JPH0328706B2 - - Google Patents

Info

Publication number
JPH0328706B2
JPH0328706B2 JP21342882A JP21342882A JPH0328706B2 JP H0328706 B2 JPH0328706 B2 JP H0328706B2 JP 21342882 A JP21342882 A JP 21342882A JP 21342882 A JP21342882 A JP 21342882A JP H0328706 B2 JPH0328706 B2 JP H0328706B2
Authority
JP
Japan
Prior art keywords
chalcogen
alloy
photoreceptor
film
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP21342882A
Other languages
Japanese (ja)
Other versions
JPS59104660A (en
Inventor
Masakazu Kato
Yoichi Nishioka
Katsuaki Umibe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP21342882A priority Critical patent/JPS59104660A/en
Publication of JPS59104660A publication Critical patent/JPS59104660A/en
Publication of JPH0328706B2 publication Critical patent/JPH0328706B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/08Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic
    • G03G5/082Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic and not being incorporated in a bonding material, e.g. vacuum deposited
    • G03G5/08207Selenium-based

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Photoreceptors In Electrophotography (AREA)

Description

【発明の詳細な説明】 (技術分野) 本発明は電子写真用感光体の製造方法に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field) The present invention relates to a method for manufacturing an electrophotographic photoreceptor.

(従来技術) 従来の電子写真用感光体はアルミニウム等の導
電性基板上に代表的なカルコゲン元素であるSe
(セレン)膜を真空蒸着法により蒸着して成るも
のであるが、このSe感光体は分光感度が500nm
付近までしかなく、また結晶化しやすく不安定で
ある。このSe感光体の安定性を改善したものと
して少量のAs(ヒ素)をSeに添加して成るSe−
Asカルコゲン合金感光体がある。また、分光感
度を長波長に伸ばしたものとしてSe−Te感光体
があり、これはSeにTe(テルル)を添加して成る
カルコゲン合金であるが、Teの添加量が増加す
るとSe−Te膜の電気抵抗が低下し、その結果表
面電荷の保持特性が悪くなり事実上、感光体とし
て使用できなくなる。さらにSeにBi(ビスマス)
を添加して成るSe−Biカルコゲン合金感光体が
あり、これは800nmにおいても分光感度を有す
る。さらに、このSe−Bi合金にI(ヨウ素)を添
加してSe−Bi−Iカルコゲン合金膜とすること
も行われている。そして、このSe−Bi−I合金
膜のように、カルコゲン合金にIのようなハロゲ
ン元素を添加した材料を用いた感光体は、添加し
ないものよりも感度が高く、また残留電位も小さ
いことが良く知られている。
(Prior art) Conventional electrophotographic photoreceptors are made of Se, a typical chalcogen element, on a conductive substrate such as aluminum.
(Selenium) film is deposited by vacuum evaporation method, and this Se photoreceptor has a spectral sensitivity of 500nm.
It is unstable and easily crystallized. To improve the stability of this Se photoreceptor, a small amount of As (arsenic) is added to Se-
There is an As chalcogen alloy photoreceptor. In addition, there is a Se-Te photoreceptor that has extended spectral sensitivity to long wavelengths, and this is a chalcogen alloy made by adding Te (tellurium) to Se. The electrical resistance of the photoreceptor decreases, and as a result, the surface charge retention properties deteriorate, making it practically unusable as a photoreceptor. Furthermore, Bi (bismuth) in Se
There is a Se-Bi chalcogen alloy photoreceptor which has spectral sensitivity even at 800 nm. Furthermore, I (iodine) is added to this Se-Bi alloy to form a Se-Bi-I chalcogen alloy film. Photoreceptors made of materials such as this Se-Bi-I alloy film in which a halogen element such as I is added to a chalcogen alloy have higher sensitivity and lower residual potential than those without the addition. well known.

従来、電子写真用感光体は導電性基板としてア
ルミニウムを用い、この基板上にカルコゲンまた
はカルコゲン合金、たとえばSe膜、Se−As合金
膜、Se−Te合金膜、Se−Bi−I合金膜等のいず
れかの感光膜を真空蒸着法により蒸着して形成す
るものである。ここで、Se−Te合金膜等の2元
系合金の蒸着は比較的容易であるが、Se−Bi−
I合金膜の形成は、その組成が3元系であること
から希望の組成の膜を基板上に形成することは非
常に難しく特殊な方法を用いねばならない。
Conventionally, electrophotographic photoreceptors use aluminum as a conductive substrate, and a chalcogen or chalcogen alloy, such as a Se film, Se-As alloy film, Se-Te alloy film, Se-Bi-I alloy film, etc., is coated on this substrate. It is formed by depositing any one of the photoresist films using a vacuum evaporation method. Here, deposition of binary alloys such as Se-Te alloy film is relatively easy, but Se-Bi-
Since the I alloy film has a ternary composition, it is very difficult to form a film with a desired composition on a substrate, and a special method must be used.

第1図はこの特殊な方法の1つであり、第1の
従来例であるフラツシユ蒸着法である。図におい
て、1はアルミニウム基板、2はるつぼ、3は材
料供給器、4は真空槽である。すなわち、予め、
Se−Bi−Iの混合物を作成し、これを細かい粒
子状に粉砕し粒度をそろえ、これを加熱されてい
るるつぼ2に少しずつ材料供給器3から供給し、
この供給された量だけ短時間に蒸発させてアルミ
ニウム基板1に真空蒸着させる方法である。
FIG. 1 shows one of these special methods, which is the first conventional example, the flash vapor deposition method. In the figure, 1 is an aluminum substrate, 2 is a crucible, 3 is a material supply device, and 4 is a vacuum chamber. That is, in advance,
Create a mixture of Se-Bi-I, grind it into fine particles to make the particle size uniform, and feed this little by little into a heated crucible 2 from a material feeder 3,
This method evaporates the supplied amount in a short time and vacuum-deposit it on the aluminum substrate 1.

しかるに、この方法では、Se−Bi−I合金の
均一な組成の非常に均一な粒度の材料が必要であ
り、また、材料供給速度の制御が非常に難しい。
さらに、Se−Bi−I合金のIをFに置き換えた
Se−Bi−F合金膜の形成をこの方法によつて行
う場合は、この3元系の材料自体を作製すること
が困難であり、この方法では不可能である。
However, this method requires a material with a uniform composition of Se-Bi-I alloy and a very uniform grain size, and it is also very difficult to control the material feed rate.
Furthermore, I replaced I in Se-Bi-I alloy with F.
When forming a Se-Bi-F alloy film by this method, it is difficult to produce the ternary material itself, and this method is not possible.

次に第2図は第2の従来例を示し、5はシヤツ
ター、その他第1図と同一符号は第1図と同一部
分である。すなわち、第2の従来例は真空蒸着法
を用いた三温度法で行うもので、Se,Bi,及び
BiF3の3種の材料を3個のるつぼ2に別々に入
れ、この各々のるつぼ2の温度を熱電対(図示せ
ず)を用いて測定しながら別々の最適温度に制御
しそれぞれの蒸発量を制御する。しかし、この場
合、3個のるつぼ2のそれぞれの温度が一定にな
り、その結果蒸発量が一定になるまでには、かな
りの時間を要し、その間にるつぼ2に入れた材料
が全部蒸発してしまうことがある。また、るつぼ
2の温度制御だけでは蒸着膜の組成を厳密に制御
できないので、るつぼ2に設けたシヤツター5の
開きを加減するなどして前記蒸発量を制御する必
要がある。従つて、この方法は、実際上いくつか
の解決すべき困難な問題を抱えている。
Next, FIG. 2 shows a second conventional example, in which reference numeral 5 denotes a shutter, and the same reference numerals as in FIG. 1 denote the same parts. In other words, the second conventional example is a three-temperature method using a vacuum evaporation method, and Se, Bi, and
Three types of BiF 3 materials are placed separately in three crucibles 2, and the temperature of each crucible 2 is controlled to a separate optimum temperature while being measured using a thermocouple (not shown) to determine the amount of evaporation of each. control. However, in this case, it takes a considerable amount of time for the temperature of each of the three crucibles 2 to become constant and, as a result, for the amount of evaporation to become constant, and during that time, all of the material placed in the crucibles 2 evaporates. Sometimes it happens. Furthermore, since the composition of the deposited film cannot be strictly controlled by controlling the temperature of the crucible 2 alone, it is necessary to control the amount of evaporation by adjusting the opening of the shutter 5 provided in the crucible 2. Therefore, this method has some difficult problems to be solved in practice.

(発明の開示) そこで、本発明者等は鋭意検討を重ねた結果、
従来の真空蒸着法の代りに、SF6ガスを用いた反
応性スパツタ法で、従来添加することが困難であ
つたFをセレン(Se)が含有されているカルコ
ゲンまたは合金に容易に添加して、Fを含有する
カルコゲンまたはカルコゲン合金膜を形成するこ
とが所望の高感度の電子写真用感光体を安定的に
かつ安価に製造できる方法であるとの知見を得、
本発明に到達した。
(Disclosure of the Invention) Therefore, as a result of extensive studies, the present inventors found that
Instead of the conventional vacuum evaporation method, F, which was difficult to add in the past, can be easily added to chalcogen or alloys containing selenium (Se) using a reactive sputtering method using SF 6 gas. , obtained the knowledge that forming a chalcogen or chalcogen alloy film containing F is a method for stably and inexpensively manufacturing a desired high-sensitivity electrophotographic photoreceptor,
We have arrived at the present invention.

すなわち本発明は、導電性基板を準備する工程
と、前記導電性基板の上に感光膜を形成せしめる
感光膜形成工程より成り、前記感光膜形成工程は
スパツタガスにアルゴンを、反応性ガスにSF6
ス(6フツ化イオウ)を用いた反応性スパツタ法
により行い、スパツタターゲツトにはセレン
(Se)が含有されているカルコゲンまたはカルコ
ゲン合金を用いて、セレン(Se)が含有されて
いるカルコゲンまたはカルコゲン合金にF(フツ
素)及びS(イオウ)を添加した薄膜を形成する
ことを特徴とする電子写真用感光体の製造方法で
あり、所望の高感度の電子写真用感光体を安定的
にかつ安価に製造することを目的とする。
That is, the present invention comprises a step of preparing a conductive substrate and a photoresist film forming step of forming a photoresist film on the conductive substrate, and the photoresist film forming step uses argon as a sputtering gas and SF 6 as a reactive gas. A reactive sputtering method using a gas (sulfur hexafluoride) is used, and a chalcogen or chalcogen alloy containing selenium (Se) is used as the sputtering target. This is a method for producing an electrophotographic photoreceptor, which is characterized by forming a thin film in which F (fluorine) and S (sulfur) are added to a chalcogen alloy. The purpose is to manufacture it at low cost.

(実施例) 以下本発明の実施例を図面を参照して詳細に説
明する。
(Example) Examples of the present invention will be described in detail below with reference to the drawings.

先ず、第3図に第1の実施例を示す、第3図は
高周波スパツタ装置であり、1aはアルミニウム
基板、6はスパツタ用ターゲツト(Se98Bi2カル
コゲン合金ターゲツト)、4は真空槽、7はバリ
アブルリークバルブ、8はArガス容器、9はSF6
ガス容器である。
First, a first embodiment is shown in Fig. 3. Fig. 3 shows a high frequency sputtering device, in which 1a is an aluminum substrate, 6 is a sputtering target (Se 98 Bi 2 chalcogen alloy target), 4 is a vacuum chamber, and 7 is a sputtering target. is a variable leak valve, 8 is an Ar gas container, 9 is SF 6
It's a gas container.

まず始めに真空槽4を、バリアブルリークバル
ブ7を閉じた状態で10-6Torr以下の真空度にな
るように、真空ポンプ(図示せず)で高真空にす
る。このあとSF6ガスをバリアブルリークバルブ
7を調節して真空度が1×10-5Torrになるよう
に真空槽4中に導入する。このあとArガスを、
バリアブルリークバルブ7を調節して、真空度が
5×10-4Torrになるように真空槽4中に導入す
る。このようにしてArガス中のSF6ガスの割合を
2%とした。このあと、13.56MHzの高周波をAr
ガスとSF6ガスに印加し、この混合ガスをプラズ
マ化し、Se98Bi2カルコゲン合金ターゲツト6を
スパツタした。この結果、基板1a上にSe−Bi
−F−S合金がスパツタされて薄膜が形成され
た。ここで、ターゲツト6の直径80mm、基板1a
とターゲツト6間の距離50mm、高周波実効出力
80W、基板温度50℃のときの成膜速度は約0.15μ
m/minであつた。また、以上のSF6ガスを用い
る反応性スパツタの反応機構、すなわちSF6がど
のような形に分解して、どのようにSe−Bi合金
にFとSが添加されるかは不明であるが、再現性
良くSe−Bi−F−S合金膜を形成することがで
きる。
First, with the variable leak valve 7 closed, the vacuum chamber 4 is brought to a high vacuum with a vacuum pump (not shown) to a degree of vacuum of 10 -6 Torr or less. Thereafter, SF 6 gas is introduced into the vacuum chamber 4 by adjusting the variable leak valve 7 so that the degree of vacuum is 1×10 -5 Torr. After this, add Ar gas,
The variable leak valve 7 is adjusted and the vacuum is introduced into the vacuum chamber 4 so that the degree of vacuum becomes 5×10 −4 Torr. In this way, the proportion of SF 6 gas in Ar gas was set to 2%. After this, the high frequency of 13.56MHz is
The gas and SF 6 gas were applied to turn the mixed gas into plasma, and a Se 98 Bi 2 chalcogen alloy target 6 was sputtered. As a result, Se-Bi
-F-S alloy was sputtered to form a thin film. Here, the diameter of the target 6 is 80 mm, and the substrate 1a is
Distance between target 6 and target 6: 50 mm, high frequency effective output
Deposition speed is approximately 0.15μ at 80W and substrate temperature 50℃
m/min. Furthermore, the reaction mechanism of the reactive sputtering using SF 6 gas described above, i.e., how SF 6 decomposes and how F and S are added to the Se-Bi alloy is unknown. , a Se-Bi-F-S alloy film can be formed with good reproducibility.

以上説明した、SF6ガスを用いての反応性スパ
ツタ法により作成したSe−Bi−F−S合金膜の
組成を分析したところSe98.1Bi1.8F0.05S0.01であり、
ターゲツト組成とほぼ同組成のSe−Bi合金に少
量のFとSが添加されている組成であることがわ
かつた。さらにアルミニウム基板上に20μm厚の
このSe−Bi−F−S合金膜を形成した感光体を
作成し、その特性を測定したところ、Se−Bi−
I感光体と同様に800nmにおいても高感度を示し
た。また、この感光体は安定で、長時間のくりか
えし使用に対して結晶化、割れ等も生ぜず、残留
電位も小さかつた。
The composition of the Se-Bi-F-S alloy film prepared by the reactive sputtering method using SF 6 gas as described above was analyzed and found to be Se 98.1 Bi 1.8 F 0.05 S 0.01 .
It was found that the composition was a Se-Bi alloy with approximately the same composition as the target composition, with small amounts of F and S added. Furthermore, a photoreceptor was fabricated with a 20 μm thick Se-Bi-F-S alloy film formed on an aluminum substrate, and its properties were measured.
Like the I photoreceptor, it also showed high sensitivity at 800 nm. Further, this photoreceptor was stable, did not undergo crystallization or cracking even after repeated use over a long period of time, and had a small residual potential.

なお以上は、ターゲツトにSe98Bi2カルコゲン
合金を用いたが、その代りにカルコゲンである
Seをターゲツトに使用して、前記と全く同一条
件でスパツタを行い感光膜を作成したところ、成
膜速度は約0.2μm/minであつた。さらにこの感
光膜の組成を分析したところ、その組成はSe99.9
F0.08S0.02であり、FとSがSeに添加されていた。
またこの感光体はSeとほぼ同じ分光感度を有し
ていた。
In addition, although Se 98 Bi 2 chalcogen alloy was used as the target in the above example, chalcogen alloy was used instead.
When a photoresist film was formed by sputtering using Se as a target under the same conditions as above, the film formation rate was about 0.2 μm/min. Further analysis of the composition of this photoresist revealed that the composition was Se 99.9.
F 0.08 S 0.02 , and F and S were added to Se.
Moreover, this photoreceptor had almost the same spectral sensitivity as Se.

このように、本発明によれば、今までカルコゲ
ン合金またはカルコゲンに添加することが困難で
あつたFを容易に再現性良く添加することが可能
となつた。なお、Fと同時に添加されたS(イオ
ウ)は、カルコゲンそのものであり、また微量で
あり、形成された感光膜の特性にはほとんど影響
していなかつた。
As described above, according to the present invention, it has become possible to easily add F, which has been difficult to add to chalcogen alloys or chalcogens, with good reproducibility. Note that S (sulfur), which was added at the same time as F, was a chalcogen itself and was in a very small amount, so it had almost no effect on the characteristics of the photoresist film formed.

第1の実施例は平面状アルミニウム板を基板に
使用したのに対し、第2の実施例は第4図に示す
ようにドラム状の基板10を10r.p.mの速度で回
転させながら、このドラム状基板10の上に第1
の実施例と同じ方法でSe−Bi−F−S4元系カル
コゲン合金を均一に0.2μm厚形成した。このあ
と、このSe−Bi−F−S薄膜を形成したドラム
10を真空槽4中から取り出し、ポリビニルカル
バゾールのテトラヒドロフラン溶液をスプレーコ
ーテイング法により20μm厚さにコーテイングし
て2層型の感光体ドラムを作成した。そして、
830nmの発光波長を持つ半導体レーザーを光源と
したレーザービームプリンタに、この感光体ドラ
ムを取り付け、印示試験を行つたところ、−5KV
の低コロナ電圧の使用でも十分にコントラストの
高い、優れた印字品質を示した。
In the first embodiment, a flat aluminum plate was used as the substrate, whereas in the second embodiment, as shown in FIG. 4, the drum-shaped substrate 10 was rotated at a speed of 10 rpm. The first
A Se-Bi-F-S quaternary chalcogen alloy was uniformly formed to a thickness of 0.2 μm using the same method as in Example 1. Thereafter, the drum 10 on which the Se-Bi-F-S thin film was formed was taken out from the vacuum chamber 4 and coated with a tetrahydrofuran solution of polyvinylcarbazole to a thickness of 20 μm using a spray coating method to form a two-layer photoreceptor drum. Created. and,
When this photoreceptor drum was attached to a laser beam printer using a semiconductor laser as a light source with an emission wavelength of 830 nm and a printing test was performed, -5KV was detected.
Excellent print quality with sufficiently high contrast was demonstrated even when using low corona voltages.

(発明の効果) 以上のように本発明による製造方法によれば、
従来の真空蒸着法の代りに、SF6ガスを用いた反
応性スパツタ法で、従来添加することが困難であ
つたFをセレン(Se)が含有されているカルコ
ゲンまたはカルコゲン合金に容易に添加して、F
を含有するカルコゲンまたはカルコゲン合金膜を
形成するようにしたので、所望の高感度の電子写
真用感光体を安定的にかつ安価に製造できる。
(Effect of the invention) As described above, according to the manufacturing method of the present invention,
Instead of the conventional vacuum evaporation method, a reactive sputtering method using SF 6 gas is used to easily add F, which was difficult to add in the past, to chalcogen or chalcogen alloys containing selenium (Se). T, F
By forming a chalcogen or chalcogen alloy film containing , a desired high-sensitivity electrophotographic photoreceptor can be produced stably and at low cost.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のSe−Bi−I合金感光体の製造
方法を説明するための図、第2図は従来のSe−
Bi−F合金感光体の製造方法を説明するための
図、第3図および第4図は本発明による電子写真
用感光体の製造方法の各実施例を説明するための
図である。 1a……アルミニウム基板、4……真空槽、6
……ターゲツト、7……バリアブルリークバル
ブ、8……Arガス容器、9……SF6ガス容器、1
0……ドラム状基板。
Figure 1 is a diagram for explaining the conventional method of manufacturing a Se-Bi-I alloy photoreceptor, and Figure 2 is a diagram for explaining the conventional Se-Bi-I alloy photoreceptor manufacturing method.
3 and 4 are diagrams for explaining the method for manufacturing a Bi-F alloy photoreceptor, and FIGS. 3 and 4 are diagrams for explaining each embodiment of the method for manufacturing an electrophotographic photoreceptor according to the present invention. 1a... Aluminum substrate, 4... Vacuum chamber, 6
...Target, 7...Variable leak valve, 8...Ar gas container, 9...SF 6 gas container, 1
0...Drum-shaped substrate.

Claims (1)

【特許請求の範囲】[Claims] 1 導電性基板を準備する工程と、前記導電性基
板の上に感光膜を形成せしめる感光膜形成工程よ
り成り、前記感光膜形成工程はスパツタガスにア
ルゴンを、反応性ガスにSF6ガス(6フツ化イオ
ウ)を用いた反応性スパツタ法により行い、スパ
ツタターゲツトにはセレン(Se)が含有されて
いるカルコゲンまたはカルコゲン合金を用いて、
セレン(Se)が含有されているカルコゲンまた
はカルコゲン合金にF(フツ素)及びS(イオウ)
を添加した薄膜を形成することを特徴とする電子
写真用感光体の製造方法。
1. The method consists of a step of preparing a conductive substrate and a photoresist film forming step of forming a photoresist film on the conductive substrate. It is carried out by a reactive sputtering method using selenium (sulfur chloride), and a chalcogen or chalcogen alloy containing selenium (Se) is used as the sputtering target.
F (fluorine) and S (sulfur) in chalcogen or chalcogen alloy containing selenium (Se)
1. A method for producing an electrophotographic photoreceptor, the method comprising forming a thin film containing.
JP21342882A 1982-12-07 1982-12-07 Manufacture of photosensitive body for electrophotography Granted JPS59104660A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21342882A JPS59104660A (en) 1982-12-07 1982-12-07 Manufacture of photosensitive body for electrophotography

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21342882A JPS59104660A (en) 1982-12-07 1982-12-07 Manufacture of photosensitive body for electrophotography

Publications (2)

Publication Number Publication Date
JPS59104660A JPS59104660A (en) 1984-06-16
JPH0328706B2 true JPH0328706B2 (en) 1991-04-19

Family

ID=16639060

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21342882A Granted JPS59104660A (en) 1982-12-07 1982-12-07 Manufacture of photosensitive body for electrophotography

Country Status (1)

Country Link
JP (1) JPS59104660A (en)

Also Published As

Publication number Publication date
JPS59104660A (en) 1984-06-16

Similar Documents

Publication Publication Date Title
US4664998A (en) Electrophotographic image forming member having hydrogenated amorphous photoconductive layer including carbon
JPH0756569B2 (en) Photoconductor and image forming member for electrophotography
JPH01315766A (en) Manufacture of image forming member for xerography
US4298671A (en) Tellurium layer allows vapor deposition of crystalline selenium thereon in making double layer electrophotographic record material
JPH0328706B2 (en)
US3966512A (en) Method of manufacturing targets of pickup tubes
US3984585A (en) Vacuum evaporation plating method
US4241158A (en) Vacuum deposited electrophotographic photosensitive member
US4343883A (en) Method for producing an electrophotographic recording material having dual layer of amorphous and crystallized Se
US4008082A (en) Method for producing an electrophotographic recording material
US5002734A (en) Processes for preparing chalcogenide alloys
US4894307A (en) Processes for preparing and controlling the fractionation of chalcogenide alloys
US4758487A (en) Electrostatographic imaging members with amorphous boron
US5035857A (en) Processes for preparing chalcogenide alloys
JP2574485B2 (en) Method for controlling crystallization of chalcogenide alloys
US4210710A (en) Photoconductor of varying light sensitivity from center to edges
JPH0117572B2 (en)
US4476209A (en) Selenium-antimony alloy electrophotographic photoreceptors
US3466183A (en) Method of manufacturing photoconductive layers
US4904559A (en) Processes for suppressing the fractionation of chalcogenide alloys
JP2959685B2 (en) Method for producing fine-particle powder, fine-particle powder, and method for forming functional film containing fine-particle powder
JPH06161137A (en) Manufacture of electrophotographic selenium photosensitive body
RU1789966C (en) Electrophotographic material
US5075191A (en) Process for controlling alloy fractionation
JPS59133550A (en) Electrophotographic sensitive body