JPH03287348A - Profile control method - Google Patents

Profile control method

Info

Publication number
JPH03287348A
JPH03287348A JP2087869A JP8786990A JPH03287348A JP H03287348 A JPH03287348 A JP H03287348A JP 2087869 A JP2087869 A JP 2087869A JP 8786990 A JP8786990 A JP 8786990A JP H03287348 A JPH03287348 A JP H03287348A
Authority
JP
Japan
Prior art keywords
speed
axis
axes
control method
tracing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2087869A
Other languages
Japanese (ja)
Inventor
Hitoshi Aramaki
荒巻 仁
Tetsuji Okamoto
哲治 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fanuc Corp
Original Assignee
Fanuc Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fanuc Corp filed Critical Fanuc Corp
Priority to JP2087869A priority Critical patent/JPH03287348A/en
Priority to EP19910906571 priority patent/EP0480051A4/en
Priority to PCT/JP1991/000432 priority patent/WO1991015335A1/en
Priority to US07/773,942 priority patent/US5309364A/en
Publication of JPH03287348A publication Critical patent/JPH03287348A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q35/00Control systems or devices for copying directly from a pattern or a master model; Devices for use in copying manually
    • B23Q35/04Control systems or devices for copying directly from a pattern or a master model; Devices for use in copying manually using a feeler or the like travelling along the outline of the pattern, model or drawing; Feelers, patterns, or models therefor
    • B23Q35/08Means for transforming movement of the feeler or the like into feed movement of tool or work
    • B23Q35/12Means for transforming movement of the feeler or the like into feed movement of tool or work involving electrical means
    • B23Q35/121Means for transforming movement of the feeler or the like into feed movement of tool or work involving electrical means using mechanical sensing
    • B23Q35/123Means for transforming movement of the feeler or the like into feed movement of tool or work involving electrical means using mechanical sensing the feeler varying the impedance in a circuit
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/50Machine tool, machine tool null till machine tool work handling
    • G05B2219/50167Adapting to copying

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Numerical Control (AREA)
  • Machine Tool Copy Controls (AREA)

Abstract

PURPOSE:To control two axes by a numerical control (NC) instruction and to carry out a profile control by three axes, by controlling the NC instruction speed so as to unify the NC instruction speed of the two axes and the composed speed of the profile control of the three axes. CONSTITUTION:By the contact of a stylus 21 to a model, displacement amounts epsilonx, epsilony, and epsilonz in the direction of X-axis, Y-axis, and Z-axis are detected and input to a converting circuit 11 and a composition circuit 13, the displacement amounts Ec and Es of two axes of the instructed profiling surfaces are selected from these displacement amounts, to find the speed components V1 and V2 of the two axes, and, speed signals Vxa, Vya, and Vza are produced and the speed instruction of the Z-axis is delivered to a servomotor 18z so as to drive a Z-axis servomotor 22z. On the other hand, the profiling speeds Vxa and Vya of the X-axis and Y-axis are used to control the NC instruction speed, and the profiling speed of the X-axis by the profile control and the speed of the X-axis by the NC instruction are made coincident.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は金型加工等のならい制御方法に関し、特に一部
の軸をNC指令するならい制御方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a profiling control method for mold machining, etc., and particularly to a profiling control method in which some axes are given NC commands.

〔従来の技術〕[Conventional technology]

2軸をNC指令で移動させ、残りの1軸でならい制御を
行うならい制御方法が使用されでいる。
A tracing control method has been used in which two axes are moved by NC commands and the remaining one axis is subjected to tracing control.

例えば、X、Y軸をNC指令し、Z軸をならい制御する
。すなわち、X、Y軸をNC指令で制御し、Z軸を以下
の式に基づいて制御する。
For example, the X and Y axes are given NC commands, and the Z axis is followed and controlled. That is, the X and Y axes are controlled by NC commands, and the Z axis is controlled based on the following equation.

Vz=  (ε−ε、)xG ここで、VzはZ軸のならい速度、εはX軸、Y軸及び
Z軸の合成変位量、ε。は基準変位量である。
Vz= (ε-ε,)xG Here, Vz is the Z-axis tracing speed, ε is the combined displacement of the X-axis, Y-axis, and Z-axis, and ε. is the reference displacement amount.

このようなならい制御方法では、X1Y平面上で任意の
箇所、通路をならうことができ、複雑な形状等を部分的
にならう場合に便利である。
With such a tracing control method, it is possible to trace any passage at any location on the X1Y plane, and it is convenient when partially tracing a complex shape or the like.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、1軸のみをならい、3軸について割り出し、分
配等の制御をおこなっていないので、精度も低く、なら
い速度も早くすることができなかった。
However, since only one axis is traced and the three axes are not controlled for indexing, distribution, etc., the accuracy is low and the tracing speed cannot be increased.

特に、割り出し、分配を行わないので、トレーサヘッド
が進行方向に対して上りの斜面をならうときは、モデル
面に対して、くい込みがってになる。逆に、下りの斜面
をならうときは離れかってとなる。この結果、往復なら
いを行うと、上りと下りの切り換え箇所で段差が生じる
という問題もあった0 本発明はこのような点に鑑みてなされたものであり、N
C指令によって2軸を制御し、かつ、3軸によるならい
制御を行うならい制御方法を提供することを目的とする
In particular, since no indexing or distribution is performed, when the tracer head follows an upward slope in the direction of travel, it will wedge into the model surface. On the other hand, when following a downhill slope, you should move further away. As a result, when reciprocating tracing is performed, there is a problem that a difference in level occurs at the switching point between up and down. The present invention was made in view of these points, and
It is an object of the present invention to provide a tracing control method that controls two axes using a C command and performs tracing control using three axes.

〔課題を解決するための手段〕[Means to solve the problem]

本発明では上記課題を解決するために、トレーサヘッド
でモデルをならいワークを加工するならい制御方法にお
いて、2軸をNC指令速度及びNC指令通路で制御し、
前記2軸を含む3軸をならい制御し、前記NC指令速度
と、前記2軸のならい制御の合成速度が一致するように
前記NC指令速度を制御することを特徴とするならい制
御方法が、提供される。
In order to solve the above problems, the present invention uses a tracing control method in which a workpiece is machined by tracing a model using a tracer head, in which two axes are controlled by an NC command speed and an NC command path.
A tracing control method is provided, characterized in that three axes including the two axes are subjected to tracing control, and the NC commanded speed is controlled so that the NC commanded speed matches the composite speed of the tracing control of the two axes. be done.

〔作用〕[Effect]

2軸(例えばX、Y軸〉は指令通路及び速度をNC指令
する。また、同時に3軸はならい制御する。ここでNC
指令速度と、ならい制御による2軸の合成速度が一致す
るように、NC指令速度を変化させる。2軸の通路はN
C指令通路となり、さらに、速度はならい制御速度とな
り、3軸のならい制御と等価な動きとなる。
2 axes (e.g.
The NC command speed is changed so that the command speed matches the composite speed of the two axes obtained by profile control. The path of the two axes is N
This becomes the C command path, and furthermore, the speed becomes the profile control speed, resulting in movement equivalent to 3-axis profile control.

〔実施例〕〔Example〕

以下、本発明の一実施例を図面に基づいて説明する。 Hereinafter, one embodiment of the present invention will be described based on the drawings.

第1図は本発明のならい制御方法を実施するためのなら
い制御装置のブロック図である。NC指令lはX、Y平
面上のX、Y軸の移動指令と、送り速度指令Fを含む。
FIG. 1 is a block diagram of a profile control device for implementing the profile control method of the present invention. The NC command 1 includes movement commands for the X and Y axes on the X and Y planes, and a feed rate command F.

移動指令は補間器2aでオーバライド回路2bからの速
度Fdでパルス分配される。速度Fdについては後述す
る。速度指令Fはオーバライド回路2bに送られる。
The movement command is distributed into pulses by the interpolator 2a at the speed Fd from the override circuit 2b. The speed Fd will be described later. Speed command F is sent to override circuit 2b.

分配パルスXP、YPはそれぞれ、加減速回路3x、加
減速回路3yに送られ、加減速がかけられ、加算器4x
、加算器4yに送られる。加算器4x、4yでは分配パ
ルスXP、YPから、後述するパルスコーダ23x、2
3yからの位置帰還パルスFpx、FPyを減算して、
エラーレジスタ5x、エラーレジスタ5yに送られる。
The distributed pulses XP and YP are sent to an acceleration/deceleration circuit 3x and an acceleration/deceleration circuit 3y, respectively, where they are accelerated and decelerated, and added to an adder 4x.
, are sent to the adder 4y. The adders 4x and 4y output the distributed pulses XP and YP to pulse coders 23x and 2, which will be described later.
By subtracting the position feedback pulses Fpx and FPy from 3y,
It is sent to error register 5x and error register 5y.

エラーレジスタ5xとエラーレジスタ5yの出力Ex。Output Ex of error register 5x and error register 5y.

Eyは分配回路17に送られる。Ey is sent to the distribution circuit 17.

分配回路17はエラーEx、EyにゲインGを乗じて、
それぞれの速度指令Vx、Vyを生成し、サーボアンプ
18x、18yによって、それぞれ、X軸サーボモータ
22x、Y軸サーボモータ22yを駆動する。X軸サー
ボモータ22x、Y軸サーボモータ22yには、それぞ
れ、パルスコーダ23x、パルスコーダ23yが結合さ
れており、フィードバックパルスFPx、FPyを加算
器4Xと加算器4yに帰還する。
The distribution circuit 17 multiplies the errors Ex and Ey by the gain G,
Respective speed commands Vx and Vy are generated, and the servo amplifiers 18x and 18y drive the X-axis servo motor 22x and the Y-axis servo motor 22y, respectively. A pulse coder 23x and a pulse coder 23y are coupled to the X-axis servo motor 22x and the Y-axis servo motor 22y, respectively, and feed back the feedback pulses FPx and FPy to the adder 4X and the adder 4y.

一方、ならい工作機械に設けられているトレーサヘッド
20は、その先端のスタイラス21がモデルに接触する
ことにより生じるX軸、Y軸及びZ軸方向の各変位量ε
X、Ey及びε2を検出して、切り換え回路11及び合
成回路13に人力する。切り換え回路11では、これら
の変位量の中から図示されていない操作盤を介して指令
されたならい平面の二軸の変位量EcSEsを選択して
割り出し回路12に人力する。割り出し回路12は変位
量ε1及びε2を用いて次式、 Ec−ε1/(ε12+ε22)l/2=c o 5e Es=ε2/ (ε1’ +ε2” )”=sine を演算して、割り出し信号ε1及びε2を求める。
On the other hand, the tracer head 20 installed in the profiling machine tool has displacements ε in the X-axis, Y-axis, and Z-axis directions caused by the stylus 21 at its tip coming into contact with the model.
X, Ey and ε2 are detected and input to the switching circuit 11 and the combining circuit 13. The switching circuit 11 selects, from among these displacement amounts, the two-axis displacement EcSEs of the tracing plane commanded via an operation panel (not shown) and manually inputs it to the indexing circuit 12. The indexing circuit 12 uses the displacement amounts ε1 and ε2 to calculate the following equation: Ec-ε1/(ε12+ε22)l/2=co5e Es=ε2/(ε1'+ε2")"=sine, and generates the indexing signal ε1. and ε2 are determined.

また、合成回路13では各変位量εX、εy及びε2か
ら合成変位量ε、(ε=(εx2+εy2+εz2)l
/2)を求めて演算器14に人力する。演算器14は合
成変位量εと予め設定された基準変位量εOとの差分Δ
ε(Δε=ε−εO)を演算して速度信号発生回路15
及び16に入力する。速度信号発生回路15は差分Δε
に基づいてスタイラス変位方向に対して直角方向の送り
速度信号(接線方向速度信号)Vtを発生する。また、
速度信号発生回路16は差分Δεに比例させて、スタイ
ラス変位方向の送り速度信号(法線方向速度信号)Vn
を発生する。
In addition, the synthesis circuit 13 calculates a composite displacement amount ε, (ε=(εx2+εy2+εz2)l) from each displacement amount εX, εy, and ε2.
/2) and manually input it to the arithmetic unit 14. The calculator 14 calculates the difference Δ between the composite displacement amount ε and a preset reference displacement amount εO.
The speed signal generation circuit 15 calculates ε (Δε=ε−εO).
and 16. The speed signal generation circuit 15 uses the difference Δε
Based on this, a feed speed signal (tangential speed signal) Vt in a direction perpendicular to the stylus displacement direction is generated. Also,
The speed signal generation circuit 16 generates a feed speed signal (normal direction speed signal) Vn in the stylus displacement direction in proportion to the difference Δε.
occurs.

分配回路17は割り出し信号Ec、Es、接線方向速度
信号Vt及び法線方向速度信号Vnを用いて次式、 V1=VtXs 1ne−VnxcoseV2=−Vt
Xcose−Vnxs 1n(E)を演算してならい平
面の二軸の速度成分V1及びVzを求め、これらをX軸
、Y軸及び二軸の速度信号Vxa、Vya及びVzを生
成する。二軸の速度指令はそのままサーボアンプ18z
に送られ、二軸サーボモータ22zを駆動する。
The distribution circuit 17 uses the index signals Ec and Es, the tangential velocity signal Vt, and the normal velocity signal Vn to form the following equation: V1=VtXs 1ne-VnxcoseV2=-Vt
Xcose-Vnxs 1n(E) is calculated to obtain biaxial velocity components V1 and Vz of the profiled plane, and these are used to generate X-axis, Y-axis, and biaxial velocity signals Vxa, Vya, and Vz. The speed command for two axes is directly sent to the servo amplifier 18z.
and drives the two-axis servo motor 22z.

一方、X軸及びY軸のならい速度Vxa、VyaはNC
指令速度を制御するために使用される。
On the other hand, the tracing speeds Vxa and Vya of the X-axis and Y-axis are NC
Used to control commanded speed.

次にNC指令速度の制御について説明する。第2図は分
配速度の計算を説明するためのブロック図である。ここ
では簡単のために、NC指令はX軸のみとし、ならいに
よる速度はX成分のみとする。X軸のエラーレジスタ5
xのエラーExは分配回路17に入力され、ゲインG(
17a)を乗じて速度Vxを得て、速度Vxはサーボア
ンプ18xに送られる。
Next, control of the NC command speed will be explained. FIG. 2 is a block diagram for explaining calculation of distribution speed. Here, for the sake of simplicity, the NC command is assumed to be only for the X axis, and the velocity due to tracing is assumed to be for the X component only. X-axis error register 5
The error Ex of x is input to the distribution circuit 17, and the gain G(
17a) to obtain the speed Vx, and the speed Vx is sent to the servo amplifier 18x.

演算回路17bではならい速度とNC指令による速度V
xとの比、 n=Vxa/Vx を求める。この比nをオーバライド回路2bに送り、オ
ーバライド回路2bでは指令速度Fから、実際の分配速
度Fd。
The arithmetic circuit 17b calculates the tracing speed and the speed V according to the NC command.
Find the ratio with x, n=Vxa/Vx. This ratio n is sent to the override circuit 2b, and the override circuit 2b calculates the actual distribution speed Fd from the command speed F.

Fd=F/n を求め、この分配速度Fdでパルス分配を行う。Fd=F/n is determined, and pulse distribution is performed at this distribution speed Fd.

これによって、ならい制御によるX軸のならい速度と、
NC指令によるX軸の速度が一致し、3軸のならい制御
を行う場合と同等の加工精度となら・い速度が得られる
As a result, the X-axis tracing speed due to tracing control,
The X-axis speeds according to the NC commands match, and the same machining accuracy and tracing speed as when performing 3-axis tracing control can be obtained.

上記の説明ではNC指令はX軸のみとし、ならい速度成
分もX軸のみとした。NC指令がX1Y軸であり、なら
い速度成分がX1Y軸のときは上記の式に、それぞれ、
X1Y軸の合成速度及び、合成ならい速度を代入すれば
よい。
In the above explanation, the NC command is only for the X-axis, and the tracing speed component is also for the X-axis only. When the NC command is the X1Y axis and the tracing speed component is the X1Y axis, the above formula is written as
It is sufficient to substitute the composite velocity of the X1Y axes and the composite tracing velocity.

また、急激なくい込み等が発生した場合は、X1Y軸は
NC指令を無視して、逃げ動作等を行うようにすること
もできる。
In addition, when sudden digging occurs, the X1Y axes can ignore the NC command and perform an escape operation or the like.

上記の説明ではX、Y軸をNC制御し、二軸をならい制
御としたが、これらの組み合わせは加工物に応じて変更
することができる。
In the above explanation, the X and Y axes are NC controlled and the two axes are controlled by tracing, but the combination of these can be changed depending on the workpiece.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明では、2軸をNC指令し、3
軸をならい制御し、NC指令速度と2軸のならい合成速
度を一致させるようにしたので、ならいの精度が向上し
、ならい速度も高くできる。
As explained above, in the present invention, two axes are given NC commands, and three
Since the axes are traced and the NC command speed and the traced combined velocity of the two axes are made to match, the precision of the tracer is improved and the tracer speed can be increased.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のならい制御方法を実施するためのなら
い制御装置のブロック図、 第2図は分配速度の計算を説明するためのブロック図で
ある。 a b X y ・NC指令 補間器 ゛ オーバライド回路 °゛°加減速回路 −加減速回路 −加算器 加算器 エラーレジスタ エラーレジスタ ー・−・−・分配回路 ・  −サーボアンプ 一サーボアンプ サーボアンプ X軸サーボモータ Y軸サーボモータ Z軸サーボモータ ーX軸パルスコーダ Y軸バルスコーダ トレーサヘッド °・スタイラス x y− x y 7 8x 8y 8z 2x 22y・・・−・ 22z  ・ 3x 3y 0 21−−・
FIG. 1 is a block diagram of a profile control device for implementing the profile control method of the present invention, and FIG. 2 is a block diagram for explaining calculation of distribution speed. a b Motor Y-axis servo motor Z-axis servo motor X-axis pulse coder Y-axis pulse coder tracer head °・Stylus

Claims (5)

【特許請求の範囲】[Claims] (1)トレーサヘッドでモデルをならいワークを加工す
るならい制御方法において、 2軸をNC指令速度及びNC指令通路で制御し、前記2
軸を含む3軸をならい制御し、 前記NC指令速度と、前記2軸のならい制御の合成速度
が一致するように前記NC指令速度を制御することを特
徴とするならい制御方法。
(1) In a tracing control method in which a workpiece is machined by following a model with a tracer head, two axes are controlled by an NC command speed and an NC command path, and the two axes are
A tracing control method comprising: performing tracing control on three axes including the following axis, and controlling the NC commanded speed so that the NC commanded speed matches the composite speed of the tracing control of the two axes.
(2)前記合成速度は前記2軸のそれぞれのエラーにゲ
インを乗じて、合成することによって得るようにしたこ
とを特徴とする請求項1記載のならい制御方法。
(2) The profile control method according to claim 1, wherein the composite speed is obtained by multiplying each error of the two axes by a gain and combining the results.
(3)前記NC指令速度をオーバライド制御によって制
御することを特徴とする請求項1記載のならい制御方法
(3) The tracing control method according to claim 1, wherein the NC command speed is controlled by override control.
(4)前記2軸はくい込み量が急激に変化したときはな
らい制御による速度で逃げ動作を行うようにしたことを
特徴とする請求項1記載のならい制御方法。
(4) The profile control method according to claim 1, wherein when the amount of penetration of the two axes suddenly changes, the two axes perform an escape operation at a speed controlled by profile control.
(5)前記2軸はX、Y軸とし、他の1軸をZ軸として
制御することを特徴とする請求項1記載のならい制御方
法。
(5) The tracing control method according to claim 1, wherein the two axes are X and Y axes, and the other axis is the Z axis.
JP2087869A 1990-04-02 1990-04-02 Profile control method Pending JPH03287348A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2087869A JPH03287348A (en) 1990-04-02 1990-04-02 Profile control method
EP19910906571 EP0480051A4 (en) 1990-04-02 1991-04-01 Profile control method
PCT/JP1991/000432 WO1991015335A1 (en) 1990-04-02 1991-04-01 Profile control method
US07/773,942 US5309364A (en) 1990-04-02 1991-04-01 Trace control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2087869A JPH03287348A (en) 1990-04-02 1990-04-02 Profile control method

Publications (1)

Publication Number Publication Date
JPH03287348A true JPH03287348A (en) 1991-12-18

Family

ID=13926878

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2087869A Pending JPH03287348A (en) 1990-04-02 1990-04-02 Profile control method

Country Status (4)

Country Link
US (1) US5309364A (en)
EP (1) EP0480051A4 (en)
JP (1) JPH03287348A (en)
WO (1) WO1991015335A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4245012B4 (en) * 1992-04-14 2004-09-23 Carl Zeiss Method for measuring shaped elements on a coordinate measuring machine
JPH06202724A (en) * 1992-12-28 1994-07-22 Fanuc Ltd Numerical controller
JP3625901B2 (en) * 1995-06-30 2005-03-02 三菱電機株式会社 Method and apparatus for automatically optimizing servo control system
US5691909A (en) * 1995-12-29 1997-11-25 Western Atlas Method of virtual machining to predict the accuracy of part to be made with machine tools
JP3087668B2 (en) * 1996-05-01 2000-09-11 日本電気株式会社 Liquid crystal display device, its manufacturing method and its driving method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62255051A (en) * 1986-04-30 1987-11-06 Mitsubishi Heavy Ind Ltd Profile controller

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH596949A5 (en) * 1975-09-30 1978-03-31 Siemens Ag
JPS6023938B2 (en) * 1979-02-09 1985-06-10 ファナック株式会社 Any direction copying method
JPS6099549A (en) * 1983-11-02 1985-06-03 Fanuc Ltd Copying in arbitrary direction
JPS60172442A (en) * 1984-02-20 1985-09-05 Fanuc Ltd Machining apparatus for copying work and nc work
JPS61197148A (en) * 1985-02-26 1986-09-01 Fanuc Ltd Arbitrary direction copying control device
JPS6224947A (en) * 1985-07-22 1987-02-02 Fanuc Ltd Tracing control device
JP2786874B2 (en) * 1989-03-10 1998-08-13 株式会社日立製作所 Movable position control device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62255051A (en) * 1986-04-30 1987-11-06 Mitsubishi Heavy Ind Ltd Profile controller

Also Published As

Publication number Publication date
EP0480051A1 (en) 1992-04-15
WO1991015335A1 (en) 1991-10-17
US5309364A (en) 1994-05-03
EP0480051A4 (en) 1992-06-03

Similar Documents

Publication Publication Date Title
KR900007297B1 (en) Nc controller and method
SE7710078L (en) PROCEDURE AND NUMERIC CONTROL SYSTEM FOR CONTROLING A MACHINE TOOL TO CUT THREAD
JPH0123269B2 (en)
US4575665A (en) Tracer control method
JPH03287348A (en) Profile control method
US5241485A (en) Noncontact tracing control system
KR840000889B1 (en) Three-dimensional tracer control system
KR950013510B1 (en) Copy control system
KR890001353B1 (en) Numerical control device
US5550330A (en) Digitizing control apparatus
JPH0386447A (en) Copying control device
EP0190357A1 (en) Apparatus for controlling profiling in any direction
JPH0386446A (en) Copying control device
JPH0482657A (en) Profile method
JPH032624B2 (en)
JPH02274457A (en) Copy control device
JP2622833B2 (en) Numerical control method
US5209618A (en) Method of setting tracing zone
JPH0435847A (en) Copying control
JPH03213253A (en) Pick feed control method
JPS59152049A (en) Template copying method
BIRIŞ et al. Researches on improving the manufacturing accuracy of CNC cutting machines
JPH04244355A (en) Tracer control method
JPH04115853A (en) Profile control method
JPH04283053A (en) Profile control device