JPH0328794A - Fuel assembly for boiling water reactor and its water pipe for cooling water flow - Google Patents

Fuel assembly for boiling water reactor and its water pipe for cooling water flow

Info

Publication number
JPH0328794A
JPH0328794A JP1162736A JP16273689A JPH0328794A JP H0328794 A JPH0328794 A JP H0328794A JP 1162736 A JP1162736 A JP 1162736A JP 16273689 A JP16273689 A JP 16273689A JP H0328794 A JPH0328794 A JP H0328794A
Authority
JP
Japan
Prior art keywords
fuel
channel
plate thickness
water
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1162736A
Other languages
Japanese (ja)
Inventor
Katsuhiro Tsuda
津田 勝弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nuclear Fuel Industries Ltd
Original Assignee
Nuclear Fuel Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nuclear Fuel Industries Ltd filed Critical Nuclear Fuel Industries Ltd
Priority to JP1162736A priority Critical patent/JPH0328794A/en
Publication of JPH0328794A publication Critical patent/JPH0328794A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

PURPOSE:To make a pressure drop small by nearly equalizing overall axial length to the fuel effective length of a fuel rod and making the tube plate thickness in a lower area having its border at a height position which is about 1/3 - 2/3 time the overall axial length larger than the tube plate thickness in an upper area. CONSTITUTION:A short-sized W channel has maximum deformation due to creeping at the position P of about 1/3 height from the short-sized channel. This results from that the acceleration factor of fast neutrons affects the creep deformation fo the short-sized channel in addition to the inside/outside pressure difference. For the purpose, the plate thickness (d) in the upper area U of the short-sized W channel is so determined that the creep deformation quantity at the part is nearly equal to or less than the maximum deformation quantity. For example, when the plate thickness (d) in the lower area U is 0.7mm, the plate thickness (d) in the lower area D is 1.5mm. Consequently, the pressure drop in an in-channel area to a two-phase flow is reduced and channel stability is improved.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、一般的には沸騰水型原子炉(BWR〉用燃料
集合体に係り、特にその冷却水流通用水管(丸型ウ才一
タロッド、角型ウ才一タチャンネル)の改良に関する。
Detailed Description of the Invention [Industrial Application Field] The present invention generally relates to a fuel assembly for a boiling water reactor (BWR), and particularly relates to a cooling water distribution water pipe (round type , regarding the improvement of square-shaped U-Saiichita channel).

更に詳述ずれは、燃料集合体内の二相流部の流路断面積
を増加させ、集合休圧損特性を改善するための燃料集合
体構成及びそれに用いる冷却水流通用水管の構造に関す
る。
Further, the difference in details relates to the structure of the fuel assembly for increasing the flow passage cross-sectional area of the two-phase flow section in the fuel assembly and improving the collective rest pressure loss characteristics, and the structure of the cooling water flow pipe used therein.

即ち、燃粕集合体のボイト発生による圧損の大きい二相
流部を低圧損化することにより、BWRのチャンネル安
定性及び炉心安定性の向上を図ることが本発明の技術分
野に含まれる。
That is, the technical field of the present invention includes improving the channel stability and core stability of a BWR by reducing the pressure drop in a two-phase flow section where the pressure drop is large due to the occurrence of voids in the sludge aggregate.

[従来の技術] 本項では従来のBWR用燃料集合体として、先ず8×8
型燃料集合体の燃料棒、冷却水流通用水管、集合体全体
の各構成について説明し、次いで9×9型燃料集合体に
ついて説明する。
[Prior art] In this section, we will first discuss an 8×8 fuel assembly as a conventional BWR fuel assembly.
The configurations of the fuel rods, cooling water pipes, and the entire assembly of the fuel assembly will be explained, and then the 9x9 fuel assembly will be explained.

〈燃料棒〉 第6図(A)に燃料棒の構成を示す。<Fuel rod> FIG. 6(A) shows the configuration of the fuel rod.

燃料棒8lは、焼結された二酸化ウランベレット1aを
ジルカロイ製の被覆管1bに充填し、更に被覆管1bの
上方のブレナム領域にブレナムスプリング1cを配置し
て熱伝導度の良い不活性ガス(ヘリウム)を封入し、被
覆管1bの土下端をそれぞれ上部端栓1d,下部端栓1
eで密封溶接して構成されている。ここでウランベレッ
ト1aの装填された燃料有効長(ウラン部分)は通常は
約370cmであり、ブレナム長さ(ブレナム領域の軸
方向長さ)は通常は約30cmである。
The fuel rod 8l is made by filling a Zircaloy cladding tube 1b with sintered uranium dioxide pellets 1a, and arranging a Blenheim spring 1c in the Blenheim area above the cladding tube 1b, and using an inert gas with good thermal conductivity ( Helium) is sealed, and the lower end of the cladding tube 1b is filled with an upper end plug 1d and a lower end plug 1, respectively.
It is constructed by sealing welding with e. Here, the loaded fuel effective length (uranium portion) of the uranium pellet 1a is usually about 370 cm, and the blennium length (axial length of the blennium region) is usually about 30 cm.

〈冷却水流通用水管〉 第6図(B)に冷却水流通用水管(図示の例ではウ才一
タロッド)の構成を示す。
<Water pipe for cooling water distribution> FIG. 6(B) shows the configuration of the water pipe for cooling water distribution (in the illustrated example, a Usaichi tarod).

クオータロットwr(以下、” wロッド′゛と略称す
)は内部に燃料物質を含まず中空であり、燃料棒81と
同様に本体の上下部に上下部端栓1d1eが溶接され、
これら端栓1d,Ieの付近にそれぞれ設けられた上部
オリフィス孔h1,下部オリフィス孔h2を介して適量
に制御された未沸騰水が下部から上部へ貫流するように
なっている。
The quarter rod wr (hereinafter abbreviated as "W rod") is hollow and does not contain any fuel material inside, and upper and lower end plugs 1d1e are welded to the upper and lower parts of the main body, similar to the fuel rod 81.
An appropriately controlled amount of unboiled water flows from the lower part to the upper part through an upper orifice hole h1 and a lower orifice h2 provided near these end plugs 1d and Ie, respectively.

〈8×8型燃料集合体〉 第7図に炉心装荷状態にある8×8型燃粕集合体の横断
面構威を示す。
<8x8 type fuel assembly> Figure 7 shows the cross-sectional structure of the 8x8 type fuel assembly in the core loaded state.

図において、全体を符号8oで示される8×8型燃料集
合体く以下、”8×8燃料゜゜と称する)は、NO.1
〜N0.62の計62木の上記燃料棒81と、2木の上
記Wロットとを8行8列の正方格子状に配列して燃料バ
ンドルを構成し、これらをジルカロイ製のチャンネルボ
ックス85に収めたものであり、図示のように十字型制
御棒Crk:隣接して原子炉に装荷される。原子炉の出
力運転中は、冷却水が燃料下部から上部に向かって流れ
、燃料棒81の発生熱を除去する。尚、図示のiは計装
管を示す。
In the figure, the 8×8 type fuel assembly, indicated by the symbol 8o as a whole (hereinafter referred to as “8×8 fuel゜゜)” is NO.1.
A fuel bundle is constructed by arranging the above-mentioned fuel rods 81 of 62 wood of ~N0.62 and the above-mentioned W lot of 2 wood in a square grid of 8 rows and 8 columns, and these are placed in a channel box 85 made of Zircaloy. As shown in the figure, the cross-shaped control rods Crk: are loaded into the reactor adjacent to each other. During power operation of the nuclear reactor, cooling water flows from the bottom of the fuel toward the top, removing heat generated by the fuel rods 81. Note that the symbol "i" in the figure indicates an instrumentation tube.

この8×8燃料80の全体的な構造は第8図に示す通り
である。
The overall structure of this 8×8 fuel 80 is as shown in FIG.

第8図において、燃料棒81及びWロットは、上部タイ
ブレート82と下部タイブレート83によって固定され
る。また、集合体に沿って一定間隔でスベーサ84が配
されさており、燃料棒間隔が一定に保たれるようになっ
ている。
In FIG. 8, a fuel rod 81 and a W lot are fixed by an upper tie plate 82 and a lower tie plate 83. Furthermore, spacers 84 are arranged at regular intervals along the assembly, so that the spacing between the fuel rods is kept constant.

〈9×9型燃料集合体〉 ところで近年は燃料の高燃焼度化を図る目的で、上述の
8×8燃料80に代って9×9型燃料集合体が採用され
つつある(例えば特開昭62118297号公報参照〉
<9x9 type fuel assembly> By the way, in recent years, 9x9 type fuel assemblies have been adopted in place of the above-mentioned 8x8 fuel 80 for the purpose of increasing the burnup of fuel (for example, Please refer to Publication No. 1988-62118297>
.

第9図に9×9型燃料集合休(以下、″従来型9×9燃
料”と称する)の一構成例を示す。図において全体を符
号90で示される従来型9×9燃料の構成要素91,9
2.  ・・・,95は、夫々上記8×8燃料の構成要
素81,82,  ・・・85に対応している。
FIG. 9 shows an example of a configuration of a 9×9 fuel assembly (hereinafter referred to as "conventional 9×9 fuel"). Components 91, 9 of a conventional 9x9 fuel, indicated generally at 90 in the figure.
2. . . , 95 correspond to the constituent elements 81, 82, . . . , 85 of the 8×8 fuel, respectively.

図示の構威例では水管として1木の3×3型ウ才一タチ
ャンネルW(以下、” wチャンネル′゜と略称す)を
備え、燃料棒91は72本配置されている。ここで燃料
棒91の構造は、燃料棒直径及び燃料濃縮度を除いては
8x8燃料用燃料棒81と同様である。一方、Wチャン
ネルは、中性子の減速を促進して燃料集合体の反応度を
高めると共に、水刻ウラン比を制御してボイド係数を適
正化する重要な構成要素であるが、Wヂャンネルの冷却
水流量について詳述すれば、以下の通りである。
In the illustrated configuration example, a single wooden 3×3 type U-shaped channel W (hereinafter abbreviated as "w channel'゜) is provided as a water pipe, and 72 fuel rods 91 are arranged. The structure of the rod 91 is similar to the 8x8 fuel rod 81 except for the fuel rod diameter and fuel enrichment.On the other hand, the W channel promotes the moderation of neutrons to increase the reactivity of the fuel assembly. , which is an important component for controlling the water uranium ratio and optimizing the void coefficient, is detailed as follows regarding the W channel cooling water flow rate.

原子炉出力運転状態においてWチャンネルに流通する冷
却水流量か多過ぎると、燃料棒91の冷却に使われるイ
ンヂャンネル流量か減少し、燃料棒91の冷却能力が低
下するのて危険である。逆に玲却水流量が少ない場合は
、Wチャンネル内の冷却水とγ線.中性子との反応及び
Wチャンネル側壁を通しての熱伝達に起因する発熱によ
りWチャンネル内に蒸気泡(ボイト)が発生し、中性子
減速の妨げとなる。
If the flow rate of cooling water flowing through the W channel in the reactor power operating state is too large, the flow rate of the in-channel used for cooling the fuel rods 91 will decrease, which is dangerous because the cooling capacity of the fuel rods 91 will decrease. On the other hand, if the cooling water flow rate is low, the cooling water and gamma rays in the W channel. Vapor bubbles (voits) are generated within the W channel due to heat generation due to reaction with neutrons and heat transfer through the W channel side wall, which hinders neutron moderation.

従って、原子炉出力運転時におけるWチャンネル内のボ
イト発生は避ける必要かある。このため従来では第10
図に示す如くwチャンネルの上下部端栓W1,W2に上
下部オリフィス孔h3,h4を設け、冷却水の流通を適
量に制御された状1態にするようにしている。
Therefore, it is necessary to avoid the occurrence of voids in the W channel during reactor power operation. For this reason, conventionally the 10th
As shown in the figure, upper and lower orifice holes h3 and h4 are provided in the upper and lower end plugs W1 and W2 of the W channel, so that the flow of cooling water is controlled in an appropriate amount.

尚、従来の水管(Wチャンネル,Wロット)は、その軸
方向全長か燃料棒の軸方向全長とほぼ同一であり、板厚
は軸方向に一定(例えばWチャンネルては0.7mm)
となっている。
In addition, conventional water pipes (W channel, W lot) have a total axial length that is almost the same as the total axial length of the fuel rod, and the plate thickness is constant in the axial direction (for example, 0.7 mm for the W channel).
It becomes.

[発明が解決しようとする課題] 上記のような9×9燃料90は、8×8燃料80に比す
ると、燃料の高fA縮度化を図ると同時に燃料棒本数を
増加させたことにより、同一の出力条件で燃料棒一本あ
たりの出力が下がり、温度が低減されるという利点を有
している。
[Problems to be Solved by the Invention] Compared to the 8×8 fuel 80, the 9×9 fuel 90 as described above achieves higher fA compression and at the same time increases the number of fuel rods. It has the advantage of reducing the output per fuel rod and reducing the temperature under the same output conditions.

しかしながら、燃料棒本数の増加に伴って圧損も増加し
てしまう。更に、9×9燃料90では、燃料の高濃縮度
化に対応して集合体中央部の非沸騰水領域の面積を大き
くするために、通常は大口径の水管(例えは大口径Wロ
ット或いは第10図の例におリるWヂャンネル等)が採
用されている。この水管の大口径化により、インチャン
ネル領域の流路面積が益々縮小し、圧損は更に高くなる
。従って9×9燃料90では、BWRにおいて問題とな
るヂャンネル安定性の不安定現象がj;り顕著に表れる
ことになる。
However, as the number of fuel rods increases, pressure loss also increases. Furthermore, in the 9x9 fuel 90, in order to increase the area of the non-boiling water region in the center of the assembly in response to the high enrichment of the fuel, a large diameter water pipe (for example, a large diameter W lot or The W channel shown in the example of FIG. 10) is adopted. By increasing the diameter of the water pipe, the flow area of the in-channel region becomes smaller and the pressure drop becomes higher. Therefore, with the 9×9 fuel 90, the unstable phenomenon of channel stability, which is a problem in BWR, becomes more prominent.

ここでチャンネル安定性とは、流量の振動に対し、これ
を抑制する作用の程度を息味ずる。
Here, channel stability refers to the degree of effectiveness in suppressing flow rate fluctuations.

方、炉心安定性とは、流量の振動か出力の振動と協調し
て炉心全体域は局所的な出力の持続振動を生しる程度を
意味する。但し、この炉心安定aは、チャンネル安定性
の改戎に伴い改苦されるので、以下の説明では専らチャ
ンネル安定性について問題とする。
On the other hand, core stability refers to the degree to which the entire core region produces sustained local power oscillations in coordination with either flow rate oscillations or power oscillations. However, since this core stability a is subject to change as the channel stability is changed, the following explanation will focus exclusively on the channel stability.

このヂャンネル安定性の不安定現象は、BWRに固有の
現象てあり、ボイトの発生による二相流部の圧損が大き
いほど不安定てあることが指摘されている(例えは榎木
、他著「沸騰水型軽水炉安定性の最近の知見と将来の展
望」、日木原子力学会誌第27巻,NO.10.第89
0頁,1985年)。また、特に原子炉出力が定格の約
50%以」二で、再循環流量が比較的低流量の運転時′
1に不安定となることも知られている。
This unstable phenomenon of channel stability is unique to BWR, and it has been pointed out that the greater the pressure drop in the two-phase flow section due to the generation of voids, the more unstable it becomes (for example, in the article by Enoki et al. ``Recent findings and future prospects on water-type light water reactor stability'', Journal of Japan Atomic Energy Society, Vol. 27, No. 10. No. 89
0, 1985). In addition, especially when the reactor power is about 50% or more of the rated power and the recirculation flow rate is relatively low,
It is also known that it becomes unstable at 1.

*1 例えは原子炉の起動時、負荷追従運中云における
低出力調整、或は再循環ボンブ故障による炉心流量低減
時などにおける自然循環流量(定格流量の約30%)乃
至は再循環ポンプ速度が定格の約20%の運転状態。
*1 For example, natural circulation flow rate (approximately 30% of rated flow rate) or recirculation pump speed during reactor startup, low power adjustment during load following operation, or core flow rate reduction due to recirculation bomb failure. is operating at approximately 20% of the rated value.

この不安定現象か生しると、流量の振動か大きくなり、
最悪の場合は除熱不足による燃料の破損に至る。更に、
流量の振動は冷却材蒸気体積率(ボイト率)の振動と、
それによる核反応率の振動による炉心全体、または局所
的な中性子束の振動を引き起こし、遂には原子炉スクラ
ムに至る。
When this unstable phenomenon occurs, the flow rate oscillates greatly,
In the worst case, the fuel may be damaged due to insufficient heat removal. Furthermore,
The vibration of the flow rate is caused by the vibration of the coolant vapor volume ratio (Voight rate),
The resulting oscillations in the nuclear reaction rate cause oscillations in the entire reactor core or local neutron flux, eventually leading to a reactor scram.

従ってBWRにおいてヂャンネル安定性を確保すること
は重要な課題である。
Therefore, ensuring channel stability in BWR is an important issue.

更に、上記Wロット,Wヂャンネル等の従来型水管には
、その使用に伴ない変形するという問題点かある。この
問題について9×9燃料90のWチャンネルに代表させ
て説明する。
Furthermore, conventional water pipes such as the above-mentioned W lot and W channel have the problem that they deform as they are used. This problem will be explained using the W channel of 9×9 fuel 90 as a representative.

Wチャンネルを流通する冷却水の駆動圧は、Wチャンネ
ルとインヂャンネルの間の圧力差であり、この圧カズ−
分布をWチャンネル’l’lll方白て表ずと第11図
に示す一点鎖線の如くとなる。即ち、Wチャンネル入口
(下部オリフィス孔h4)ではインヂャンネルの圧力を
基準としてWチャンネル内が負圧であり、冷却水がWヂ
ャンネル側に押込まれる。一方、Wヂャンネル出口(上
部オリフィス孔h3)ではWチャンネル内か正圧てあり
、」二部オリフィス孔h3の圧損抵杭により冷却水が押
出される。このWチャンネル内外の圧力差によりWチャ
ンネルの変形が生じるのであるが、より詳しくは以下の
通りである。
The driving pressure of the cooling water flowing through the W channel is the pressure difference between the W channel and the in-channel.
The distribution of the W channel 'l'llll is not expressed in white, but is as shown by the dashed dotted line in FIG. That is, at the W channel entrance (lower orifice hole h4), the inside of the W channel is under negative pressure based on the pressure of the in-channel, and the cooling water is forced into the W channel side. On the other hand, there is a positive pressure inside the W channel at the W channel outlet (upper orifice hole h3), and the cooling water is pushed out by the pressure loss resistance pile of the two-part orifice hole h3. This pressure difference between the inside and outside of the W channel causes deformation of the W channel, and the details are as follows.

Wチャンネルの断面形状は、製造状態では第12図(A
)に示すように正方形である。ところが、使用状態(原
子炉運転時)にはWヂャンネルの側面に冷却水の圧力が
作用し、Wヂャンネルの軸方向下部では、その圧力がW
チャンネル内部よりもインチャンネル領域で高いため、
第12図(B)に示すように内側に歪んだ断面形状に変
形する。この変形量は、照射にJ:って加速されるクリ
ープ変形により時間と共に増犬ずる。・変形量が過大と
なると、スベーサ94との係合(スプリングの接触)が
外れ、流力振動によるフレッティングを生じ、最悪の場
合Wヂャンネルにひひ割れが生ずる危険がある。
The cross-sectional shape of the W channel in the manufactured state is shown in Figure 12 (A
) as shown in the square shape. However, during use (during reactor operation), the pressure of the cooling water acts on the side of the W channel, and at the axial lower part of the W channel, the pressure increases to W.
Because it is higher in the in-channel region than inside the channel,
The cross-sectional shape is deformed inwardly as shown in FIG. 12(B). This amount of deformation increases with time due to creep deformation that is accelerated by irradiation. - If the amount of deformation becomes excessive, the engagement with the smoother 94 (spring contact) will be disengaged, causing fretting due to fluid vibration, and in the worst case, there is a risk that cracks will occur in the W channel.

本発明は、上記従来の技術の有する問題点に鑑みてなさ
れたものであり、その目的とするところは、インチャン
ネル領域の二相流に対する低圧損化を図り、BWRのチ
ャンネル安定性及び炉心安定性を向上し得ることが可能
で、低流量運転など特に圧損の高い運転状態に好適なB
W’R用燃料集合体とその冷却水流通用水管を提供する
ことてある。更に、この目的と同時に冷却水流通用水管
のクリープ変形を小さくして安全性を高めることも木発
明の課題の一部である。
The present invention has been made in view of the above-mentioned problems of the conventional technology, and its purpose is to reduce the pressure loss for the two-phase flow in the in-channel region, and to improve the channel stability and core stability of the BWR. B is suitable for operating conditions with particularly high pressure drop, such as low flow rate operation.
We also provide fuel assemblies for W'R and their cooling water distribution pipes. Furthermore, in addition to this purpose, it is also part of the object of the wooden invention to reduce the creep deformation of the water pipe for cooling water distribution and improve safety.

[課題を解決するための千段] 本発明は上記目的を達成するために、正方格子配列の複
数本の燃料棒からなるバントル構成中に前記燃料棒の一
部を置換えた一木または複数木の冷却水疏通用水管を備
えた燃料集合体において、前記水管は、その軸方向全長
か前記燃料棒の燃料有効長とほぼ等しくされ、且つ前記
軸方向全長11 12 の上部約1/3〜2/3以上の高さ位置を境とする上下
の二領域のうち、下部領域の管板厚が上部領域の管板厚
よりも厚くされると共に、軸方向上端が前記燃料有効長
上端とほぼ一致するように配置したものである。
[A Thousand Steps to Solve the Problems] In order to achieve the above object, the present invention provides a buntle configuration consisting of a plurality of fuel rods in a square lattice arrangement, in which a part of the fuel rods is replaced. In the fuel assembly equipped with a cooling water canal water pipe, the total axial length of the water pipe is approximately equal to the effective fuel length of the fuel rod, and the upper part of the total axial length 11 12 is about 1/3 to 2 Of the two upper and lower regions bounded by a height position of /3 or more, the tube plate thickness in the lower region is thicker than the tube plate thickness in the upper region, and the upper end in the axial direction almost coincides with the upper end of the effective fuel length. It is arranged like this.

また本発明は、沸騰水型原子炉用燃料集合体における正
方格子配列の複数本の燃料棒からなるバントル構成中に
前記燃料棒の一部に代って一木または複数本配置される
冷却水流通用水管において、前記バンドルを構威すへき
燃料棒の燃料有効長にほぼ等しい相対的に短尺の全長寸
法を有し、軸方向全長の上部約1/3〜2/3以上の高
さ位置を境とする上下二領域のうち、下部領域の竹板厚
が上部領域の管板厚より厚くしたものを提供するもので
ある。
The present invention also provides a cooling water flow in which one or more fuel rods are arranged in place of some of the fuel rods in a buntle configuration consisting of a plurality of fuel rods in a square lattice arrangement in a fuel assembly for a boiling water reactor. In the service water pipe, the fuel rod has a relatively short overall length dimension that is approximately equal to the effective fuel length of the fuel rod that constitutes the bundle, and has a height position of about 1/3 to 2/3 or more of the upper part of the overall axial length. Of the two upper and lower bordering areas, the thickness of the bamboo plate in the lower area is thicker than the thickness of the tube plate in the upper area.

尚、何れの場合においても、前記水管は、下部領域から
上部領域にかけて前記境部分て管板厚が次第に薄くなる
ようにテーバ状の断面形状に形成された領域を含む構成
としてもよい。
In either case, the water tube may include a region formed in a tapered cross-sectional shape so that the tube plate thickness becomes gradually thinner at the boundary portion from the lower region to the upper region.

[作用] 本発明においては、燃料集合体の水管の軸方向全長を燃
料有効長とほぼ等しくしてある。つまり本発明における
水管の軸方向長さは、従来型水管に比へると燃料棒のブ
レナム領域に相当する長さ分だけ短尺となっている。換
言すれば、ブレナム領域に相当する集合体軸方向領域に
は、水管は存在しないことになる。従って、この集合体
軸方向領域におけるインチャンネル領域の・流路面積(
以下、゛゜ブレナムーインヂャンネル流路面積゜゜と称
ず)は、水管の横断面積の分だけ拡大される。
[Operation] In the present invention, the total axial length of the water tube of the fuel assembly is made approximately equal to the effective length of the fuel. In other words, the axial length of the water tube in the present invention is shorter than that of the conventional water tube by the length corresponding to the blemish region of the fuel rod. In other words, no water tube exists in the axial region of the aggregate corresponding to the Blenheim region. Therefore, the flow path area (
Hereinafter, the ``Blenheim channel flow path area'') is expanded by the cross-sectional area of the water pipe.

このブレナム領域に相当するインチャンネル領域には高
ボイド率の二相流が生しるのであるが、流路面積の拡大
により低圧損化を達成できる。そのため、本発明の燃料
集合体を装荷したBWRではチャンネル安定性か著しく
向上ずる。
A two-phase flow with a high void ratio occurs in the in-channel region corresponding to the Blenheim region, but a low pressure drop can be achieved by expanding the flow path area. Therefore, in a BWR loaded with the fuel assembly of the present invention, the channel stability is significantly improved.

また、本発明の燃料集合体における冷却水流通用水管は
、従来型水管か軸方向に一定の板厚を有するのに対し、
軸方向下部の板厚を」二部よりも厚くされている。ここ
で水管下部を厚肉としたの(は.玲却水の圧力差による
クリープ変形にヌ・]する抵抗を太きぐずるためてある
。一方、水管士部では外側かスベーザによっ“C固定さ
れ゛Cいるため、水管l一部のようなフIノッディング
の問題はない。
In addition, the cooling water distribution water pipe in the fuel assembly of the present invention has a constant plate thickness in the axial direction, whereas the conventional water pipe has a constant thickness in the axial direction.
The thickness of the lower part in the axial direction is thicker than that of the second part. Here, the lower part of the water pipe is made thicker to increase the resistance to creep deformation due to the pressure difference of the cooling water.On the other hand, in the water pipe section, the "C" is fixed on the outside or with a smoother. Because of this, there is no problem of nodding like in some water pipes.

従って水管ト部は厚肉化する必要かない。Therefore, there is no need to thicken the water pipe section.

尚、水管の板厚を厚くする境界点は、第11図の内外圧
力差の分布におい−c/lT−カ差か零となる位置を尤
虜ずるど、水管木体の軸方向の上部約1/3〜2/3以
トの高さイウ置か適当である。この場合、水管の板厚加
fの都合によって妊、板淳かデハ状に滑らかに変化する
ように形成してもよい。
The boundary point for increasing the thickness of the water pipe is approximately the upper part of the water pipe in the axial direction, which is the position where -c/lT- is zero in the distribution of the pressure difference between the inside and outside as shown in Fig. 11. A height of 1/3 to 2/3 or more is appropriate. In this case, depending on the thickness of the water pipe, it may be formed so as to smoothly change into a flat, flat or flat shape.

木発明の特徴と利点を−層明確にするために、女了まし
い実施例について添イ」レ]面とともに説明ずhは以十
のj重りである。
In order to clarify the features and advantages of the wooden invention, some preferred embodiments will be described with reference to the accompanying drawings.

[実h{(例] 木発明の燃斜集合体は低IEE trt化を達成できる
ため、現状では特{ごE[tjlの高い9×9燃利への
適川に効果的である。従っ゜C以丁の実胞例ては木発明
を9×9燃料に適用した場合を示すか、勿論本発明の適
用対象は9×9燃料に限定されるものではノシCい。
[Example] Since the combustion angle assembly of the wood invention can achieve a low IEE trt, it is currently effective for achieving a 9x9 fuel efficiency with a high E[tjl. An example of this is the case where the invention is applied to 9x9 fuel, but of course the application of the present invention is not limited to 9x9 fuel.

本発明による9×9燃料の構成例を第1図及び第2図に
示す。
An example of the configuration of a 9×9 fuel according to the present invention is shown in FIGS. 1 and 2.

第1図に示される9×9燃料90A (実施例A)はN
O.l〜N0 73の言473木の燃料棒91ど二木の
大口径ウォータロッドWRとを備えた形式である。
The 9×9 fuel 90A (Example A) shown in FIG.
O. It is a type equipped with 473 wooden fuel rods 91 and two large-diameter water rods WR.

方、第2図に示される9×9燃料90B (実施例B 
) ハNO. I 〜N0.7 2 (7),il72
木の燃料棒91と一本の3×3型ウ才一タチャンネルW
とを備えた形式である。この9×9燃料90Bの構成i
J、ウ4−タヂャンネルWを除いては従来型9×9燃料
90と同様てある。
On the other hand, the 9×9 fuel 90B (Example B) shown in FIG.
) HaNO. I ~N0.7 2 (7), il72
Wooden fuel rod 91 and one 3x3 type Usaichi channel W
It is a format with Configuration i of this 9×9 fuel 90B
It is the same as the conventional 9x9 fuel 90, except for the J, U and 4-T Channel W.

各9×9燃料90A,90Bに:l3 +′Jろ水管(
犬口径ウォータロットWR,  ウォータヂャンネルW
)は、作用の項で説明した通り軸方向全長と肉淳に特徴
かあるか、−例として9×9燃料90Bに.Jjりるウ
A一タチャンネルW(以F、゛短尺型Wヂャンネル“と
称ず)の構成例を第3図及び第4図に示す。
For each 9x9 fuel 90A, 90B: l3 +'J drainage pipe (
Dog caliber water rod WR, water channel W
), does it have any characteristics in the overall axial length and thickness as explained in the section of the function? - As an example, for 9x9 fuel 90B. An example of the configuration of the JJ Rir Uta Channel W (hereinafter not referred to as ``short W channel'') is shown in FIGS. 3 and 4.

図において、短尺型Wヂャンネルの軸方向全長は燃料イ
■効長く本実施例では約3 7 0 cm)と等しくし
てある。この沁尺型Wヂャンネルθ) lj,:,4尺
化Vより、9×9燃籾9 O Bのブレナl\−インヂ
ャンネル流路面積はl−述の通り拡大する。具体的には
、本発明の9×9燃料90B及び従来型9×9燃籾90
のインチへ・ンネル疏路面積は約95cm’本発明に′
J5ける短尺型Wヂャンネル及ひ従来型Wヂャンネルの
横断面積は約15cm”Cあるから、本発明の9×9燃
料90Bのプレナムーインヂへ・ンネル流路面積は、従
来型9×9燃料90に比へて約16%の拡大となる。こ
れは等価水力的径(4×流路面積/濡れ縁長さ)゛C老
えると約25%の増加とt.f:る。商、図示の短尺型
Wブヘ・ンネルにおいては、その短尺化に伴い従来型W
ヂャンネル」二部に設Cづられ”Cいたシャンク(第】
O図におりる18部H,1rh杼W1上部の係合川突起
)か削除されている。従来、このシャンクは上部タイプ
lノ−1・16 に遊びを持って嵌合されているのみてあるから、シャン
クを削除した構成としても特に不都合はない このような短尺型Wヂャンネルにおいて、クリープによ
る最大変形妊、知尺型Wヂャンネル下端から約1/3の
高さ位置Pに生しる。これは短尺i{!j Wヂャンネ
ルのクリープ変形に、内外圧力差の他に高速中性子の加
速囚r一か影響するためてある。そのためケ、11尺型
Wヂャンネルの−1一部領域[Jの板厚dUは、その部
分のクリープ変形量か士述の最大変形量と同程度か或い
はそれを下回るように設定される。一例を挙げれは、第
4図(A)に示すL部領域Uの板厚duを従来例と同様
に0711111とするとき、ゴ54図(B)に示すト
部領域Dの板厚d 11は1 5……とする。ここで−
ト部領域Dから土部領域Uにhz i−Jての断面形秋
は、前述した通リテーバ状に形成してもよい。
In the figure, the total length of the short W channel in the axial direction is equal to the fuel efficiency (approximately 370 cm in this embodiment). From this square-shaped W channel θ)lj,:,4-scaled V, the Brenna l\-indian channel flow area of 9×9 paddy 90B is expanded as described above. Specifically, the 9×9 fuel 90B of the present invention and the conventional 9×9 fuel 90
The inch tunnel area is approximately 95cm' according to the present invention.
Since the cross-sectional area of the short W channel and the conventional W channel in J5 is about 15 cm"C, the plenum channel flow area of the 9x9 fuel 90B of the present invention is smaller than that of the conventional 9x9 fuel 90. This results in an expansion of approximately 16%.This corresponds to an increase in equivalent hydraulic diameter (4 x flow path area/wetted edge length) of approximately 25% as t.f ages. Due to the shortening of the W Buchennel, the conventional W
The shank that was set in the second part of "Channel" (Part 2)
Part 18 (H, 1rh, the engaging protrusion on the upper part of the shuttle W1) shown in Figure O has been deleted. Conventionally, this shank has only been fitted to the upper type L No. 1/16 with some play, so there is no particular disadvantage in a configuration in which the shank is removed. The maximum deformation occurs at a height position P of approximately 1/3 from the lower end of the length-shaped W channel. This is short i{! The creep deformation of the W channel is affected not only by the pressure difference between the inside and outside but also by the accelerated concentration of fast neutrons. Therefore, the plate thickness dU of the -1 partial region [J of the 11-inch type W channel is set to be equal to or less than the amount of creep deformation in that portion or the maximum amount of deformation described above. To give an example, when the plate thickness du of the L region U shown in FIG. 1 5... Here-
The cross-sectional shape from the bottom region D to the bottom region U may be formed in the shape of a retainer as described above.

木実施例の効果をヂャンネル安定性の限界出カで表した
グラフを第5図に示す。ここで解析条件は、炉心の流量
か定格の約30%の自然循環状態とした。また、グラフ
の横軸の圧損比は燃料集合体の二相流部圧損と単相部圧
損の比である。図中、●印.◆印は夫々9×9燃料90
A,90Bの特性を示し、O印,◇印は夫々9×9燃料
90A,90Bに対応する従来構成例(水管の短尺化及
び肉厚変更を施していないもの)の特性を示す。
A graph showing the effect of the tree embodiment in terms of the limit output of channel stability is shown in FIG. Here, the analysis conditions were a natural circulation state where the core flow rate was approximately 30% of the rated value. Further, the pressure loss ratio on the horizontal axis of the graph is the ratio of the two-phase flow section pressure loss to the single-phase section pressure loss of the fuel assembly. In the figure, mark ●. ◆marks are 9×9 fuel 90 respectively
The characteristics of A and 90B are shown, and the O and ◇ marks represent the characteristics of a conventional configuration example (one in which the water pipe is not shortened and the wall thickness is not changed) corresponding to the 9×9 fuels 90A and 90B, respectively.

この図から明らかなように、本実施例の9X9燃料90
A,90Bのチャンネル安定性限界出力は、従来型9×
9燃料に比べて約7%高められる。
As is clear from this figure, the 9X9 fuel 90 of this example
A, 90B channel stability limit output is conventional 9×
This is about 7% higher than 9 fuel.

[発明の効果〕 以上説明したように本発明によれば、水管の短尺化によ
り二相流部の圧損が低減され、大幅なヂャンネル安定性
と炉心安定性の向上が図れる。更に、水管下部を厚肉と
したため、水管のクリープ変形が小さくなり安全性が高
められる。
[Effects of the Invention] As explained above, according to the present invention, the pressure loss in the two-phase flow section is reduced by shortening the water tube, and channel stability and core stability can be significantly improved. Furthermore, since the lower part of the water pipe is made thicker, creep deformation of the water pipe is reduced and safety is improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実旅例に係る9×9燃判を示す横断
面図、′fJ2図は木発明の他の実施例に係る9×9燃
料を示す横断面図、第3図は前図の9×9燃料に用いる
短尺型ウォータチャンネルを示す斜視図、第4図(A)
は前図のA−A断面図、第4図(B)は同し<B−B断
面図、第5図は本発明の実施例に係る9×9燃料におリ
る圧損比とヂャンネル安定性炉出力との関係を従来例と
の比較で示す線図、第6図 (A).(B)は夫々8×
8燃料用燃料棒.8×8燃料用ウォータロットの構成を
示す内部透視縦断面図、第7図は炉心に装荷された状態
の8×8燃料の横断面図、第8図は前図の8×8燃料の
全体構成を示す内部透視斜視図、第9図は従来の9×9
燃料集合体の全体構成を示す内部透視斜視図、第10図
は従来のウ才一タチャンネルの構成を示す内部透視斜視
図、第11図は原子炉出力運転中における従来のウォー
タチャンネルの内部と外部の冷却材の圧力分布の計算結
果を示す線図、第12図 (A).(B)は夫々ウォー
タチャンネルの製造時,使用時の形状を示1 9 20 す横断面図である。 [主要部分の符号の説明] 9OA  90B・・・9×9燃料 W・・・短尺型ウオータチャンネル WR・・・短尺型大口径ウオータロツドU・・・上部領
域 p・・・下部領域 P・・・境界点 尚、各図中、同 す。 符号は同一または相当部を示
Fig. 1 is a cross-sectional view showing a 9x9 fuel plate according to one practical example of the present invention, Fig. 'fJ2 is a cross-sectional view showing a 9x9 fuel plate according to another embodiment of the wood invention, and Fig. 3 Figure 4 (A) is a perspective view showing the short water channel used for the 9x9 fuel shown in the previous figure.
is a sectional view taken along line A-A in the previous figure, FIG. 4(B) is a cross-sectional view taken along line B-B, and FIG. Diagram showing the relationship with the sex furnace output in comparison with the conventional example, Figure 6 (A). (B) are each 8×
8 Fuel rods for fuel. An internal transparent vertical cross-sectional view showing the configuration of an 8x8 fuel water lot, Figure 7 is a cross-sectional view of the 8x8 fuel loaded in the reactor core, and Figure 8 is the entirety of the 8x8 fuel shown in the previous figure. An internal transparent perspective view showing the configuration, Figure 9 is a conventional 9x9
FIG. 10 is an internal perspective view showing the overall configuration of a fuel assembly. FIG. 10 is an internal perspective view showing the configuration of a conventional water channel. FIG. 11 is a diagram showing the inside of a conventional water channel during reactor power operation. Diagram showing calculation results of external coolant pressure distribution, Figure 12 (A). (B) is a cross-sectional view showing the shape of the water channel during manufacture and use, respectively. [Explanation of symbols of main parts] 9OA 90B...9x9 fuel W...Short water channel WR...Short large diameter water rod U...Upper region p...Lower region P... The boundary points are the same in each figure. Codes indicate the same or equivalent parts.

Claims (4)

【特許請求の範囲】[Claims] (1)正方格子配列の複数本の燃料棒からなるバンドル
構成中に前記燃料棒の一部を置換えた一本または複数本
の冷却水流通用水管を備えた燃料集合体において、 前記水管は、その軸方向全長が前記燃料棒の燃料有効長
とほぼ等しくされ、且つ前記軸方向全長の上部約1/3
〜2/3以上の高さ位置を境とする上下の二領域のうち
、下部領域の管板厚が上部領域の管板厚よりも厚くされ
ると共に、軸方向上端が前記燃料有効長上端とほぼ一致
するように配置されていることを特徴とする沸騰水型原
子炉用燃料集合体。
(1) In a fuel assembly comprising one or more water pipes for cooling water distribution replacing a part of the fuel rods in a bundle configuration consisting of a plurality of fuel rods in a square lattice arrangement, the water pipes are The total length in the axial direction is approximately equal to the effective fuel length of the fuel rod, and the upper third of the total length in the axial direction is approximately equal to the effective fuel length of the fuel rod.
Of the two upper and lower regions bordered by a height position of ~2/3 or more, the tube plate thickness of the lower region is thicker than the tube plate thickness of the upper region, and the upper end in the axial direction is approximately the same as the upper end of the effective fuel length. A fuel assembly for a boiling water reactor, characterized in that the fuel assembly is arranged so as to match.
(2)前記水管が、下部領域から上部領域にかけて前記
境部分で管板厚が次第に薄くなるようにテーパ状の断面
形状に形成された領域を含むことを特徴とする請求項1
に記載の沸騰水型原子炉用燃料集合体。
(2) The water tube includes a region formed in a tapered cross-sectional shape so that the tube plate thickness gradually becomes thinner at the boundary portion from the lower region to the upper region.
A fuel assembly for a boiling water reactor as described in .
(3)沸騰水型原子炉用燃料集合体における正方格子配
列の複数本の燃料棒からなるバンドル構成中に前記燃料
棒の一部に代って一本または複数本配置される冷却水流
通用水管において、 前記バンドルを構成すべき燃料棒の燃料有効長にほぼ等
しい相対的に短尺の全長寸法を有し、軸方向全長の上部
約1/3〜2/3以上の高さ位置を境とする上下二領域
のうち、下部領域の管板厚が上部領域の管板厚より厚く
されていることを特徴とする冷却水流通用水管。
(3) In a fuel assembly for a boiling water reactor, one or more water pipes for cooling water distribution are arranged in place of some of the fuel rods in a bundle configuration consisting of a plurality of fuel rods arranged in a square lattice arrangement. , having a relatively short overall length approximately equal to the effective fuel length of the fuel rods constituting the bundle, and bordering on a height position of about 1/3 to 2/3 or more of the upper part of the entire axial length. A cooling water distribution water pipe characterized in that, of the two upper and lower regions, the tube plate thickness in the lower region is thicker than the tube plate thickness in the upper region.
(4)下部領域から上部領域にかけて前記境部分で管板
厚が次第に薄くなるようにテーパ状の断面形状に形成さ
れた領域を含むことを特徴とする請求項3に記載の冷却
水流通用水管。
(4) The water pipe for cooling water distribution according to claim 3, characterized in that it includes a region formed in a tapered cross-sectional shape so that the tube plate thickness becomes gradually thinner at the boundary portion from the lower region to the upper region.
JP1162736A 1989-06-27 1989-06-27 Fuel assembly for boiling water reactor and its water pipe for cooling water flow Pending JPH0328794A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1162736A JPH0328794A (en) 1989-06-27 1989-06-27 Fuel assembly for boiling water reactor and its water pipe for cooling water flow

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1162736A JPH0328794A (en) 1989-06-27 1989-06-27 Fuel assembly for boiling water reactor and its water pipe for cooling water flow

Publications (1)

Publication Number Publication Date
JPH0328794A true JPH0328794A (en) 1991-02-06

Family

ID=15760286

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1162736A Pending JPH0328794A (en) 1989-06-27 1989-06-27 Fuel assembly for boiling water reactor and its water pipe for cooling water flow

Country Status (1)

Country Link
JP (1) JPH0328794A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0820066A1 (en) * 1996-07-19 1998-01-21 General Electric Company Fuel bundles and nuclear reactor using such fuel bundles

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0820066A1 (en) * 1996-07-19 1998-01-21 General Electric Company Fuel bundles and nuclear reactor using such fuel bundles

Similar Documents

Publication Publication Date Title
JP3531011B2 (en) Fuel assemblies and reactors
JPH07101237B2 (en) Fuel assembly and nuclear reactor
US6298108B1 (en) Nuclear fuel rod with upward-shifted pellet stack and a device to realize same
JPH04303799A (en) Fuel assembly
JPH0328794A (en) Fuel assembly for boiling water reactor and its water pipe for cooling water flow
JPS62194494A (en) Fuel aggregate
JPH03179293A (en) Fuel assembly
JP3237922B2 (en) Fuel assemblies and cores for boiling water reactors
JPH10197673A (en) Fuel assembly
JP3347137B2 (en) Fuel assemblies and boiling water reactor cores
JP3009183B2 (en) Reactor core
JP3117207B2 (en) Fuel assembly for boiling water reactor
JPH0816711B2 (en) Fuel assembly
JPS6382392A (en) Nuclear reactor
JP3212744B2 (en) Fuel assembly
Nishimura 3.2 Advances of reactor core and fuel assembly 3.2. 1 High burnup fuel design
JP2002048886A (en) Fuel assembly for boiling water reactor
JP2711342B2 (en) Fuel assembly for boiling water reactor
JP2963712B2 (en) Fuel assembly for boiling water reactor
JPH03267793A (en) Fuel assembly
JPH02259494A (en) Fuel assembly for boiling water reactor
JPH02249995A (en) Fuel assembly
JPS6325593A (en) Boiling water type reactor
JP2001318181A (en) Fuel assembly for boiling water reactor
JPH04113296A (en) Nuclear reactor and fuel assembly