JPH03287274A - Manufacture of thin film and electrophotographic sensitive body - Google Patents

Manufacture of thin film and electrophotographic sensitive body

Info

Publication number
JPH03287274A
JPH03287274A JP8741290A JP8741290A JPH03287274A JP H03287274 A JPH03287274 A JP H03287274A JP 8741290 A JP8741290 A JP 8741290A JP 8741290 A JP8741290 A JP 8741290A JP H03287274 A JPH03287274 A JP H03287274A
Authority
JP
Japan
Prior art keywords
thin film
cathode
surfactant
hydrophobic
charge generation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8741290A
Other languages
Japanese (ja)
Other versions
JP2885467B2 (en
Inventor
Hiroshi Komon
小門 宏
Katsuyoshi Hoshino
勝義 星野
Seiichiro Yokoyama
横山 清一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP8741290A priority Critical patent/JP2885467B2/en
Publication of JPH03287274A publication Critical patent/JPH03287274A/en
Application granted granted Critical
Publication of JP2885467B2 publication Critical patent/JP2885467B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Photoreceptors In Electrophotography (AREA)

Abstract

PURPOSE:To obtain this highly sensitive electrophotographic sensitive body by dispersing or dissolving a hydrophobic powder with the use of surfactant and by forming the film of the hydrophobic material on a cathode by energizing to the dispersion or the solution. CONSTITUTION:The powders of the hydrophobic material of <=10mum are dispersed or dissolved in an aqueous medium with the surfactant of 10.0-20.0 HLB value (excluding a ferrocene derivative) and then by energizing to the obtained dispersion or the solution at 40-80 deg.C, the film of a hydrohobic material is formed on the cathode. The hydrophobic material is preferably an electrostatic charge generating material. Thus the improvement of the film forming property, the uniformity of the formed film and the enhancement of the photosensitive characteristics can be attained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は薄膜および電子写真感光体の製造方法に関し、
詳しくは特定のHLB (親水性親油性バランス)値を
有する界面活性剤を用いるとともに、加温状態で通電処
理することによって、均一な薄膜を効率よく製造する方
法、ならびにこの方法によってアルもニウム基板上に電
荷発生層を形成して、感光特性のすぐれた電子写真感光
体を製造する方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for manufacturing a thin film and an electrophotographic photoreceptor;
In detail, we will explain how to efficiently produce a uniform thin film by using a surfactant with a specific HLB (hydrophilic-lipophilic balance) value and applying electricity under heating conditions, and how to efficiently produce a uniform thin film using this method. The present invention relates to a method of manufacturing an electrophotographic photoreceptor with excellent photosensitive characteristics by forming a charge generation layer thereon.

〔従来の技術および発明が解決しようとする課題〕従来
から、色素等の薄膜を製造する方法として、真空蒸着法
、熱CVD法、プラズマCVD法、超高真空(イオンビ
ーム、分子線エピタキシー)法。
[Prior art and problems to be solved by the invention] Conventionally, methods for manufacturing thin films of dyes, etc. include vacuum evaporation, thermal CVD, plasma CVD, and ultra-high vacuum (ion beam, molecular beam epitaxy) methods. .

LB脱膜法キャスト法などが知られている。The LB film removal method and casting method are known.

しかしながら、これらの方法はいずれも色素等の材料を
有機溶媒に溶解させたりあるいは加熱するなどの操作を
必要とするため、熱に弱い疎水性の物質を薄膜化するこ
とができなかった。
However, since all of these methods require operations such as dissolving materials such as dyes in organic solvents or heating them, they have not been able to form thin films of hydrophobic substances that are sensitive to heat.

また、所謂旦セル電解法により、各種の疎水性有機物質
の薄膜を形成する方法も知られている(電気化学協会(
第54回)春季大会F201)(1987)。このξセ
ル電解法は、様々な疎水性物質の薄膜を効率よく製造す
ることができ、工業的に有利な方法として注目されてい
る。
In addition, a method of forming thin films of various hydrophobic organic substances by the so-called cell electrolysis method is also known (Electrochemical Association (Electrochemical Association)).
54th) Spring Conference F201) (1987). This ξ cell electrolysis method can efficiently produce thin films of various hydrophobic substances, and is attracting attention as an industrially advantageous method.

しかし、上記ξセル電解法は、すぐれた方法ではあるが
、酸化還元基としてフェロセンを導入する必要があり、
このようなフェロセン基を有する界面活性剤の合成には
手間を要し、もっと簡易な方法が望まれている。また、
ごセル電解法の原理に従うと、陽極にしか薄膜を形成す
ることができないため、陽分極によって溶解してしまう
アルミニウム電極(陰極)には製膜が極めて困難であっ
た。
However, although the above ξ cell electrolysis method is an excellent method, it is necessary to introduce ferrocene as a redox group.
Synthesis of such a surfactant having a ferrocene group requires time and effort, and a simpler method is desired. Also,
According to the principle of cell electrolysis, a thin film can only be formed on the anode, so it has been extremely difficult to form a film on the aluminum electrode (cathode), which dissolves due to anodic polarization.

一方、感光材料の分野ではアルミニウム基板への製膜が
望まれており、アルミニウム上へ簡単な手法で薄膜を形
成することのできる方法の開発が期待されている。
On the other hand, in the field of photosensitive materials, there is a desire to form films on aluminum substrates, and there are expectations for the development of a method that can easily form thin films on aluminum.

このような状況で、近年、平均粒子径10μm以下の疎
水性物質粉末を、水性媒体中でHLB値10.0〜20
.0の界面活性剤(フェロセン誘導体を除く)によって
分散あるいは可溶化し、次いで得られた分散液あるいは
溶液を通電処理し、陰極電極上に前記疎水性物質薄膜を
形成する方法が提案されている(Chem、Lett、
、  1989.μm37)。
Under these circumstances, in recent years, hydrophobic substance powder with an average particle size of 10 μm or less has been used in an aqueous medium with an HLB value of 10.0 to 20.
.. A method has been proposed in which the above-mentioned hydrophobic substance thin film is formed on the cathode electrode by dispersing or solubilizing the hydrophobic substance with a surfactant (excluding ferrocene derivatives) of 0.0 and then applying an electric current to the obtained dispersion or solution. Chem, Lett.
, 1989. μm37).

しかしながら、この方法で形成される薄膜は、均一性が
必ずしも充分でなく、またこれを電子写真の感光体とし
て用いても、感光特性が不充分であって、実用に適した
ものではなかった。
However, the thin film formed by this method does not necessarily have sufficient uniformity, and even when used as a photoreceptor for electrophotography, the photosensitive characteristics are insufficient and it is not suitable for practical use.

そこで、本発明者らは、上記の方法に関して詳細に実験
を重ねた。
Therefore, the present inventors conducted repeated experiments in detail regarding the above method.

〔課題を解決するための手段〕[Means to solve the problem]

その結果、電解液の温度を40〜8o″Cに加温するこ
とにより、製膜性の向上、形成される薄膜の均一性およ
び感光体特性が著しく向上することを見出した。
As a result, it has been found that by heating the electrolytic solution to a temperature of 40 to 8 degrees Celsius, the film forming properties, the uniformity of the formed thin film, and the characteristics of the photoreceptor are significantly improved.

本発明はかかる知見に基いて完成したものである。すな
わち本発明は、平均粒子径μm0μm以下の疎水性物質
粉末を水性媒体中でHLB値10.0〜20.0の界面
活性剤(フェロセン誘導体を除く)によって分散あるい
は可溶化し、次いで得られた分散液あるいは溶液を40
〜80 ”Cにて通電処理して、陰極上に前記疎水性物
質の薄膜を形成することを特徴とする薄膜の製造方法を
提供するものである。また、本発明は平均粒子径10μ
m以下の疎水性の電荷発生物質粉末を水性媒体中でHL
B値10.0〜20.0の界面活性剤(フェロセン誘導
体を除く)によって分散あるいは可溶化し、次いで得ら
れた分散液あるいは溶液を40〜80”Cにて通電処理
して、アルミニウムからなる陰極上に前記電荷発生物質
粉末の電荷発生層を形成することを特徴とする電子写真
感光体の製造方法をも提供するものである。
The present invention was completed based on this knowledge. That is, the present invention disperses or solubilizes a hydrophobic substance powder with an average particle diameter of 0 μm or less in an aqueous medium with a surfactant (excluding ferrocene derivatives) having an HLB value of 10.0 to 20.0, and then 40% of the dispersion or solution
The present invention provides a method for producing a thin film, characterized in that a thin film of the hydrophobic substance is formed on a cathode by conduction treatment at a temperature of ~80''C.
HL of a hydrophobic charge-generating material powder of less than m in an aqueous medium.
It is dispersed or solubilized with a surfactant (excluding ferrocene derivatives) having a B value of 10.0 to 20.0, and then the resulting dispersion or solution is subjected to electrical treatment at 40 to 80"C to produce a product made of aluminum. The present invention also provides a method for manufacturing an electrophotographic photoreceptor, which comprises forming a charge generation layer of the charge generation material powder on a cathode.

本発明の薄膜の製造方法では、薄膜の素材として疎水性
物質粉末を充当する。この疎水性物質粉末の平均粒子径
は、μm0μm以下、好ましくは1〜0.01μm程度
である。平均粒子径が10μmを超えるものでは、水性
媒体中に分散、可溶化するのに時間がかかり、また均一
な分散、可溶化が困難であるなど様々な問題がある。
In the thin film manufacturing method of the present invention, a hydrophobic substance powder is used as the material for the thin film. The average particle size of this hydrophobic substance powder is 0 μm or less, preferably about 1 to 0.01 μm. If the average particle size exceeds 10 μm, there are various problems such as it takes time to disperse and solubilize in an aqueous medium, and uniform dispersion and solubilization are difficult.

上記疎水性物質粉末の種類は、形成すべき薄膜の用途、
特に電子写真感光体としての用途に応じて適宜選定すれ
ばよく、有機物質、無機物質を問わず様々なものを挙げ
ることができる。本発明の電子写真感光体の製造方法に
あっては、とりわけこの疎水性物質は、電荷発生物質(
CGM)であることが好都合であり、例えば有機物質と
しては、フタロシアニン、フタロシアニンの金属錯体お
よびこれらの誘導体(例えば、銅錯体、クロロアルミニ
ウム錯体、バナジン酸錯体、クロロインジウム錯体など
)、ナフタロシアニン、ナフタロシアニンの金属錯体お
よびこれらの誘導体、ポルフィリン、ポルフィリンの金
属錯体およびこれらの誘導体、ペリレン、ペリレンの金
属錯体およびこれらの誘導体、アゾ色素、キナクリドン
、ビオロゲン、スーダンなどの光メモリー用色素や有機
色素 5− をはじめ1,1°−ジヘプチルー4.4°−ビピリジニ
ウムジブロマイド、  1.1’−ジドデシル4.4゛
−ビピリジニウムジブロマイドなどのエレクトロクロミ
ック材料、6−ニトロ−1,3゜3−トリメチルスピロ
−(2’H−1’−ベンゾビラン−2,2”−インドリ
ン)(通称スピロピラン)などの感光材料(フォトクロ
ごツタ材料)や光センサー材料、1−フェニルアゾ−2
−ナフトールなどのジアゾタイプの感光材料をあげるこ
とができる。
The type of hydrophobic substance powder mentioned above depends on the purpose of the thin film to be formed,
In particular, the material may be appropriately selected depending on the use as an electrophotographic photoreceptor, and various materials can be used, regardless of whether they are organic or inorganic materials. In the method for producing an electrophotographic photoreceptor of the present invention, the hydrophobic substance may be a charge generating substance (
Examples of organic substances include phthalocyanines, metal complexes of phthalocyanines and derivatives thereof (e.g. copper complexes, chloroaluminum complexes, vanadate complexes, chloroindium complexes, etc.), naphthalocyanines, Phthalocyanine metal complexes and their derivatives, porphyrins, porphyrin metal complexes and their derivatives, perylene, perylene metal complexes and their derivatives, azo dyes, quinacridones, viologens, and organic dyes such as photomemory dyes and sudans 5- electrochromic materials such as 1,1°-diheptyl-4.4°-bipyridinium dibromide, 1.1'-didodecyl 4.4°-bipyridinium dibromide, 6-nitro-1,3°3-trimethyl spiro- (2'H-1'-benzobyran-2,2''-indoline) (commonly known as spiropyran) and other photosensitive materials (photoblack ivy materials) and optical sensor materials, 1-phenylazo-2
- Diazo type photosensitive materials such as naphthol can be mentioned.

また、無機物質としては、Ti0z、C,CdS。Furthermore, examples of inorganic substances include TiOz, C, and CdS.

W○31 F ego 3+ y203+ ZrO21
Ah O31Cu S 。
W○31 F ego 3+ y203+ ZrO21
Ah O31Cu S .

ZnS、Te0z、LiNbO3,5izN4など、さ
らには各種の超電導酸化物など各種各様のものがある。
There are various materials such as ZnS, Te0z, LiNbO3, 5izN4, and various superconducting oxides.

次に、本発明に用いる水性媒体としては、水をはじめ、
水とアルコールの混合液、水とアセトンの混合液など様
々な媒体をあげることができる。
Next, the aqueous medium used in the present invention includes water,
Various media can be used, such as a mixture of water and alcohol and a mixture of water and acetone.

一方、本発明の方法では、界面活性剤としてフェロセン
誘導体を除< HLB(alO,o 〜20.0、好ま
しくは12〜18の界面活性剤を用いる。このような界
面活性剤の好適例をあげれば、ポリオキシエチレンアル
キルエーテル ポリオキシエチレン脂肪酸エステル、ポ
リオキシエチレンアルキルフヱニルエーテル、ポリオキ
シエチレンポリオキシプロピレンアルキルエーテルなど
の非イオン系界面活性剤をあげることができる。そのほ
か、アルキル硫酸塩、ポリオキシエチレンアルキルエー
テル硫酸塩、塩化アルキルトリメチルアンモニウム、脂
肪酸ジエチルアミノエチルアミドなどを使用することも
可能である。
On the other hand, in the method of the present invention, a surfactant having an HLB (alO,o ~20.0, preferably 12 to 18) is used as a surfactant, excluding ferrocene derivatives. Examples include nonionic surfactants such as polyoxyethylene alkyl ether, polyoxyethylene fatty acid ester, polyoxyethylene alkyl phenyl ether, and polyoxyethylene polyoxypropylene alkyl ether.In addition, alkyl sulfates, It is also possible to use polyoxyethylene alkyl ether sulfates, alkyltrimethylammonium chlorides, fatty acid diethylaminoethylamides, and the like.

本発明の方法では、まず水性媒体中に上記の界面活性剤
および疎水性物質粉末を入れて、超音波。
In the method of the present invention, first, the above-mentioned surfactant and hydrophobic substance powder are placed in an aqueous medium and subjected to ultrasonic waves.

ホモジナイザーあるいは撹拌機等により、1時間〜7日
間程度充分に攪拌させる。この操作で疎水性物質粉末は
、HLB値10.0〜20.0を有する界面活性剤の作
用で、水性媒体中に均一に分散あるいは可溶化して、分
散液あるいは水溶液となる。
Stir thoroughly using a homogenizer or a stirrer for about 1 hour to 7 days. In this operation, the hydrophobic substance powder is uniformly dispersed or solubilized in the aqueous medium by the action of the surfactant having an HLB value of 10.0 to 20.0, and becomes a dispersion or an aqueous solution.

本発明の方法では、このようにして得た均一分散液ある
いは水溶液に、所望に応じて支持塩を加えて、また状況
に応じて過剰の疎水性物質を遠心8 分離、デカンテーション、静止沈降等にて除去し、得ら
れた電解液を静置したままあるいは若干の撹拌を加えな
がら通電処理する。この通電処理に際しては、電解液(
上記分散液あるいは水溶液)のを40〜80℃1好まし
くは50〜70℃1更に好ましくは55〜65℃の範囲
に加温しておくことが必要である。この範囲の温度に設
定して通電処理を行うことにより、得られる薄膜が均一
に形成されるとともに、その感光特性が向上する。
In the method of the present invention, a supporting salt is added to the homogeneous dispersion or aqueous solution obtained in this way, if desired, and excess hydrophobic substances are removed depending on the situation by centrifugation, decantation, static sedimentation, etc. The electrolyte solution obtained is removed by energization treatment while being left standing or with slight stirring. During this energization process, the electrolytic solution (
It is necessary to heat the above dispersion or aqueous solution to a temperature of 40 to 80°C, preferably 50 to 70°C, and more preferably 55 to 65°C. By carrying out the energization treatment at a temperature within this range, the resulting thin film can be formed uniformly and its photosensitivity properties can be improved.

なお、通電処理中に疎水性物質粉末を電解液に補充添加
してもよく、あるいは電解液の一部を系外へ抜き出し、
抜き出した電解液に疎水性物質粉末を加えて充分に混合
撹拌し、しかる後にこの液を系内へ戻す循環回路を併設
してもよい。
Note that during the energization process, hydrophobic substance powder may be added to the electrolytic solution, or a portion of the electrolytic solution may be extracted from the system.
A circulation circuit may also be provided in which a hydrophobic substance powder is added to the electrolytic solution that has been extracted, the electrolyte is thoroughly mixed and stirred, and then this solution is returned to the system.

この際の界面活性剤の濃度は、特に制限はないが、通常
は10 uM 〜0. I M、好ましくは0.5mM
〜5mMの範囲で選定する。また、支持塩(支持電解質
)は、水性媒体の電気伝導度を調節するために必要に応
じて加えるものである。この支持塩の添加量は、可溶化
あるいは分散している疎水性物質の析出を妨げない範囲
であればよく、通常は上記界面活性剤のO〜300倍程
度の程度、好ましくはlO〜200倍程度の濃程度目安
とする。この支持塩を加えずに通電を行うこともできる
が、この場合支持塩を含まない純度の高い薄膜が得られ
る。また、支持塩を用いる場合、その支持塩の種類は、
可溶化の進行や電極への前記疎水性物質の析出を妨げる
ことなく、水性媒体の電気伝導度を調節しうるものであ
れば特に制限はない。
The concentration of the surfactant at this time is not particularly limited, but is usually 10 uM to 0.0 μM. IM, preferably 0.5mM
Select in the range of ~5mM. Further, a supporting salt (supporting electrolyte) is added as necessary to adjust the electrical conductivity of the aqueous medium. The amount of the supporting salt to be added may be within a range that does not interfere with the precipitation of the hydrophobic substance that has been solubilized or dispersed, and is usually about 0 to 300 times the amount of the above-mentioned surfactant, preferably 10 to 200 times the amount of the surfactant. Use as a guideline for the degree of darkness. Although it is also possible to conduct current application without adding this supporting salt, in this case a highly pure thin film containing no supporting salt can be obtained. In addition, when using a supporting salt, the type of supporting salt is
There are no particular limitations as long as the electrical conductivity of the aqueous medium can be adjusted without hindering the progress of solubilization or precipitation of the hydrophobic substance onto the electrode.

具体的には、一般広く支持塩として用いられている硫酸
塩(リチウム、カリウム、ナトリウム。
Specifically, sulfates (lithium, potassium, and sodium) are commonly used as supporting salts.

ルビジウム、アルミニウムなどの塩)、酢酸塩(リチウ
ム、カリウム、ナトリウム、ルビジウム。
salts of rubidium, aluminum, etc.), acetate salts (lithium, potassium, sodium, rubidium, etc.).

ベリリウム、マグネシウム、カルシウム、ストロンチウ
ム、バリウム、アルごニウムなどの塩)。
salts of beryllium, magnesium, calcium, strontium, barium, argonium, etc.).

ハロゲン化物塩(リチウム、カリウム、ナトリウム、ル
ビジウム、カルシウム、マグネシウム、アル逅ニウムな
どの塩)、水溶性酸化物塩(リチウム、カリウム、ナト
リウム、ルビジウム、カルシウム、マグネシウム、アル
ミニウムなどの塩)が− 0 好適である。
Halide salts (salts of lithium, potassium, sodium, rubidium, calcium, magnesium, aluminum, etc.), water-soluble oxide salts (salts of lithium, potassium, sodium, rubidium, calcium, magnesium, aluminum, etc.) - 0 suitable.

一方、陰極電極としては各種の金属、特に卑金属の中か
ら選定するのが好ましく、特に、電子写真感光体を製造
する際には、アル〔ニウム基板が最適である。また陽極
電極としては各種のものが使用可能であるが、例えばI
TO(酸化インジウムと酸化スズとの混合酸化物)、白
金、金、銀、グラジ−カーボン、導電性金属酸化物、有
機ポリマー導電体等及び結晶シリコン、アモルファスシ
リコン等の半導体が好適である。
On the other hand, the cathode electrode is preferably selected from various metals, particularly base metals, and an aluminum substrate is particularly suitable when manufacturing an electrophotographic photoreceptor. Various types of anode electrodes can be used, such as I
Suitable materials include TO (mixed oxide of indium oxide and tin oxide), platinum, gold, silver, grady carbon, conductive metal oxides, organic polymer conductors, and semiconductors such as crystalline silicon and amorphous silicon.

本発明の方法における通電条件は、アル4ニウム基板等
の陰極上に前記疎水性物質の薄膜が生成する条件下に設
定すればよい。ここで陰極上に前記疎水性物質の薄膜が
生成する条件とは、陰極上のみに疎水性物質の薄膜が生
成する条件に限られず、陰極と陽極の両極に疎水性物質
の薄膜が生成する条件をも包含する。このような条件は
、状況に応じて様々に異なるが、具体的には液温を40
〜80℃に保持しつつ、通電時間を1分〜2時間として
、定電位あるいは定電流にて通電処理することとなる。
The energization conditions in the method of the present invention may be set under conditions such that a thin film of the hydrophobic substance is formed on the cathode such as an aluminum 4 substrate. The conditions under which a thin film of the hydrophobic substance is formed on the cathode are not limited to the conditions under which a thin film of the hydrophobic substance is formed only on the cathode, but are also the conditions under which a thin film of the hydrophobic substance is formed on both the cathode and the anode. It also includes. These conditions vary depending on the situation, but specifically, the liquid temperature is set to 40°C.
While maintaining the temperature at ~80[deg.] C., the energization process is performed at a constant potential or constant current for 1 minute to 2 hours.

この定電位での通電処理にあたっては、両極間を0.5
〜10.OV、好ましくハ2.0〜5.OVの電位に設
定し、また、定電流での通電処理にあたっては、電流密
度を1μA / c+fl〜100 mA/c+fl、
好ましくは100 μA/crfl〜10mA/aaの
範囲に設定すればよい。
In this constant potential energization process, the distance between the two poles is 0.5
~10. OV, preferably 2.0 to 5. Set to a potential of OV, and when conducting constant current current density, set the current density to 1 μA/c+fl to 100 mA/c+fl,
Preferably, it may be set in the range of 100 μA/crfl to 10 mA/aa.

本発明の方法で得られた薄膜には、さらに必要に応じて
、通電洗浄、溶媒洗浄、100〜300゛Cでのベーキ
ング処理等の後処理を行うことも有効である。
It is also effective to subject the thin film obtained by the method of the present invention to post-treatments such as electrical cleaning, solvent cleaning, and baking at 100 to 300°C, if necessary.

本発明の方法にしたがって、電子写真感光体を製造する
には、上述した薄膜を、特にアル壽ニウムからなる陰極
上に電荷発生層として形成すればよいが、さらに必要に
応じて、該電荷発生層上に電荷輸送層(CTL)を形成
することも有効である。この電荷輸送層の形成は、バー
コード法、スピンコード法、ξセル電解法等により行え
ばよい。
In order to produce an electrophotographic photoreceptor according to the method of the present invention, the above-mentioned thin film may be formed as a charge generation layer on a cathode made of aluminum in particular. It is also effective to form a charge transport layer (CTL) on the layer. This charge transport layer may be formed by a bar code method, a spin code method, a ξ cell electrolysis method, or the like.

また、ここで用いる電荷輸送層の材料としては、インド
リン キノリン、トリフェニルアミン、ビスアゾ、ピラ
ゾール、ピラゾリン、オキサジアゾ1 2 一ル、チアゾール、イミダゾール、ヒドラゾン。
The materials for the charge transport layer used here include indoline quinoline, triphenylamine, bisazo, pyrazole, pyrazoline, oxadiazole, thiazole, imidazole, and hydrazone.

トリフェニルメタン、カルバゾール、ベンズアルデヒド
、ビストリフェニルアミン、ポリビニルカルバゾール等
の化合物あるいはその誘導体、さらにはこれらの化合物
や誘導体と各種重合体、共重合体とのブレンド物などが
あげられる。
Examples include compounds such as triphenylmethane, carbazole, benzaldehyde, bistriphenylamine, and polyvinylcarbazole, or derivatives thereof, and blends of these compounds and derivatives with various polymers and copolymers.

なお、アルもニウムからなる陰極上に電荷発生層を形成
した後に、その上に電荷輸送層を形成するに先立って、
両層間に必要におうじて接着層を介在させることもでき
る。この接着層はポリアミド、ニトロセルロース、カゼ
イン、ポリビニルアルコールなどから構成される。
Note that after forming the charge generation layer on the cathode made of aluminum and before forming the charge transport layer thereon,
If necessary, an adhesive layer may be interposed between both layers. This adhesive layer is composed of polyamide, nitrocellulose, casein, polyvinyl alcohol, etc.

〔実施例〕〔Example〕

次に、本発明を実施例および比較例によりさらに詳しく
説明する。
Next, the present invention will be explained in more detail with reference to Examples and Comparative Examples.

実施例1 250 ccの水に、疎水性物質として銅フタロシアニ
ン(東京化成■製、平均粒子径0.1μm)、界面活性
剤としてポリオキシエチレンラウリルエーテル(花王■
製、商品名: Br1j35. HL B値1.8.0
)および支持塩として臭化リチウムを、それぞれ7mM
、2mMおよび0.1 Mになるように加えた。この混
合液を超音波で30分間分散し、その後、室温にて一昼
夜攪拌した。
Example 1 Copper phthalocyanine (manufactured by Tokyo Kasei ■, average particle size 0.1 μm) as a hydrophobic substance and polyoxyethylene lauryl ether (Kao ■) as a surfactant were added to 250 cc of water.
Manufactured by Br1j35. HL B value 1.8.0
) and lithium bromide as supporting salt, 7mM each.
, 2mM and 0.1M. This mixed solution was dispersed with ultrasonic waves for 30 minutes, and then stirred at room temperature all day and night.

更に、−昼夜静置した後、その上澄液50ccを電解セ
ルに入れて電解液として、セルの温度を予め40℃とし
た。次いで、このセルに、陰極としてアルミニウム板、
陽極として白金板を入れて、定電流電解を行った。この
際の両極間の電流密度は0.2mA/aflとし、通電
量は0.2C/c+Itとした。
Furthermore, after being allowed to stand overnight, 50 cc of the supernatant liquid was put into an electrolytic cell to serve as an electrolytic solution, and the temperature of the cell was set to 40° C. in advance. This cell was then fitted with an aluminum plate as a cathode,
A platinum plate was inserted as an anode, and constant current electrolysis was performed. At this time, the current density between the two electrodes was 0.2 mA/afl, and the amount of current was 0.2 C/c+It.

実施例2〜5 実施例1において、セルの温度をそれぞれ50”C,6
0℃,70’C,80℃としたこと以外は、実施例1と
同様の操作を行った。結果を第1表に示す。
Examples 2 to 5 In Example 1, the cell temperature was set to 50"C and 6"C, respectively.
The same operation as in Example 1 was performed except that the temperatures were 0°C, 70'C, and 80°C. The results are shown in Table 1.

比較例1〜3 実施例1において、セルの温度をそれぞれ20”C,3
0℃190℃としたこと以外は、実施例1と同様の操作
を行った。結果を第1表に示す。
Comparative Examples 1 to 3 In Example 1, the cell temperature was set to 20"C and 3"C, respectively.
The same operation as in Example 1 was performed except that the temperature was 0°C and 190°C. The results are shown in Table 1.

3 4 実施例6 実施例1で形成した薄膜(電荷発生層:CGL−)をエ
タノールで充分洗浄した後、乾燥し、その上にポリビニ
ルカルバゾールのクロロベンゼン溶液(濃度μm重量%
)をスピンコードし、厚さ6〜8μmの電荷輸送層(C
TL)を形成した。このようにして、ポリビニルカルバ
ゾールCTL/銅フタロシアニンCGL/アルミニウム
電極からなる感光体を得た。
3 4 Example 6 The thin film (charge generation layer: CGL-) formed in Example 1 was thoroughly washed with ethanol, dried, and a chlorobenzene solution of polyvinylcarbazole (concentration μm weight %) was placed on top of it.
) was spin-coded and a charge transport layer (C
TL) was formed. In this way, a photoreceptor consisting of polyvinylcarbazole CTL/copper phthalocyanine CGL/aluminum electrode was obtained.

この感光体の性能評価を川口電機製、5P42B型試験
機を用いて、下記の如く行った。
The performance of this photoreceptor was evaluated using a 5P42B tester manufactured by Kawaguchi Electric as described below.

即ち、上記感光体に、−7kVでコロナ放電を30秒間
行って、感光体表面を負に帯電させた。
That is, the photoreceptor was subjected to corona discharge at -7 kV for 30 seconds to negatively charge the surface of the photoreceptor.

この時の表面電位をVdとし、このVdが、波長610
nm又は630nmの光(出力5μW)を照射して、半
分の値(1/2Vd)になるまでの時間(秒)を求め、
その間の光量(光強度×時間、単位:pJ/crl+)
を、波長610nm又は630nmの光に対する感光体
の指標とした。結果を第2表に示す。
The surface potential at this time is Vd, and this Vd is the wavelength of 610
Irradiate with nm or 630 nm light (output 5 μW) and find the time (seconds) it takes to reach half the value (1/2 Vd),
Amount of light during that time (light intensity x time, unit: pJ/crl+)
was used as an index of the photoreceptor for light with a wavelength of 610 nm or 630 nm. The results are shown in Table 2.

5 6 実施例7〜10および比較例4〜6 CGLとして、それぞれ実施例2〜5.比較例1〜3で
形成した薄膜を用いたこと以外は、実施例6と同様の操
作を行った。結果を第2表に示す。
5 6 Examples 7 to 10 and Comparative Examples 4 to 6 As CGL, Examples 2 to 5. The same operation as in Example 6 was performed except that the thin films formed in Comparative Examples 1 to 3 were used. The results are shown in Table 2.

(以下余白) 7 〔発明の効果〕 以上の如く、本発明の方法によれば、均一性の高い薄膜
が形成され、これを電子写真感光体の電荷発生層として
用いれば、感度の良好な電子写真感光体が得られる。
(The following is a blank space) 7 [Effects of the Invention] As described above, according to the method of the present invention, a highly uniform thin film is formed, and if this thin film is used as a charge generation layer of an electrophotographic photoreceptor, it can be used to generate electrons with good sensitivity. A photographic photoreceptor is obtained.

このようにして製造される電子写真感光体は、感度が良
好、つまり感光体特性が向上したものであるため、複写
機としてより鮮明な画像を複写でき、感度の向上により
複写時間の短縮、露光光源の省エネ化が可能となる。し
たがって、レーザープリンタにおいても同様にプリント
時間の短縮。
The electrophotographic photoreceptor manufactured in this way has good sensitivity, that is, it has improved photoreceptor characteristics, so it can be used as a copier to copy clearer images, and the improved sensitivity reduces copying time and exposure It is possible to save energy on the light source. Therefore, printing time can be shortened in laser printers as well.

露光光源の省エネルギー化が可能となる。It becomes possible to save energy in the exposure light source.

そのため、本発明の方法で製造される電子写真感光体は
、複写機、レーザープリンタをはじめ、アルミニウムを
電極として応用する電子デバイス素子(EL、センサ、
太陽電池 EC,LCDデイスプレィ、FDPデイスプ
レィ表示電極)、機能性薄膜を利用する素子(光メモリ
ディスク、PHB素子、超伝導素子、2次非線型光学素
子、3次非線型光学素子)等に幅広く有効に利用される
Therefore, the electrophotographic photoreceptor manufactured by the method of the present invention can be used in copiers, laser printers, and other electronic device elements (EL, sensors, etc.) that use aluminum as an electrode.
Widely effective for solar cells, EC, LCD displays, FDP display display electrodes), elements using functional thin films (optical memory disks, PHB elements, superconducting elements, second-order nonlinear optical elements, third-order nonlinear optical elements), etc. used.

 9−9-

Claims (4)

【特許請求の範囲】[Claims] (1)平均粒子径10μm以下の疎水性物質粉末を水性
媒体中でHLB値10.0〜20.0の界面活性剤(フ
ェロセン誘導体を除く)によって分散あるいは可溶化し
、次いで得られた分散液あるいは溶液を40〜80℃に
て通電処理して、陰極上に前記疎水性物質の薄膜を形成
することを特徴とする薄膜の製造方法。
(1) Hydrophobic substance powder with an average particle diameter of 10 μm or less is dispersed or solubilized in an aqueous medium with a surfactant (excluding ferrocene derivatives) having an HLB value of 10.0 to 20.0, and then the resulting dispersion is obtained. Alternatively, a method for producing a thin film, comprising subjecting the solution to an electric current treatment at 40 to 80° C. to form a thin film of the hydrophobic substance on the cathode.
(2)陰極が卑金属である請求項1記載の薄膜の製造方
法。
(2) The method for producing a thin film according to claim 1, wherein the cathode is a base metal.
(3)平均粒子径10μm以下の疎水性の電荷発生物質
粉末を水性媒体中でHLB値10.0〜20.0の界面
活性剤(フェロセン誘導体を除く)によって分散あるい
は可溶化し、次いで得られた分散液あるいは溶液を40
〜80℃にて通電処理して、アルミニウムからなる陰極
上に前記電荷発生物質粉末の電荷発生層を形成すること
を特徴とする電子写真感光体の製造方法。
(3) Hydrophobic charge-generating material powder with an average particle size of 10 μm or less is dispersed or solubilized in an aqueous medium with a surfactant (excluding ferrocene derivatives) having an HLB value of 10.0 to 20.0, and then the obtained 40% of the dispersion or solution
A method for manufacturing an electrophotographic photoreceptor, comprising forming a charge generation layer of the charge generation substance powder on a cathode made of aluminum by conducting a current treatment at a temperature of 80°C to 80°C.
(4)請求項3記載の方法でアルミニウムからなる陰極
上に前記電荷発生物質粉末の電荷発生層を形成後、該電
荷発生層上に電荷輸送層を形成することを特徴とする電
子写真感光体の製造方法。
(4) An electrophotographic photoreceptor characterized in that after forming a charge generation layer of the charge generation substance powder on the cathode made of aluminum by the method according to claim 3, a charge transport layer is formed on the charge generation layer. manufacturing method.
JP8741290A 1990-04-03 1990-04-03 Method for producing thin film and electrophotographic photoreceptor Expired - Lifetime JP2885467B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8741290A JP2885467B2 (en) 1990-04-03 1990-04-03 Method for producing thin film and electrophotographic photoreceptor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8741290A JP2885467B2 (en) 1990-04-03 1990-04-03 Method for producing thin film and electrophotographic photoreceptor

Publications (2)

Publication Number Publication Date
JPH03287274A true JPH03287274A (en) 1991-12-17
JP2885467B2 JP2885467B2 (en) 1999-04-26

Family

ID=13914163

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8741290A Expired - Lifetime JP2885467B2 (en) 1990-04-03 1990-04-03 Method for producing thin film and electrophotographic photoreceptor

Country Status (1)

Country Link
JP (1) JP2885467B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006063372A (en) * 2004-08-25 2006-03-09 Tokyo Institute Of Technology Thin film manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006063372A (en) * 2004-08-25 2006-03-09 Tokyo Institute Of Technology Thin film manufacturing method

Also Published As

Publication number Publication date
JP2885467B2 (en) 1999-04-26

Similar Documents

Publication Publication Date Title
JPH0219950B2 (en)
US5203974A (en) Process for producing thin films
JPH0359998B2 (en)
US5122247A (en) Process for producing thin films
JP2885467B2 (en) Method for producing thin film and electrophotographic photoreceptor
JPH0762594A (en) Thin film, its production and functional element using the thin film
JPH05201142A (en) Photoelectric conductor having liquid crystal property,photoelectric conductive layer containing said conductor,electrophotographic recording material with said layer,and method of enhancing its photoelectric conductivity
JPH05333575A (en) Electrophotographic sensitive body
JPH0430172A (en) Manufacture of thin film and electrophotographic sensitive body
JPH05134437A (en) Electrophotographic sensitive body
JPH02163745A (en) Production of electrophotographic photosensitive body
JPH04122947A (en) Production of thin film and electrophotographic sensitive body and printing method
JPH0323458A (en) Manufacture of electrophotographic sensitive body
JPH0371144A (en) Production of electrophotographic sensitive body
JPH06194849A (en) Organic photoconductor provided with liquid-crystal physical property
JPH05142806A (en) Manufacture of electrophotographic sensitive body
JPH02164435A (en) Production of thin membrane
JPH04172360A (en) Electrophotographic sensitive body
JP2557096B2 (en) Electrophotographic photoreceptor
JPH02258843A (en) Washing of thin film
JP2625724B2 (en) Image forming method
JPH07104490A (en) Coating liquid for photosensitive layer and coating liquid for charge transport layer and electrophotographic photoreceptor using the liquid
JPH0826476B2 (en) Organic thin film manufacturing method
JP4325010B2 (en) LAMINATED ELECTROPHOTOGRAPHIC PHOTOSENSOR, METHOD FOR PRODUCING THE SAME, AND METHOD FOR PRODUCING CHARGE TRANSPORT LAYER COATING USED FOR THE SAME
JPS60133457A (en) Manufacutre of electrophotographic sensitive body