. As shown in FIG.

【0038】更に、通油孔 50a,51a間の連通部が完全に
閉止された後においては、油タンクTへの還流油の油路
が絞りスプール50底面の前記絞り孔 50cのみに限定され
るから、以降の絞り手段5の通油抵抗は一定に保たれ、
これと固定絞り7との合成抵抗により定まる変化率を有
して伝達トルクが増大する図6に示す第2の漸増部が得
られる。
Further, after the communication between the oil passage holes 50a and 51a is completely closed, the oil path of the return oil to the oil tank T is limited to only the throttle hole 50c on the bottom surface of the throttle spool 50. From this, the oil flow resistance of the subsequent throttle means 5 is kept constant,
A second gradually increasing portion shown in FIG. 6 in which the transmission torque increases with a rate of change determined by the combined resistance of this and the fixed throttle 7 is obtained.

【0039】さて以上の如く得られる伝動特性は、4輪
駆動車において望ましいものであるが、この伝動特性の
安定した実現のためには、絞りスプール50の摺動が安定
して生じることが必要である。本案装置においては、絞
りスプール50への作用圧がベーンポンプ3内部に前述の
如く発生する油圧そのものではなく、固定絞り7の絞り
孔71の通過により脈動成分を軽減された油圧であること
から、絞りスプール50の摺動位置が脈動成分の作用によ
り変動する虞がない。また絞りスプール50への作用圧
が、前記絞り孔71の通過により適宜に減圧された油圧で
あることから、図6に示す伝達トルクの急増部と第1,
第2の漸増部との間の遷移点を所望の回転速度差におい
て得るために、絞りスプール50の受圧面の面積、案内杆
51bとの嵌合部の隙間等、絞り手段5の各部に極めて高
い寸法精度を要求されることがなく、加工工数の削減が
図れる。
The transmission characteristics obtained as described above are desirable in a four-wheel drive vehicle. However, in order to realize the transmission characteristics stably, it is necessary that the sliding of the throttle spool 50 occurs stably. It is. In the device of the present invention, the operating pressure on the throttle spool 50 is not the hydraulic pressure itself generated inside the vane pump 3 as described above, but the hydraulic pressure in which the pulsation component is reduced by passing through the throttle hole 71 of the fixed throttle 7. There is no danger that the sliding position of the spool 50 will fluctuate due to the action of the pulsating component . Working pressure on the throttle spool 50
With the hydraulic pressure appropriately reduced by passing through the throttle hole 71.
Because of this, the sudden increase in the transmission torque shown in FIG.
In order to obtain the transition point between the second incremental portion and the desired rotational speed difference, the area of the pressure receiving surface of the throttle spool 50, the guide rod
Extremely high dimensional accuracy is not required for each part of the drawing means 5 such as a gap between the fitting part and the fitting part 51b, and the number of processing steps can be reduced.

【0040】なお、絞り手段5の構成は本実施例中に示
すものに限らず、図4及び図5に示す絞り手段6と同様
に、絞りスプール50の両側夫々に制限部材を配した構成
としてもよく、また吐出油路42の形成態様もまた本実施
例に示すものに限定されないことは言うまでもない。
The structure of the restricting means 5 is not limited to that shown in the present embodiment, and, similarly to the restricting means 6 shown in FIGS. 4 and 5, a restricting member is disposed on each side of the restricting spool 50. Needless to say, the mode of forming the discharge oil passage 42 is not limited to that shown in this embodiment.

【0041】[0041]

【考案の効果】以上詳述した如く本案装置においては、
油圧ポンプの吐出側油路の中途に配した絞り手段の上流
側に固定絞りを備え、この固定絞りの通過により脈動成
分を軽減されると共に、適宜に減圧された油圧が前記絞
り手段の絞りスプールに作用する構成としたから、絞り
スプールの移動に際しての不安定な動作が抑制され、所
望の伝動特性を安定して得ることができ、更に絞り手段
各部における要求精度が緩和され、加工工数が削減され
る等、本考案は優れた効果を奏する。
[Effect of the Invention] As described in detail above, in the device of the present invention,
Upstream of the throttle means arranged in the middle of the discharge-side oil passage of the hydraulic pump
Side with a fixed throttle.
Min while being mitigate, grain oil pressure is reduced appropriately said
Since the configuration acts on the aperture spool of the aperture means, unstable operation during movement of the aperture spool can be suppressed, a desired transmission characteristic can be obtained stably, and the required accuracy in each section of the aperture means is relaxed. The present invention has excellent effects such as a reduction in the number of processing steps.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本案装置の全体構成を示す縦断面図である。FIG. 1 is a longitudinal sectional view showing the entire configuration of the device of the present invention.

【図2】本案装置の特徴部分の拡大断面図である。FIG. 2 is an enlarged sectional view of a characteristic portion of the device of the present invention.

【図3】本案装置の特徴部分の拡大断面図である。FIG. 3 is an enlarged sectional view of a characteristic portion of the device of the present invention.

【図4】従来の4輪駆動用駆動連結装置の要部拡大断面
図である。
FIG. 4 is an enlarged sectional view of a main part of a conventional drive coupling device for four-wheel drive.

【図5】従来の4輪駆動用駆動連結装置の要部拡大断面
図である。
FIG. 5 is an enlarged sectional view of a main part of a conventional drive coupling device for four-wheel drive.

【図6】望ましい伝動特性を示すグラフである。FIG. 6 is a graph showing desirable transmission characteristics.

【符号の説明】[Explanation of symbols]

1 入力軸 2 出力軸 3 ベーンポンプ 5 絞り手段 7 固定絞り 30 ロータ 31 カムリング 32 プレッシャプレート 33 サイドプレート 42 吐出油路 50 絞りスプール 51 制限部材 50a 通油孔 51a 通油孔 51b 案内杆 T 油タンク Reference Signs List 1 input shaft 2 output shaft 3 vane pump 5 throttle means 7 fixed throttle 30 rotor 31 cam ring 32 pressure plate 33 side plate 42 discharge oil passage 50 throttle spool 51 restricting member 50a oil passage hole 51a oil passage hole 51b guide rod T oil tank

Claims (1)

(57)【実用新案登録請求の範囲】(57) [Scope of request for utility model registration] 【請求項1】 前,後輪間の回転速度差に応じた油圧を
その内部に発生して両輪を連結する油圧ポンプの吐出側
油路の中途に、該油圧ポンプの発生油圧を受圧して生じ
る絞りスプールの移動により前記吐出側油路の通油面積
を減じる絞り手段を備えてなり、前記発生油圧の上昇に
伴って前記吐出側油路の通油抵抗を増す構成とした4輪
駆動用駆動連結装置において、前記吐出側油路の前記絞
り手段の上流側に配してあり、前記発生油圧を前記絞り
スプールの受圧前に減圧すると共に、前記発生油圧に含
まれる脈動成分を軽減する固定絞りを具備することを特
徴とする4輪駆動用駆動連結装置。
1. A discharge side of a hydraulic pump for connecting both wheels by generating a hydraulic pressure according to a rotational speed difference between front and rear wheels therein.
The middle of the oil passage, it includes a throttle means for reducing the oil passage area of the discharge-side oil passage by the movement of the diaphragm spool caused by pressure generated hydraulic pressure of the hydraulic pump, the discharge with the rise of the hydraulic pressure generated In the four-wheel drive drive coupling device configured to increase the oil flow resistance of the side oil passage, the discharge oil passage is disposed upstream of the throttle means, and the generated oil pressure is reduced by the throttle.
The pressure is reduced before the spool receives pressure, and is included in the generated hydraulic pressure.
A four-wheel drive drive coupling device, comprising: a fixed throttle that reduces a pulsating component to be generated.
JP1991043807U 1991-05-14 1991-05-14 Drive coupling device for four-wheel drive Expired - Fee Related JP2554813Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1991043807U JP2554813Y2 (en) 1991-05-14 1991-05-14 Drive coupling device for four-wheel drive

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1991043807U JP2554813Y2 (en) 1991-05-14 1991-05-14 Drive coupling device for four-wheel drive

Publications (2)

Publication Number Publication Date
JPH04128920U JPH04128920U (en) 1992-11-25
JP2554813Y2 true JP2554813Y2 (en) 1997-11-19

Family

ID=31924085

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1991043807U Expired - Fee Related JP2554813Y2 (en) 1991-05-14 1991-05-14 Drive coupling device for four-wheel drive

Country Status (1)

Country Link
JP (1) JP2554813Y2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0818497B2 (en) * 1985-05-28 1996-02-28 三菱自動車工業株式会社 Drive coupling device for four-wheel drive
JPH0811494B2 (en) * 1987-06-16 1996-02-07 光洋精工株式会社 4-wheel drive vehicle

Also Published As

Publication number Publication date
JPH04128920U (en) 1992-11-25

Similar Documents

Publication Publication Date Title
JPH0385384A (en) Liquid pump
JP2002115673A (en) Variable displacement pump
JP2554813Y2 (en) Drive coupling device for four-wheel drive
EP0388876A2 (en) Hydraulic transmission coupling apparatus
EP0698753B1 (en) Reversible hydrostatic transmission with dump valve
JP3658243B2 (en) Hydraulic power transmission coupling
US20050198953A1 (en) Hydrostatic continuously variable transmission
JP2001032781A (en) Variable displacement pump
JPH0721935Y2 (en) Drive coupling device for four-wheel drive
US6581742B2 (en) Fluid clutch
JP3445835B2 (en) Drive coupling device for four-wheel drive
JP2949299B2 (en) Drive coupling device for four-wheel drive
JP3203301B2 (en) Flow control device
JPH0735821B2 (en) Drive coupling device for four-wheel drive
JPH051722Y2 (en)
JP3467278B2 (en) Driving force transmission device for four-wheel drive vehicles
JPH0721934Y2 (en) Drive coupling device for four-wheel drive
JPH0246328A (en) Drive coupling device for four-wheel driving
JP3881827B2 (en) Pump device
JPH03167034A (en) Drive connecting device for four-wheel drive
JPH0716512Y2 (en) Drive coupling device for four-wheel drive
JPS62197683A (en) Hydraulic pump
JP2523749Y2 (en) Drive coupling device for four-wheel drive
JP2002098069A (en) Pumping device
JPH0289821A (en) Rotation difference-sensitive type joint

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees