JPH03287869A - Glass fiber base material and glass fiber-reinforced resin laminate using the same - Google Patents

Glass fiber base material and glass fiber-reinforced resin laminate using the same

Info

Publication number
JPH03287869A
JPH03287869A JP2087521A JP8752190A JPH03287869A JP H03287869 A JPH03287869 A JP H03287869A JP 2087521 A JP2087521 A JP 2087521A JP 8752190 A JP8752190 A JP 8752190A JP H03287869 A JPH03287869 A JP H03287869A
Authority
JP
Japan
Prior art keywords
glass fiber
base material
silicone oil
silane coupling
coupling agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2087521A
Other languages
Japanese (ja)
Inventor
Sukeji Murakoshi
村越 資治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Boseki Co Ltd
Original Assignee
Nitto Boseki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Boseki Co Ltd filed Critical Nitto Boseki Co Ltd
Priority to JP2087521A priority Critical patent/JPH03287869A/en
Publication of JPH03287869A publication Critical patent/JPH03287869A/en
Pending legal-status Critical Current

Links

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Laminated Bodies (AREA)
  • Surface Treatment Of Glass Fibres Or Filaments (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)

Abstract

PURPOSE:To provide the title base material excellent in heat resistance and dimensional stability, with delamination, etc., suppressed even if subjected to high-temperature soldering treatment, composed of glass fibers with both silane coupling agent and silicone oil stuck to their surfaces. CONSTITUTION:The objective base material composed of glass fibers with pref. 0.01-0.2wt.% of a silane coupling agent [e.g. vinyltrichlorosilane, vinyltris(2- methoxy)silane] and pref. 0.01-0.3wt.% of a silicone oil (e.g. dimethylpolysiloxane) stuck to their surfaces.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は、特に耐熱性が要求されるガラス繊維強化樹脂
積層板の強化材として好適なガラス繊維基材およびこの
ガラス繊維基材を強化材とするガラス繊維強化樹脂積層
板に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a glass fiber base material suitable as a reinforcing material for glass fiber reinforced resin laminates that require particularly heat resistance, and a method for using this glass fiber base material as a reinforcing material. The present invention relates to a glass fiber reinforced resin laminate.

[従来の技術] プリント配線基板等の製造に用いられるガラス繊維強化
エポキシ樹脂積層板等のガラス繊維強化樹脂積層板は、
一般に、ガラス繊維基材にエポキシ樹脂等の熱硬化性樹
脂を含浸させた後、得られた樹脂含浸ガラス繊維基材(
以下、プリプレグという)を複数枚積層してなる積層物
を所望形状にプレス成形することにより製造される。
[Prior Art] Glass fiber reinforced resin laminates such as glass fiber reinforced epoxy resin laminates used for manufacturing printed wiring boards, etc.
Generally, after impregnating a glass fiber base material with a thermosetting resin such as an epoxy resin, the resulting resin-impregnated glass fiber base material (
It is manufactured by press-molding a laminate formed by laminating a plurality of prepregs (hereinafter referred to as prepreg) into a desired shape.

この際に、ガラス繊維基材と樹脂との間の結合強度を向
上させることを目的として、予めガラス繊維基材をシラ
ンカップリング剤で表面処理することが行われている。
At this time, the surface of the glass fiber base material is previously treated with a silane coupling agent in order to improve the bond strength between the glass fiber base material and the resin.

これは、シランカップリング剤がガラス基材および樹脂
それぞれに対して結合し得る分子構造を有しているから
である。
This is because the silane coupling agent has a molecular structure that allows it to bond to both the glass substrate and the resin.

ところで、近年、エレクトロニクス業界における急速な
技術進歩に伴い、その関連材料に対して種々の要求がな
されており、プリント配線基板の分野においても信頼性
および耐熱性の向上が強く望まれている。例えば、プリ
ント配線基板を製造する過程においては、ガラス繊維強
化樹脂積層板にウェーブソルダー、ソルダーコーター、
リフロソルダー等の240〜260℃でのハンダ処理等
の高温処理が施されるため、このような高温処理によっ
て積層板内部での眉間剥離(デラミネーション)やスル
ホールメツキのクラックが生じ易いことが知られている
By the way, in recent years, with rapid technological progress in the electronics industry, various demands have been made on related materials, and improvements in reliability and heat resistance are strongly desired in the field of printed wiring boards as well. For example, in the process of manufacturing printed wiring boards, wave solder, solder coater, etc.
Since high-temperature treatments such as soldering at 240 to 260°C using reflow solder are performed, it is known that such high-temperature treatments tend to cause delamination inside the laminate and cracks in the through-hole plating. It is being

[発明が解決しようとする課題] しかしながら、シランカップリング剤により表面処理を
施したガラス繊維基材を用いた、従来のガラス繊維強化
樹脂積層板では、上述したような層間剥離やスルホール
メツキのクラックを十分に抑制するまでには至っていな
い。
[Problems to be Solved by the Invention] However, in conventional glass fiber reinforced resin laminates using glass fiber base materials surface-treated with a silane coupling agent, the above-mentioned delamination and through-hole plating cracks occur. has not yet been sufficiently suppressed.

すなわち、シランカップリング剤による表面処理によっ
て、ガラス繊維と樹脂間の結合力が強化されてはいるも
のの、前述したような高温処理時に印加される熱応力に
よって生じるガラス繊維基材の板厚方向の膨脹により、
上述した層間剥離やスルホールメツキのクラックが生じ
てしまう。
In other words, although surface treatment with a silane coupling agent strengthens the bonding force between the glass fiber and the resin, the strength in the thickness direction of the glass fiber base material caused by the thermal stress applied during high-temperature treatment as described above Due to expansion,
The above-mentioned delamination and cracks in through-hole plating will occur.

そこで、上述したような熱による不良を防止するために
、ガラス繊維強化樹脂積層板の耐熱性や線膨脹係数の改
善が強く望まれている。
Therefore, in order to prevent defects caused by heat as described above, it is strongly desired to improve the heat resistance and linear expansion coefficient of glass fiber reinforced resin laminates.

したがって本発明の第1の目的は、耐熱性に優れ、線膨
脹係数を改善したガラス繊維基材を提供することにある
Therefore, a first object of the present invention is to provide a glass fiber base material that has excellent heat resistance and an improved coefficient of linear expansion.

また本発明の第2の目的は、上記ガラス繊維基材を強化
材として、耐熱性に優れ、デラミネーション等が抑制さ
れるガラス繊維強化樹脂積層板を提供することにある。
A second object of the present invention is to provide a glass fiber reinforced resin laminate that uses the glass fiber base material as a reinforcing material and has excellent heat resistance and suppresses delamination and the like.

[課題を解決するための手段] 本発明は、上記目的を遠戚するためになされたものであ
り、本発明のガラス繊維基材は、シランカップリング剤
およびシリコーンオイルがその表面に付着されたガラス
繊維からなることを特徴とするものである。
[Means for Solving the Problems] The present invention has been made in order to achieve the above object, and the glass fiber base material of the present invention has a silane coupling agent and a silicone oil attached to the surface thereof. It is characterized by being made of glass fiber.

また、本発明の′ガラス繊維強化樹脂積層板は、上述の
ガラス繊維基材を強化材とすることを特徴とするもので
ある。
Furthermore, the glass fiber reinforced resin laminate of the present invention is characterized in that the above-mentioned glass fiber base material is used as a reinforcing material.

本発明のガラス繊維基材に用いられるガラス繊維として
は、ガラス繊維強化樹脂積層板の強化材として従来より
使用されているEガラス、Sガラス、Dガラス等のガラ
ス繊維を用いることができる。このガラス繊維は、ガラ
ス長繊維であってもガラス短繊維であってもよい。また
、本発明のガラス繊維基材の形状としては、ガラス繊維
織布、ガラス繊維不織布、紙等のシート状のものである
ことが好ましい。
As the glass fibers used in the glass fiber base material of the present invention, glass fibers such as E glass, S glass, and D glass, which are conventionally used as reinforcing materials for glass fiber reinforced resin laminates, can be used. The glass fibers may be long glass fibers or short glass fibers. Further, the shape of the glass fiber base material of the present invention is preferably a sheet-like material such as a glass fiber woven fabric, a glass fiber nonwoven fabric, or paper.

本発明のガラス繊維基材は、上述したようなガラス繊維
の表面にシランカップリング剤およびシリコーンオイル
を付着させたものであり、例えば■ 上述したようなガ
ラス繊維をシランカップリング剤およびシリコーンオイ
ルで処理した後、常法によって所望の基材形状、例えば
シート状に加工する ■ 上述したようなガラス繊維を常法によって所望の基
材形状、例えばシート状に加工した後、このガラス繊維
基材をシランカップリング剤およびシリコーンオイルで
処理する等によって得られる。
The glass fiber base material of the present invention is made by adhering a silane coupling agent and silicone oil to the surface of the glass fiber as described above. For example, After processing, process the glass fibers into a desired base shape, such as a sheet, by a conventional method. After processing the glass fibers as described above into a desired base shape, such as a sheet, by a conventional method, Obtained by treatment with a silane coupling agent and silicone oil, etc.

本発明に用いられるシランカップリング剤としては、従
来公知のものが適宜使用できる。代表的なものとしては
、例えば、ビニルトリクロロシラン、ビニルトリス(2
−メトキシ)シラン、γ−グリシドキシプロピルトリメ
トキシシラン、γ−メタクリロキシプロピルトリメトキ
シシラン、γ−アミノプロピルトリエトキシシラン、γ
−(2−アミノエチル)アミノプロピルトリメトキシシ
ラン、N−β−(N−ビニルベンジルアミノエチル)−
γ−アミノプロピルトリメトキシシラン・塩酸塩、N−
フェニル−γ−アミノプロピルトリメトキシシラン、γ
−クロロプロピルトリメトキンシラン、γ−メルカプト
プロピルトリメトキシシラン、ビニルトリエトキシシラ
ン、β−(3゜4−エポキシシクロヘキシル)エチルト
リメトキシシラン等を挙げることができる。
As the silane coupling agent used in the present invention, conventionally known ones can be used as appropriate. Typical examples include vinyltrichlorosilane, vinyltris(2
-methoxy)silane, γ-glycidoxypropyltrimethoxysilane, γ-methacryloxypropyltrimethoxysilane, γ-aminopropyltriethoxysilane, γ
-(2-aminoethyl)aminopropyltrimethoxysilane, N-β-(N-vinylbenzylaminoethyl)-
γ-aminopropyltrimethoxysilane hydrochloride, N-
Phenyl-γ-aminopropyltrimethoxysilane, γ
Examples include -chloropropyltrimethoxysilane, γ-mercaptopropyltrimethoxysilane, vinyltriethoxysilane, and β-(3°4-epoxycyclohexyl)ethyltrimethoxysilane.

ガラス繊維の表面に付着させるシランカップリング剤の
量(固形分基準)としては、0.001〜0.5重量%
の範囲が好ましく、さらに好ましくは0.01〜0.2
重量%の範囲である。
The amount of silane coupling agent attached to the surface of glass fiber (based on solid content) is 0.001 to 0.5% by weight.
The range is preferably 0.01 to 0.2, more preferably 0.01 to 0.2.
% by weight.

シランカップリング剤のガラス繊維表面への付着は、1
種または2種以上のシランカップリング剤を含有する水
溶液、またはアルコール類、ケトン類、グリコールエー
テル類、ジメチルホルムアミド等の有機溶媒の溶液、あ
るいは水とこれら有機溶媒との混合溶媒の溶液を、ガラ
ス繊維に付着させた後、乾燥させることにより行うこと
ができる。この溶液のシランカップリング剤の濃度は、
0.01〜5重量%程度であることが好ましい。
The adhesion of the silane coupling agent to the glass fiber surface is 1
An aqueous solution containing one or more types of silane coupling agents, a solution of an organic solvent such as alcohols, ketones, glycol ethers, dimethylformamide, etc., or a solution of a mixed solvent of water and these organic solvents is applied to the glass. This can be done by adhering it to the fibers and then drying it. The concentration of the silane coupling agent in this solution is
It is preferably about 0.01 to 5% by weight.

また、上記シランカップリング剤の溶液をガラス繊維に
付着させる方法としては、浸漬法、スプレー法等の各種
公知の方法を適用することができる。
Moreover, various known methods such as a dipping method and a spray method can be applied as a method for attaching the solution of the silane coupling agent to the glass fibers.

ガラス繊維基材の浸漬法による処理は、例えば、シート
状加工物を室温に近い温度でシランカップリング剤の溶
液に数秒間浸漬した後、マングルにより30重量%ピッ
クアップとなるよう絞液し、続いて100〜180℃で
数秒間乾燥キユアリングすること等により行うことがで
きる。
The treatment of glass fiber substrates by the dipping method is, for example, immersing a sheet-like workpiece in a solution of a silane coupling agent for several seconds at a temperature close to room temperature, squeezing the liquid with a mangle to a pick-up of 30% by weight, and then This can be carried out by dry curing for several seconds at 100 to 180°C.

また、本発明に用いられるシリコーンオイルとしては、
従来公知のものが適宜使用でき、例えば、ジメチルポリ
シロキサン、メチルハイドロジエンポリシロキサン、メ
チルフェニルポリシロキサン等からなるシリコーンオイ
ルが例示され、また各種変性シリコーンオイルを使用す
ることも可能である。変性シリコーンオイルとしては、
アルキル変性型、アミノ変性型、エポキシ変性型、エポ
キシ◆ポリエーテル変性型、カルボキシル変性型、メル
カプト変性型、クロロアルキル変性型、アルキル高級ア
ルコールエステル変性型、アルコール変性型、ポリエー
テル変性型、アルキルアラルキル・ポリエーテル変性型
、フッ素変性型等が例示される。
In addition, the silicone oil used in the present invention includes:
Conventionally known silicone oils can be used as appropriate, and examples include silicone oils made of dimethylpolysiloxane, methylhydrodienepolysiloxane, methylphenylpolysiloxane, etc. It is also possible to use various modified silicone oils. As a modified silicone oil,
Alkyl modified type, amino modified type, epoxy modified type, epoxy polyether modified type, carboxyl modified type, mercapto modified type, chloroalkyl modified type, alkyl higher alcohol ester modified type, alcohol modified type, polyether modified type, alkyl aralkyl - Examples include polyether modified type and fluorine modified type.

シリコーンオイルのガラス繊維表面への付着は、前述し
たシランカップリング剤によるガラス繊維の処理と同様
に、浸漬法、スプレー法等により行うことができる。ま
た、シリコーンオイルのガラス繊維への付着量は、0.
001〜0.5重量%の範囲が好ましく、さらに好まし
くは0.01〜0.3重量%の範囲である。
The silicone oil can be attached to the surface of the glass fiber by a dipping method, a spray method, or the like, similar to the treatment of the glass fiber with the silane coupling agent described above. Moreover, the amount of silicone oil attached to the glass fiber is 0.
The range is preferably from 0.001 to 0.5% by weight, and more preferably from 0.01 to 0.3% by weight.

上述したシランカップリング剤およびシリコーンオイル
によるガラス繊維の処理は、シランカップリング剤によ
る処理を行った後にシリコーンオイルによる処理を行う
か、あるいはシランカップリング剤とシリコーンオイル
とを含む溶液を調製し、この溶液をガラス繊維に付着さ
せた後、乾燥させることにより行ってもよい。
The treatment of glass fibers with the above-mentioned silane coupling agent and silicone oil can be carried out by performing treatment with silicone oil after treatment with the silane coupling agent, or by preparing a solution containing the silane coupling agent and silicone oil, This solution may be applied to glass fibers and then dried.

次に、本発明のガラス繊維強化樹脂積層板について説明
すると、本発明のガラス繊維強化樹脂積層板は、前述し
た本発明のガラス繊維基材を強化材とするものである。
Next, the glass fiber reinforced resin laminate of the present invention will be explained. The glass fiber reinforced resin laminate of the present invention uses the glass fiber base material of the present invention described above as a reinforcing material.

本発明のガラス繊維強化樹脂積層板は、例えば以下に示
すような方法により得られる。
The glass fiber reinforced resin laminate of the present invention can be obtained, for example, by the method shown below.

まず、浸漬法、スプレー法等の常法により、エポキシ樹
脂、ポリエステル樹脂、ポリイミド樹脂等の樹脂を、前
述した本発明のガラス繊維基材に含浸させた後、半乾燥
固化させてプリプレグを得る。この後、このプリプレグ
を所望枚数積層し、プレス法、コンプレッションモール
ディング法等の常法により所望形状に成形することによ
り、本発明のガラス繊維強化樹脂積層板が得られる。
First, the aforementioned glass fiber base material of the present invention is impregnated with a resin such as an epoxy resin, a polyester resin, or a polyimide resin by a conventional method such as a dipping method or a spray method, and then semi-dry and solidified to obtain a prepreg. Thereafter, a desired number of sheets of this prepreg are laminated and molded into a desired shape by a conventional method such as a pressing method or a compression molding method, thereby obtaining the glass fiber reinforced resin laminate of the present invention.

プリント配線基板等の製造に多用されるガラス繊維強化
エポキシ樹脂積層板は、例えば、本発明のガラス繊維基
材にエポキシ樹脂ワニスを含浸させた後、上述した方法
により得ることができる。
Glass fiber-reinforced epoxy resin laminates, which are often used in the production of printed wiring boards and the like, can be obtained, for example, by the method described above after impregnating the glass fiber base material of the present invention with an epoxy resin varnish.

この際に用いられるエポキシ樹脂としては、例えばビス
フェノールAのジグリシジルエーテル、ビスフェノール
Fのジグリシジルエーテル、臭素化エポキシ樹脂、ノボ
ラック樹脂のポリグリシジルエーテル等が挙げられる。
Examples of the epoxy resin used in this case include diglycidyl ether of bisphenol A, diglycidyl ether of bisphenol F, brominated epoxy resin, and polyglycidyl ether of novolac resin.

これらエポキシ樹脂には、通常、硬化剤(促進剤)が併
用され、これらの硬化剤(促進剤)としては、下記に示
すアミン系、酸無水物系、エポキシ系等の硬化剤(促進
剤)を挙げることができる。
These epoxy resins are usually combined with a curing agent (accelerator), and these curing agents (accelerators) include the following amine-based, acid anhydride-based, and epoxy-based curing agents (accelerators). can be mentioned.

アミン系の硬化剤としては、ジエチレントリアミン、ト
リエチレンテトラミン、ジエチルアミノプロピルアミン
、テトラエチレンペンタミン、脂肪族ポリエーテルトリ
アミン、ジシアンジアミド、4.4′−メチレンジアニ
リン(MDA)、m−フ二二レンジアミン(MPDA)
 、44’ −ジアミノジフェニルスルフォン、2,6
−ジアミツビリジン(DAP) 、33.3%MPDA
−33゜3%MDA−33.3%イソプロピルMPDA
Examples of amine-based curing agents include diethylenetriamine, triethylenetetramine, diethylaminopropylamine, tetraethylenepentamine, aliphatic polyethertriamine, dicyandiamide, 4,4'-methylene dianiline (MDA), and m-phinylene diamine. (MPDA)
, 44'-diaminodiphenylsulfone, 2,6
- Diamitubiridine (DAP), 33.3% MPDA
-33°3% MDA -33.3% isopropyl MPDA
.

40%MDA−60%ジエチルMDA、40%MPDA
−60%MDA、アミノポリアミド、2−エチル−4−
メチルイミダゾール、2,4.6−トリス(ジメチルア
ミノエチル)フェノール等が挙げられる。また酸無水物
系の硬化剤としては、フタル酸無水物、ヘキサヒドロフ
タル酸無水物、ナディクメチルアンハイドライド、ドデ
シルコハク酸無水物、クロレンディクアンハイドライド
、トリメリド酸無水物、マレイン酸無水物、コハク酸無
水物、メチルテトラヒドロフタル酸無水物、3.3’ 
、4.4’ −ベンゾフェノン−テトラカルボン酸二無
水物等が挙げられる。さらにエポキシ系の硬化剤として
は、ブチルグリシジルエーテル、ヘプチルグリシジルエ
ーテル、オクチルグリシジルエーテル、アリルグリシジ
ルエーテル、p−1−ブチルフェニルグリシジルエーテ
ル、フェニルグリシジルエーテル、クレジルグリシジル
エーテル等が挙げられる。
40% MDA-60% diethyl MDA, 40% MPDA
-60% MDA, aminopolyamide, 2-ethyl-4-
Examples include methylimidazole, 2,4.6-tris(dimethylaminoethyl)phenol, and the like. Examples of acid anhydride curing agents include phthalic anhydride, hexahydrophthalic anhydride, nadic methyl anhydride, dodecyl succinic anhydride, chlorendic anhydride, trimellidic anhydride, maleic anhydride, Succinic anhydride, methyltetrahydrophthalic anhydride, 3.3'
, 4,4'-benzophenone-tetracarboxylic dianhydride, and the like. Furthermore, examples of the epoxy curing agent include butyl glycidyl ether, heptyl glycidyl ether, octyl glycidyl ether, allyl glycidyl ether, p-1-butylphenyl glycidyl ether, phenyl glycidyl ether, cresyl glycidyl ether, and the like.

なお、本発明のガラス繊維強化樹脂積層板は、主表面の
少なくとも一方に、銅、金、銀等からなる導電性金属層
を有していてもよい。このような導電性金属層は、プレ
ス法等の常法により形成することができる。また、本発
明のガラス繊維強化樹脂積層板は、内層回路を備えたも
のであってもよい。
Note that the glass fiber reinforced resin laminate of the present invention may have a conductive metal layer made of copper, gold, silver, etc. on at least one of the main surfaces. Such a conductive metal layer can be formed by a conventional method such as a pressing method. Further, the glass fiber reinforced resin laminate of the present invention may be provided with an inner layer circuit.

これら導電性金属層を有するガラス繊維強化樹脂積層板
は、プリント配線基板等の材料として好適である。
Glass fiber reinforced resin laminates having these conductive metal layers are suitable as materials for printed wiring boards and the like.

[作 用] 本発明のガラス繊維基材は、シランカップリング剤とシ
リコーンオイルが表面に付着させたガラス繊維からなる
ため、ガラス繊維の周囲にシリコーンオイルが分散した
状態が得られ、このシリコーンオイルは、低応力剤とし
て機能する。
[Function] Since the glass fiber base material of the present invention consists of glass fibers with a silane coupling agent and silicone oil attached to the surface, a state in which silicone oil is dispersed around the glass fibers is obtained, and this silicone oil acts as a low stress agent.

したがって、本発明のガラス繊維基材を強化材とするガ
ラス繊維強化樹脂積層板においては、ハンダ処理等の高
温処理時に印加される熱ショックが上記シリコーンオイ
ルによって緩和されるため、層間剥離やスルーホールメ
ツキのクラック等が抑制される。
Therefore, in the glass fiber-reinforced resin laminate of the present invention using the glass fiber base material as a reinforcing material, the thermal shock applied during high-temperature processing such as soldering is alleviated by the silicone oil, so there is no possibility of delamination or through-holes. Cracks in plating are suppressed.

[実施例] 以下、本発明の実施例について説明する。なお以下の文
章中の%および部は、特記しない限り重量%および重量
部をそれぞれ意味する。
[Examples] Examples of the present invention will be described below. Note that % and parts in the following text mean % by weight and parts by weight, respectively, unless otherwise specified.

実施例1 (1)ガラス繊維基材の製造 シランカップリング剤としてN−β−(N−ビニルベン
ジルアミノエチル)−γ−アミノプロピルトリメトキシ
シラン・塩酸塩(商品名:5Z−6032、東し・ダウ
コーニング・シリコーン株制)を用い、このシランカッ
プリング剤を0.5%(固形分)、酢酸を3.0%含有
する水溶液を得た後、この水溶液に若干のメタノールを
加えシランカップリング剤を含有する処理液を調製した
Example 1 (1) Production of glass fiber base material N-β-(N-vinylbenzylaminoethyl)-γ-aminopropyltrimethoxysilane hydrochloride (trade name: 5Z-6032, Toshishi) was used as a silane coupling agent.・After obtaining an aqueous solution containing 0.5% (solid content) of this silane coupling agent and 3.0% acetic acid using Dow Corning Silicone Co., Ltd., a small amount of methanol was added to this aqueous solution to form a silane cup. A processing solution containing a ring agent was prepared.

次に、ガラス繊維基材用材料として、熱処理脱脂したガ
ラス繊維織物(商品名:WEA−18W、日東紡績■製
)を上記処理液に浸漬し、マングルを用いてピックアッ
プ30%となるように絞液した後、110℃で加熱乾燥
して、シランカップリング剤を表面に付着させたガラス
繊維からなるガラスクロスA1を得た。
Next, as a material for the glass fiber base material, a heat-treated and degreased glass fiber fabric (product name: WEA-18W, manufactured by Nitto Boseki ■) was immersed in the above treatment solution, and squeezed using a mangle so that the pick-up ratio was 30%. After liquidizing, the mixture was heated and dried at 110° C. to obtain glass cloth A1 made of glass fibers with a silane coupling agent adhered to the surface.

一方、シリコーンオイルとしてエポキシ・ポリエーテル
変性シリコーンオイル(商品名:5F8421、東し・
ダウコーニング・シリコーン株制)を用い、このシリコ
ーンオイルを1%含有する水溶液を得た後、この水溶液
に若干のメタノールを加えて、シリコーンオイルを含有
する処理液を調製した。
On the other hand, as a silicone oil, epoxy/polyether modified silicone oil (product name: 5F8421, Toshi
After obtaining an aqueous solution containing 1% of this silicone oil using Dow Corning Silicone Co., Ltd., a small amount of methanol was added to this aqueous solution to prepare a processing liquid containing silicone oil.

そして、上記ガラスクロスA1を上記シリコーンオイル
を含有する処理液に浸漬した後、マンクルを用いてピッ
クアップ30%となるように絞l&し、110℃で加熱
乾燥して、シランカップリング剤およびシリコーンオイ
ルを表面に付着させたガラス繊維からなるガラス繊維基
材A2を得た。
Then, after immersing the glass cloth A1 in the treatment solution containing the silicone oil, it was squeezed using a mancle so that the pick-up ratio was 30%, and then heated and dried at 110°C to remove the silane coupling agent and the silicone oil. A glass fiber base material A2 was obtained, which was made of glass fibers and had the surface thereof adhered to the glass fibers.

このガラス繊維基材A2におけるシランカップリング剤
の乾燥後の付着量(固形分基準)は0.1%であった。
The amount of the silane coupling agent deposited on this glass fiber base material A2 after drying (based on solid content) was 0.1%.

また、シリコーンオイルの乾燥後の付着量は、0.1%
であった。
In addition, the amount of silicone oil adhered after drying is 0.1%.
Met.

(2)ガラス繊維強化樹脂積層板の製造上記ガラス繊維
基材A2を強化材とし、このガラス繊維基材A2に下記
組成のエポキシ樹脂ワニス(G−10処方)を浸漬し、
予備乾燥してプリプレグとした。
(2) Production of glass fiber reinforced resin laminate The above glass fiber base material A2 is used as a reinforcing material, and this glass fiber base material A2 is immersed in an epoxy resin varnish (G-10 formulation) having the following composition,
It was pre-dried to form a prepreg.

[エポキシ樹脂ワニスの組rfj、l ・エピコート1001(商品名、油化シェルエポキシ株
制)   ・・・・・・・・・  80部・エピコート
154(商品名、油化シェルエポキシ株制)    ・
・・・・・・・・  20部◆ジシアンジアミド  ・
・・・・・・・・   4部・ベンジルジメチルアミン
 ・・・ 0.2部・ジメチルホルムアミド ・・・・
・・  30部次いで、このプリプレグを8枚積層し、
得られた積層物の上部表面および下部表面に銅箔を重ね
合せ、常法により加熱成形して、樹脂量が40%のガラ
ス繊維強化エポキシ樹脂積層板A3を得た。
[Epoxy resin varnish set rfj, l ・Epicoat 1001 (product name, Yuka Shell Epoxy stock system) 80 parts ・Epicoat 154 (product name, Yuka Shell Epoxy stock system) ・
・・・・・・・・・ 20 parts ◆Dicyandiamide ・
・・・・・・・・・ 4 parts・Benzyldimethylamine ・・・ 0.2 parts・Dimethylformamide ・・・・
... 30 copies Next, 8 sheets of this prepreg were laminated,
Copper foil was laminated on the upper and lower surfaces of the obtained laminate and heat-molded by a conventional method to obtain a glass fiber reinforced epoxy resin laminate A3 having a resin content of 40%.

実施例2 (1)ガラス繊維基材の製造 シランカップリング剤としてγ−グリシドキシプロビル
トリメトキシシラン(商品名:A−187、日本ユニカ
ー株制)を用い、このシランカップリング剤を0.5%
(固形分)、酢酸を0.5%含有する水溶液を調製した
。そして、このシランカップリング剤を含有する処理液
を用いる以外は、上記実施例1と同様にして、シランカ
ップリング剤を表面に付着させたガラス繊維からなるガ
ラスクロスB1を得た。
Example 2 (1) Production of glass fiber base material γ-glycidoxypropyltrimethoxysilane (trade name: A-187, Nippon Unicar Co., Ltd.) was used as a silane coupling agent. .5%
(solid content), an aqueous solution containing 0.5% acetic acid was prepared. Then, a glass cloth B1 made of glass fibers having a silane coupling agent adhered to the surface was obtained in the same manner as in Example 1 except for using the treatment liquid containing this silane coupling agent.

また、シリコーンオイルとしてエポキシ変性シリコーン
オイル(商品名:KF103、信越化学工業■製)を用
い、このシリコーンオイルを1%含有する水溶液を得た
後、この水溶液に若干のメタノールを加えて、シリコー
ンオイルを含有する処理液を調製した。
In addition, using epoxy-modified silicone oil (product name: KF103, manufactured by Shin-Etsu Chemical Co., Ltd.) as the silicone oil, an aqueous solution containing 1% of this silicone oil was obtained, and then a small amount of methanol was added to this aqueous solution to obtain a silicone oil. A treatment solution containing the following was prepared.

そして、上記ガラスクロスBYを上記シリコーンオイル
を含有する処理液に浸漬した後、マングルを用いてピッ
クアップ30%となるように絞液し、110℃で加熱乾
燥して、シランカップリング剤およびシリコーンオイル
を表面に付着させたガラス繊維からなるガラス繊維基材
B2を得た。
After immersing the glass cloth BY in the treatment liquid containing the silicone oil, the liquid is squeezed using a mangle to a pick-up ratio of 30%, and dried by heating at 110°C to remove the silane coupling agent and the silicone oil. A glass fiber base material B2 was obtained, which was made of glass fibers and had the surface thereof adhered to the glass fibers.

このガラス繊維基材B2におけるシランカップリング剤
の乾燥後の付着量(固形分基準)は0.1%であった。
The amount of the silane coupling agent deposited on this glass fiber base material B2 after drying (based on solid content) was 0.1%.

また、シリコーンオイルの乾燥後の付着量は、0.1%
であった。
In addition, the amount of silicone oil adhered after drying is 0.1%.
Met.

(2)ガラス繊維強化樹脂積層板の製造上記ガラス繊維
基材B2を強化材とした以外は実施例1と同様にして、
両生表面に銅層を有するガラス繊維強化エポキシ樹脂積
層板Bq  (樹脂量は40%)を得た。
(2) Production of glass fiber reinforced resin laminate In the same manner as in Example 1 except that the glass fiber base material B2 was used as a reinforcing material,
A glass fiber-reinforced epoxy resin laminate Bq (resin content: 40%) having a copper layer on both surfaces was obtained.

実施例3 (1)ガラス繊維基材の製造 シリコーンオイルとしてジメチルポリシロキサン(商品
名: BY16−873、東し・ダウコーニング・シリ
コーン株制)を用い、このシリコーンオイルをトルエン
に溶解して、シリコーンオイルを1%含有する処理液を
調製した。
Example 3 (1) Production of glass fiber base material Dimethylpolysiloxane (trade name: BY16-873, Toshi Dow Corning Silicone Corporation) was used as silicone oil, and this silicone oil was dissolved in toluene to form silicone. A processing solution containing 1% oil was prepared.

そして、上記シリコーンオイルを含有する処理液に、上
記実施例2と同様に作製したガラスクロスC1を浸漬し
た後、マングルを用いてピックアップ30%となるよう
に絞液し、110℃で加熱乾燥して、シランカップリン
グ剤およびシリコーンオイルを表面に付着させたガラス
繊維からなるガラス繊維基材C2を得た。
After immersing the glass cloth C1 produced in the same manner as in Example 2 in the treatment solution containing silicone oil, the liquid was squeezed using a mangle to a pick-up ratio of 30%, and then heated and dried at 110°C. As a result, a glass fiber base material C2 made of glass fibers having a silane coupling agent and silicone oil adhered to the surface was obtained.

このガラス繊維基材C2におけるシランカップリング剤
の乾燥後の付着量(固形分基準)は0.1%であった。
The amount of the silane coupling agent deposited on this glass fiber base material C2 after drying (based on solid content) was 0.1%.

また、シリコーンオイルの乾燥後の付着量は、0.1%
であった。
In addition, the amount of silicone oil adhered after drying is 0.1%.
Met.

(2)ガラス繊維強化樹脂積層板の製造上記ガラス繊維
基材C2を強化材とした以外は実施例1と同様にして、
両生表面に銅層を有するガラス繊維強化エポキシ樹脂積
層板C3(樹脂量は40%)を得た。
(2) Production of glass fiber reinforced resin laminate In the same manner as in Example 1 except that the glass fiber base material C2 was used as a reinforcing material,
A glass fiber-reinforced epoxy resin laminate C3 (resin content: 40%) having a copper layer on both surfaces was obtained.

比較例1 実施例1で作製したガラスクロスA1をシリコーンオイ
ルで処理することなくそのまま強化材とした以外は実施
例1と同様にして、両生表面に銅層を有するガラス繊維
強化エポキシ樹脂積層板D3.(樹脂量は40%)を得
た。
Comparative Example 1 A glass fiber-reinforced epoxy resin laminate D3 having a copper layer on the amphoteric surface was produced in the same manner as in Example 1 except that the glass cloth A1 produced in Example 1 was used as a reinforcing material without being treated with silicone oil. .. (The amount of resin was 40%) was obtained.

比較例2 実施例2で作製したガラスクロスB1をシリコーンオイ
ルで処理することなくそのまま強化材とした以外は実施
例1と同様にして、両生表面に銅層を有するガラス繊維
強化エポキシ樹脂積層板E3  (樹脂量は40%)を
得た。
Comparative Example 2 A glass fiber-reinforced epoxy resin laminate E3 having a copper layer on the amphoteric surface was produced in the same manner as in Example 1, except that the glass cloth B1 produced in Example 2 was used as a reinforcing material without being treated with silicone oil. (The amount of resin was 40%) was obtained.

次に、上記実施例1〜3および比較例1.2で得られた
ガラス繊維強化エポキシ樹脂積層板について、その物性
を以下の方法により評価した。
Next, the physical properties of the glass fiber reinforced epoxy resin laminates obtained in Examples 1 to 3 and Comparative Example 1.2 were evaluated by the following method.

・ハンダ耐熱性試験 ガラス繊維強化エポキシ樹脂積層板にエツチング処理を
施して、それぞれのガラス繊維強化エポキシ樹脂積層板
の両生表面にある銅層を取り除き、133℃のプレッシ
ャークツカーで処理した後、260℃のハンダ浴に20
秒間浸漬し、浸漬後の各ガラス繊維強化エポキシ樹脂積
層板にふくれが発生しているか否かを目視観察により判
定した。
・Solder heat resistance test The glass fiber-reinforced epoxy resin laminates were etched to remove the copper layer on the ambidextrous surface of each glass fiber-reinforced epoxy resin laminate, and after being treated with a pressure cooker at 133℃, 20°C solder bath
It was immersed for seconds, and it was determined by visual observation whether or not blistering had occurred in each glass fiber reinforced epoxy resin laminate after immersion.

・線膨脹係数の測定 ガラス繊維強化エポキシ樹脂積層板の板厚方向の線膨脹
係数を、熱機械分析法(TMA)法により測定した。
-Measurement of linear expansion coefficient The linear expansion coefficient of the glass fiber reinforced epoxy resin laminate in the thickness direction was measured by thermomechanical analysis (TMA).

これらの結果を表−1に示す。These results are shown in Table-1.

(以下余白) 表−1 *:◎・・・・・・ふくれの発生が認められなかったこ
とを示す。
(Margin below) Table 1 *: ◎... Indicates that no blistering was observed.

○・・・・・・かすかにふくれが発生したことを示す。○: Indicates that slight blistering occurred.

△・・・・・・ふくれが発生したことを示す。△...Indicates that blistering has occurred.

表−1から明らかなように、実施例1、実施例2および
実施例3で得られた各ガラス繊維強化エポキシ樹脂積層
板においては、デラミネーショング等に起因するふくれ
の発生がほとんど認められず、これらのガラス繊維強化
エポキシ樹脂積層板は、シリコーンオイルによる処理を
施さなかったガラス繊維からなるガラス繊維基材を強化
材とする比較例1および比較例2のガラス繊維強化エポ
キシ樹脂積層板よりも耐熱性に優れていることがわかる
。また、線膨脹係数も小さいことから、ハンダ処理等の
高温処理に対して安定性に優れることがわかる。
As is clear from Table 1, in each of the glass fiber reinforced epoxy resin laminates obtained in Example 1, Example 2, and Example 3, almost no blistering caused by delamination etc. was observed. , these glass fiber-reinforced epoxy resin laminates are superior to the glass fiber-reinforced epoxy resin laminates of Comparative Examples 1 and 2, which use glass fiber base materials made of glass fibers that have not been treated with silicone oil as reinforcement materials. It can be seen that it has excellent heat resistance. Furthermore, since the coefficient of linear expansion is small, it can be seen that it has excellent stability against high-temperature processing such as soldering.

[発明の効果] 以上説明したように、本発明のガラス繊維基材は、耐熱
性および寸法安定性に優れることから、本発明のガラス
繊維基材を用いることにより、高温のハンダ処理を施し
た場合でもデラミネーション等の不良やスルホールメツ
キのクラック等が抑制された、本発明のガラス繊維強化
樹脂積層板を得ることができる。
[Effects of the Invention] As explained above, the glass fiber base material of the present invention has excellent heat resistance and dimensional stability. Even in such cases, it is possible to obtain the glass fiber reinforced resin laminate of the present invention in which defects such as delamination and cracks in through-hole plating are suppressed.

したがって、本発明のガラス繊維基材を用いることによ
り、高品質のガラス繊維強化樹脂積層板を高い生産性の
下に製造することが可能となる。
Therefore, by using the glass fiber base material of the present invention, it becomes possible to manufacture a high quality glass fiber reinforced resin laminate with high productivity.

Claims (2)

【特許請求の範囲】[Claims] (1)シランカップリング剤およびシリコーンオイルが
その表面に付着されたガラス繊維からなることを特徴と
するガラス繊維基材。
(1) A glass fiber base material comprising glass fibers having a silane coupling agent and silicone oil attached to the surface thereof.
(2)請求項(1)記載のガラス繊維基材を強化材とす
ることを特徴とするガラス繊維強化樹脂積層板。
(2) A glass fiber reinforced resin laminate, characterized in that the glass fiber base material according to claim (1) is used as a reinforcing material.
JP2087521A 1990-04-03 1990-04-03 Glass fiber base material and glass fiber-reinforced resin laminate using the same Pending JPH03287869A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2087521A JPH03287869A (en) 1990-04-03 1990-04-03 Glass fiber base material and glass fiber-reinforced resin laminate using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2087521A JPH03287869A (en) 1990-04-03 1990-04-03 Glass fiber base material and glass fiber-reinforced resin laminate using the same

Publications (1)

Publication Number Publication Date
JPH03287869A true JPH03287869A (en) 1991-12-18

Family

ID=13917300

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2087521A Pending JPH03287869A (en) 1990-04-03 1990-04-03 Glass fiber base material and glass fiber-reinforced resin laminate using the same

Country Status (1)

Country Link
JP (1) JPH03287869A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003083206A1 (en) * 2002-03-29 2003-10-09 Du Pont-Toray Company, Ltd. Composite comprising heat-resistant fiber and siloxane polymer
US7166361B2 (en) 2000-03-31 2007-01-23 Hitachi Chemical Co., Ltd. Thermosetting resin composition, resin film, metallic foil provided with an insulation material, insulation film provided with a metallic foil on each side, metal-clad laminate, multi-layered metal-clad laminate and multi-layered printed wiring board
JP2012240312A (en) * 2011-05-19 2012-12-10 Hitachi Chemical Co Ltd Prepreg, laminated board using the same and printed wiring board

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7166361B2 (en) 2000-03-31 2007-01-23 Hitachi Chemical Co., Ltd. Thermosetting resin composition, resin film, metallic foil provided with an insulation material, insulation film provided with a metallic foil on each side, metal-clad laminate, multi-layered metal-clad laminate and multi-layered printed wiring board
US7736749B2 (en) 2000-03-31 2010-06-15 Hitachi Chemichal Co., Ltd. Thermosetting resin composition, resin film, metallic foil provided with an insulation material, insulation film provided with a metallic foil on each side, metal-clad laminate, multi-layered metal-clad laminate, and multi-layered printed wiring board
WO2003083206A1 (en) * 2002-03-29 2003-10-09 Du Pont-Toray Company, Ltd. Composite comprising heat-resistant fiber and siloxane polymer
US7332196B2 (en) 2002-03-29 2008-02-19 Kazari-Ichi Co., Ltd. Composite comprising heat-resistant fiber and siloxane polymer
JP2012240312A (en) * 2011-05-19 2012-12-10 Hitachi Chemical Co Ltd Prepreg, laminated board using the same and printed wiring board

Similar Documents

Publication Publication Date Title
TWI376396B (en) Method of manufacturing prepreg with carrier,prepreg with carrier,method of manufacturing thin double-faced board,thin double-faced board,and method of manufacturing multilayer printed wiring board
US4749614A (en) Process for coating fibers, use thereof, and product
JPH03287628A (en) Glass fiber-reinforced resin laminate
JPH03287869A (en) Glass fiber base material and glass fiber-reinforced resin laminate using the same
JP3395158B2 (en) Method for manufacturing flexible metal foil-clad laminate
JPH03249274A (en) Glass fiber substrate and glass-fiber reinforced resin laminated board using the same glass fiber substrate as reinforcing material
JPH0352934A (en) Glass fiber base material for laminated board of glass fiber-reinforced polyimide resin
JP2844840B2 (en) Method for producing glass fiber substrate, glass fiber substrate and glass fiber reinforced resin laminate
JPH11107111A (en) Glass woven fabric base material for printed wiring board
JP2002187937A (en) Epoxy resin composition, prepreg, and metal-clad laminate
JPH03252336A (en) Base material of glass fiber and laminated plate of glass fiber-reinforced resin using the same as reinforcing material
JP2800420B2 (en) Glass fiber substrate and glass fiber reinforced resin laminate using the same
JP3291100B2 (en) Glass fiber fabric for resin reinforcement
JPS62115038A (en) Production of reinforced epoxy resin
JPH05147979A (en) Glass fiber base material and glass fiber reinforced resin laminated sheet using the same
JP3570806B2 (en) Glass fiber woven fabric and method for producing the same
JPH04370275A (en) Production of glass cloth for resin-reinforcement
JPH0229328A (en) Flexible copper-clad sheet
JPH10121363A (en) Production of prepreg for printed circuit board
JPH08150683A (en) Semi-cured metallic foil-clad laminated plate, and manufacture thereof
JPH0987941A (en) Woven glass fabric substrate and printed circuit board produced by using the substrate
JPH06173166A (en) Woven glass cloth substrate and laminated board produced by using the material
JP3906547B2 (en) Copper-clad laminate, multilayer laminate
JPH03133634A (en) Heat resistant laminated body and production therefor
JPH03295833A (en) Production of glass fiber base material for print circuit board