JPH0328650A - Air conditioner - Google Patents

Air conditioner

Info

Publication number
JPH0328650A
JPH0328650A JP1165019A JP16501989A JPH0328650A JP H0328650 A JPH0328650 A JP H0328650A JP 1165019 A JP1165019 A JP 1165019A JP 16501989 A JP16501989 A JP 16501989A JP H0328650 A JPH0328650 A JP H0328650A
Authority
JP
Japan
Prior art keywords
current
air conditioner
compressor
indoor
microcomputer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1165019A
Other languages
Japanese (ja)
Inventor
Koichi Takamaru
浩一 高丸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP1165019A priority Critical patent/JPH0328650A/en
Publication of JPH0328650A publication Critical patent/JPH0328650A/en
Pending legal-status Critical Current

Links

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

PURPOSE:To detect a malfunction without outdoor microcomputer by operating a compressor for a predetermined period of time from when a power source is turned ON, comparing its current value with a reference value to detect a malfunction, and further comparing an indoor device diffusing temperature with an operation content. CONSTITUTION:An indoor unit 1 of an air conditioner is connected to an outdoor unit 2 via a power line 18. When a switch 19 is closed, a relay 6 is forcibly turned ON, a compressor 9 is operated for a predetermined period of time. When its current is detected by a current detector 3 and input to an indoor microcomputer 15 as a voltage, it is compared with a reference value to judge whether a malfunction occurs or not. Further, the compressor 9 is operated, diffusing temperature of the unit 1 after a predetermined period of time is detected by a diffusing temperature sensor 4, compared with an operation content of the conditioner to judge whether a malfunction occurs or not. Thus, an inexpensive air conditioner in which communication of a signal with the outdoor unit and an outdoor microcomputer are eliminated can be provided.

Description

【発明の詳細な説明】 〔産業−Lの利用分野〕 この発明は空調機の異常検知に関するものである。[Detailed description of the invention] [Industry-L usage field] This invention relates to abnormality detection in air conditioners.

〔従来の技術〕[Conventional technology]

第5図は例えば特開昭67−17338号公報に示され
た従来の空気調和機の動作保護装置を示すプロツク図で
あり,図において(1)は室内ユニyh,(2)は室外
ユニット,(5)は室内の温度を検出してそれをマイコ
ンへ入力する室内温度センサ.(9)は圧縮機(l5)
は室内マイコン, (16)は室内マイコン(l5)か
らの信号を室外ユニノト(2)に送信したり,或は室外
ユニット(2)から送られてくる信号を受信したりする
送受信回路. (17)は室内リレーの入力信53″O
p),(17a)は入力信号側(17)によってON,
 f1FFするリレーの接点側.(18)は電力線,(
+9)は室外マイコン(20)は室外マイコン(l9)
からの信号を室内ユニ,ト(1)に送信したり,或は室
内ユニノト(+)から送られてくる信号を受信したりす
る送受信回路(21)は室外リレーの人力信号側, (
21a)は入力信リ・側(2I)によってON, OF
Fするリレーの接点側,(22冫は信号線である。
FIG. 5 is a block diagram showing a conventional air conditioner operation protection device disclosed in, for example, Japanese Unexamined Patent Publication No. 67-17338. In the figure, (1) is an indoor unit yh, (2) is an outdoor unit, (5) is an indoor temperature sensor that detects the indoor temperature and inputs it to the microcontroller. (9) is the compressor (l5)
is an indoor microcomputer, and (16) is a transmitting/receiving circuit that transmits signals from the indoor microcomputer (l5) to the outdoor unit (2) or receives signals sent from the outdoor unit (2). (17) is the indoor relay input signal 53″O
p), (17a) are turned ON by the input signal side (17),
f1FF relay contact side. (18) is a power line, (
+9) is an outdoor microcomputer (20) is an outdoor microcomputer (l9)
The transmitter/receiver circuit (21) that transmits the signal from the indoor unit (1) to the indoor unit (+) or receives the signal sent from the indoor unit (+) is the human signal side of the outdoor relay (
21a) is turned on and off depending on the input signal side (2I)
On the contact side of the F relay, (22nd line is the signal line.

また,第6図(a)は室内ユニットの処理手ハ10を示
すフローチャート図2第6図(b)は室外ユニットの処
理手順を示すフローチャート図である。なお第6図(a
),(b)のフローチャート図のステ,ブについては従
来技術の作用動作の項門で説明する。
FIG. 6(a) is a flowchart showing the processing procedure 10 of the indoor unit. FIG. 6(b) is a flowchart showing the processing procedure of the outdoor unit. In addition, Fig. 6 (a
) and (b) in the flowchart will be explained in the section on the functions and operations of the prior art.

次に動作について説明する。室内ユニッl−(1)の内
部にある室内マイコン(15)から出力される信号を室
内ユニy}(1)内部の送受信向路(1G)で−旦受け
取り,送受信回路(l6)から信号線(22)を通して
室外ユニット(2)内部の送受信回路(20)に信号が
送信され,送受信回路(20)で受信された室内側から
の伝号は室外ユニット(2)内部の室外マイコン(19
)に人力される。 また逆に室外マイコン(I9)から
出力された信号は,室外ユニット(2)内部の送受信回
路(20)で−旦受け取られ,送受信回路(20〉から
信号線(22)を通して室内ユニッh(1)内部の送受
信回路(l6)に信号が送信される。送受イ3同路(1
6)で受信された信号は,室内マイコン(15)に人力
される。
Next, the operation will be explained. The signal output from the indoor microcomputer (15) inside the indoor unit (1) is received by the transmission/reception path (1G) inside the indoor unit (1), and then sent from the transmission/reception circuit (l6) to the signal line. (22), the signal is transmitted to the transmitting/receiving circuit (20) inside the outdoor unit (2), and the transmission received by the transmitting/receiving circuit (20) from the indoor side is transmitted to the outdoor microcomputer (19) inside the outdoor unit (2).
) is done manually. Conversely, the signal output from the outdoor microcomputer (I9) is first received by the transmitter/receiver circuit (20) inside the outdoor unit (2), and then passed from the transmitter/receiver circuit (20> to the signal line (22)) to the indoor unit h (1). ) A signal is transmitted to the internal transmitter/receiver circuit (l6).
The signal received at step 6) is input manually to the indoor microcomputer (15).

以−Lの様な信号の送受信のタイミングや信号の組l7
”で或は信号の送受信が誤配線等の理山によってiE常
に行わななかった場合に異常を検知する手段や動作保護
,異常表示を行う手段は全て室内ユニ1ト0)室外ユニ
・yト(2)内部のそれぞれ室内マイコン(1)室外マ
・イコン(2)に含まれるソフトによっ゛C行われる。
Timing of transmission and reception of signals such as L and signal set l7
”, or when signal transmission and reception are not always performed due to faulty wiring, etc., the means for detecting abnormality, operation protection, and abnormality display are all indoor unit 10) outdoor unit yt. (2) C is performed by software included in the indoor microcontroller (1) and outdoor microcontroller (2), respectively.

第6図(a)に室内ユニソトの処理手順を示すフローチ
ャート図を,また第6図(b)に室外ユニットの処理手
11fnを示すフローチャート図を示す。
FIG. 6(a) shows a flowchart showing the processing procedure of the indoor unit, and FIG. 6(b) shows a flowchart showing the processing procedure 11fn of the outdoor unit.

i6図(a)においてステップ(4l)では室外ユニッ
ト(2)に送f3する信号を組立てており,ステップ(
42)で送f3信号を出力]7ている。ステップ(43
)では逆に室外ユニット(2)から送信されてきた信″
−3を入力し5ており,ステップ(44)ではその送信
信号が正常に受信されたかどうか確認1、ている。正常
に受信された場合には,ステップ(45)へと進み圧常
に受信されなかった場合には,ステップ(46)へと進
む。ステップ(45)では室外から送られてきた送信信
号が通常の信号であるか,或は室内ユニット(1)から
室外ユニット(2〉へ送られた信号を室外マイコン(l
9)が正常に受信できなかった場合に室外ユニット(2
)から室内ユニット(1)へと送られる異常を知らせる
信号であるかを確認しており,通常の信号であればステ
ップ(4l)へと戻り異常を知らせる信号であった場合
にはステップ(46)、(47)へと進み,リレーの接
点側(17a), (21a)をOFFすると共に異常
表示を点灯させる。
In Figure i6 (a), step (4l) assembles the signal f3 to be sent to the outdoor unit (2), and step (4l) assembles the signal f3 to be sent to the outdoor unit (2).
42) outputs the sending f3 signal]7. Step (43
), conversely, the message sent from the outdoor unit (2)
-3 is input, and in step (44), a check is made to see if the transmitted signal has been received normally. If the signal is received normally, the process proceeds to step (45); if the signal is not received normally, the process proceeds to step (46). In step (45), the transmission signal sent from outside is a normal signal, or the signal sent from the indoor unit (1) to the outdoor unit (2) is sent to the outdoor microcomputer (l).
If the outdoor unit (9) cannot be received normally, the outdoor unit (2)
) to the indoor unit (1), and if it is a normal signal, the process returns to step (4l), and if it is a signal notifying an abnormality, it goes to step (46). ), proceed to (47), turn off the contact sides (17a) and (21a) of the relay, and light up the abnormality display.

また第6図(b)においてステップ(5l)では室内ユ
ニット(1)から送られてきた信号を受信しており,ス
テップ(52)で正常に受信されたかどうか確認してい
る。正常に受信されたのであればステップ(53)へと
進み正常に受信されなかったのであればステップ(55
)へと進む。ステップ(53)では室内ユニット(1)
へ送信する信号を組み立てており,ステップ(54)で
送信信号を室内ユニット(1)へ出力する。ステップ(
55)では室内ユニット(1)からの送信信号が正常に
受信出来なかったことを室内マイコン(15)に知らせ
るために受信異常信号を組み立てており それをステッ
プ(54)で出力している〔発明が解決しようとする課
題〕 従来の空気調和機の動作保護装置は以−Lの様に構成さ
れているので,室外ユニット内部にもマイコンを実装し
なければならずまた室内ユニットと室外ユニットとの情
報交換が信号で行われる為,室内,室外両ユニットに送
受信回路を設けることが必要で動作保護装置が非常に高
価なものになるなどの問題点があった。
Further, in FIG. 6(b), in step (5l), the signal sent from the indoor unit (1) is received, and in step (52), it is confirmed whether or not it has been received normally. If the reception is normal, proceed to step (53); if the reception is not normal, proceed to step (55).
). In step (53), indoor unit (1)
A signal to be transmitted to the indoor unit (1) is assembled, and in step (54) the transmitted signal is output to the indoor unit (1). Step (
In step 55), a reception error signal is assembled to notify the indoor microcomputer (15) that the transmission signal from the indoor unit (1) could not be received normally, and it is output in step (54) [Invention [Problems to be Solved] Conventional air conditioner operation protection devices are configured as shown below, so a microcomputer must be installed inside the outdoor unit, and the connection between the indoor unit and outdoor unit must be Since information is exchanged using signals, it is necessary to install transmitter/receiver circuits in both the indoor and outdoor units, which poses problems such as the operation protection device becoming extremely expensive.

この発明は−L記の様な問題点を解消するためになされ
たもので,室外マイコン及び信号の送受信回路を設けな
くても異常検知を可能とする空,S’!fiを得ること
を目的とする。
This invention was made in order to solve the problems mentioned in -L, and it is possible to detect an abnormality without installing an outdoor microcomputer and a signal transmitting/receiving circuit. The purpose is to obtain fi.

〔課題を解決するための手段〕 この発明に係る空調機は,全負荷電流を検出する電流検
出回路を設け,電源投入時からある一定時間強制的に圧
縮機を運転させて負荷電流を獲得し,これと電流の基準
値とを比較する手段と,空調機運転中に圧縮機が運転し
始めてからある一定時間後の室内機吹き出し温度を検出
し,これと空調機の運転内容とを比較する手段とで児常
を検知できるようにしたものである。
[Means for Solving the Problems] The air conditioner according to the present invention is provided with a current detection circuit that detects the full load current, and acquires the load current by forcibly operating the compressor for a certain period of time from when the power is turned on. , a means of comparing this with a standard value of current, and a method of detecting the indoor unit outlet temperature after a certain period of time after the compressor starts operating while the air conditioner is operating, and comparing this with the operation details of the air conditioner. It is possible to detect abnormalities in children by means of this method.

〔作用〕[Effect]

この発明における空調機は,電源投入時からある一定時
間圧縮機を運転させることによって電流検出回路で電流
を検出し,これとあらかじめ定められた電流の基嘲値と
を比較することによって賢常を検知し,なおかつ空調機
運転中に圧縮機が運転し始めてからある一定時間後の室
内機吹き出し温度を検出し,これと窄調機の運転内容と
を比較し吹き出し温度が運転内容と見合っているかどう
かを判断することにより異常を検知する。
The air conditioner of this invention detects the current with the current detection circuit by operating the compressor for a certain period of time from the time the power is turned on, and compares this with a predetermined basic value of the current. Furthermore, while the air conditioner is running, the indoor unit outlet temperature is detected after a certain period of time after the compressor starts operating, and this is compared with the operation details of the air conditioner to determine whether the outlet temperature is commensurate with the operation details. Anomalies are detected by determining whether

〔発明の実施例〕[Embodiments of the invention]

以下この発明の一実施例を閾について説明する第1図に
おいて(1)は室内ユニット,(2)は室外ユニッ} 
, (3)は全負荷電流を検出する電流検出同路(4)
は室内機の吹き出し温度を検出する吹き出し温度センサ
,(6〉は室外ユニノト(2)に電源を供給したり,停
止したりする電源供給リレー,(7)は四方弁(10)
をON, OFFする四方弁リレー,(8)は外ファン
(11)をON, OFFする外ファンリレー,(9)
は圧縮機(10)は四方弁,(11)は外ファン.(+
2)は外ファンリレー(8)と共に外ファン(II)を
ON,OFFするSSR,(+5)は室内マイコン,(
18)は電力線, (19)はオールOFFスイッチで
ある。
In Fig. 1, which describes an embodiment of the present invention regarding a threshold, (1) is an indoor unit, and (2) is an outdoor unit.
, (3) is the current detection circuit (4) that detects the full load current.
is an air outlet temperature sensor that detects the air outlet temperature of the indoor unit, (6) is a power supply relay that supplies or stops power to the outdoor unit (2), (7) is a four-way valve (10)
4-way valve relay that turns ON and OFF, (8) is an outside fan relay that turns ON and OFF the outside fan (11), (9)
The compressor (10) is a four-way valve, and (11) is an outside fan. (+
2) is the SSR that turns on and off the outside fan (II) together with the outside fan relay (8), (+5) is the indoor microcomputer, (
18) is a power line, and (19) is an all-OFF switch.

次に全体負荷電流を検出する電流検出回路(3)の一実
施例を第2図に示す。図においてク3a)はカレントト
ランス, (3b)は放電抵抗, (3C)は交流を直
流に整流するダイオードアレイ.  (3d)は整流さ
れた波形を平滑にする電解コンデンサ, (3e)は電
解コンデンサ(3 (1 )の両端に発生する電圧を分
圧して室内マイコン(I5)に人力する為の分圧抵抗,
 (3f)は電解コンデンサ(3d)のプラス側の電位
が上がり過ぎてしまうことを防!ヒするダイオード. 
(3g)は圧縮機(9),外ファン(11),四方弁(
10)等の負荷である。
Next, an embodiment of the current detection circuit (3) for detecting the overall load current is shown in FIG. In the figure, 3a) is a current transformer, (3b) is a discharge resistor, and (3C) is a diode array that rectifies alternating current to direct current. (3d) is an electrolytic capacitor that smooths the rectified waveform, (3e) is a voltage dividing resistor that divides the voltage generated across the electrolytic capacitor (3 (1) and supplies it manually to the indoor microcomputer (I5),
(3f) prevents the positive potential of the electrolytic capacitor (3d) from rising too high! A diode that burns.
(3g) consists of compressor (9), outside fan (11), four-way valve (
10) etc.

第1図において空調機のコンセントが電源に羞し込まれ
オールOFFスイソチ(l9)が閉じられて空調機に,
通電された状態となった時に空調機を運転する,しない
にかかわらず強制的にリレー(6)をONさせることに
より圧縮機(9)をある一定時間運転させる。圧縮機(
9−)に通霜されたことにより電流が生じるので,その
電流を電流検出回路(3)によって検出し,電圧に変換
して室内マイコン(l5)に入力する。電流を電圧に変
換するのは電流検出同路(3)内で行われる。
In Figure 1, the outlet of the air conditioner is plugged into the power supply, the all OFF switch (l9) is closed, and the air conditioner is turned on.
When energized, the compressor (9) is operated for a certain period of time by forcibly turning on the relay (6) regardless of whether the air conditioner is operated or not. Compressor (
9-) generates a current, the current is detected by the current detection circuit (3), converted to voltage, and input to the indoor microcomputer (15). The conversion of current to voltage takes place in the current sensing circuit (3).

第2図において,カレントトランス(3a)の1次側に
S流が流れると,2次側に接続されている放電抵抗(3
b)の両端に電圧が発生する。ダイオードアレイ(3C
)で整流されると電解コンデンサ(3d)の両端は直流
電圧となり,その直流電圧は分圧抵抗(3e)によって
分圧されて,マイコンに入力されるようになっている。
In Figure 2, when the S current flows through the primary side of the current transformer (3a), the discharge resistor (3a) connected to the secondary side
A voltage is generated across b). Diode array (3C
), both ends of the electrolytic capacitor (3d) become a DC voltage, which is divided by a voltage dividing resistor (3e) and input to the microcomputer.

カレントトランス(3a)の1次側に流れる電流の大き
さによって電解コンデンサ(3d)の両端の電圧の大き
さも決まってくる為,1次側に流れる電流が大きければ
マイコン人力電圧も大きくなり,l次側に流れる電流が
小さければマイコン人力電圧も小さいものとなる。
The size of the voltage across the electrolytic capacitor (3d) is determined by the size of the current flowing to the primary side of the current transformer (3a), so if the current flowing to the primary side is large, the microcomputer voltage will also be large, and l If the current flowing to the next side is small, the microcomputer input voltage will also be small.

室内マイコン(l5)に入力された電圧値はマイコン内
部で霜流値の基準値に相当する電圧値と比較され,その
結果によって空調機が正常な状態であるか或は異常であ
るかを判断する。
The voltage value input to the indoor microcomputer (l5) is compared with the voltage value corresponding to the reference value of frost flow value inside the microcomputer, and based on the result, it is determined whether the air conditioner is in a normal state or abnormal. do.

以−hの動作を行うためのソフトのフローチャート図を
第4図(a)に示す。図においてステップ(6l)は圧
縮機運転手段(64)に相当し,ここでは字調機に通電
されたら,ある一定時間強制的に圧縮機(9)を運転さ
せる。ステップ(62)では圧縮fi(9)が運転され
た時の電流を検出し,それを電圧に変換して室内マイコ
ン(I5)に人力している。ステップ(63)では検出
された電流値とあらかじめ定められた電流値の基準値と
を比較しており検出された電流が)Ai?i値より高け
れば正常とし逆に基準値より低ければ異常となる。例え
ば電流値の基準値を2〔A〕とし空調機に通電されてか
ら2秒間強制的に圧縮機を運転させるとすると,その時
の電流値は圧縮機(9)の電流容量にもよるが2秒間あ
れば5〔A〕〜6〔A〕となるので,マイコンに入力さ
れた電圧植が5〔A〕〜6(A]という電流{i/fに
相当するものであれば空調機は正常であると判断する。
A flowchart of the software for performing the following operations is shown in FIG. 4(a). In the figure, step (6l) corresponds to the compressor operating means (64), and here, when the character adjustment machine is energized, the compressor (9) is forcibly operated for a certain period of time. In step (62), the current when the compression fi (9) is operated is detected, converted to voltage, and manually supplied to the indoor microcomputer (I5). In step (63), the detected current value is compared with a predetermined reference current value, and the detected current is )Ai? If it is higher than the i value, it is considered normal, and conversely, if it is lower than the reference value, it is abnormal. For example, if the reference current value is 2 [A] and the compressor is forced to operate for 2 seconds after the air conditioner is energized, the current value at that time will be 2 [A], although it depends on the current capacity of the compressor (9). If it lasts for a second, it will be 5 [A] to 6 [A], so if the voltage input to the microcomputer corresponds to the current {i/f] of 5 [A] to 6 (A), the air conditioner is normal. It is determined that

また仮にリレー(6)がONすると四方弁(10)に゛
通電し,リレー(7)がONすると圧縮fi(9)に通
電されるという様な室内ユニyト(1)と室外ユニソト
(2)との配線接続に誤配線が生じた場合は空調機1こ
通電されてリレー(6)が2秒間ON L,ていても圧
fi1機(9)には通電されず四方弁(10)に通電さ
れろことになる。四方弁(10)の電流容量は圧縮機(
9)の電流容頂稈大きくなく約1〔A〕程度であるので
基明値の2〔A〕よりも小さくなり空調機に異常がある
ということになる。なお電流を検出して基準値と比較す
るステップ(62), (63)が電流比較手段(65
)に相当する。
In addition, if the relay (6) is turned on, the four-way valve (10) is energized, and when the relay (7) is turned on, the compression fi (9) is energized. ), if there is a wiring error in the wiring connection, even if one air conditioner is energized and the relay (6) is ON for 2 seconds, the pressure filter 1 (9) will not be energized and the four-way valve (10) will be turned on. The power will be turned on. The current capacity of the four-way valve (10) is the same as that of the compressor (
Since the current capacity in 9) is not large and is about 1 [A], it is smaller than the standard value of 2 [A], indicating that there is an abnormality in the air conditioner. Note that the steps (62) and (63) of detecting the current and comparing it with the reference value are the current comparison means (65).
).

しかし第1図においては圧縮機運転手段及び電流比較手
段を行っても異常が検知されないパターンが考えられる
。例えば室内ユニット(+)と室外ユニット(2)との
配線接続に第3図の様な誤配線が生じたとすると,この
場合圧縮機(9)には正常に通電されるが外ファン(l
1)は回転しないし,四方弁(IO)はONE,ない。
However, in FIG. 1, there may be a pattern in which no abnormality is detected even if the compressor operating means and current comparing means are used. For example, if a wiring error occurs between the indoor unit (+) and the outdoor unit (2) as shown in Figure 3, the compressor (9) will be energized normally, but the outdoor fan (l) will be energized normally.
1) does not rotate and the four-way valve (IO) is ONE.

四方弁(10)がONLないと暖房運転しようとしても
冷房運転してしまうので空調機を運転させて圧縮機(9
)が運転してからある一定時間後の室内ユニット〈!)
の吹き出し温度を吹き出し潟センサ(4)で検出し検出
された吹き出し温度と空調機の運転内容とを比較するこ
とで空調機がiE常であるか異常であるかが判断できる
If the four-way valve (10) is not ONL, even if you try to perform heating operation, it will end up in cooling operation, so run the air conditioner and turn on the compressor (9).
) after a certain period of time has started operating the indoor unit <! )
By detecting the air outlet temperature with the air outlet sensor (4) and comparing the detected air outlet temperature with the operating details of the air conditioner, it can be determined whether the air conditioner is normal or abnormal.

この動作を行う比較演算千段(76)をフローチャート
図にあらわしたものを第4図(b)に示す。 ステップ
(71)では現在の空調機の運転内容を確認しており,
ステップ(72)では圧縮機(9)が運転し始めてから
ある一定時間後の室内ユニノト(i)の吹き出し温度を
吹き出し温センサ(4)で検出して室内マイコン(15
)に入力しステップ(73)では運転内容が暖房である
かどうか確認している。暖房である場合はステップ(7
4)へ進み冷房やドライの場合はステップ(75)へと
進む。ステップ(74)(75)では吹き出し温の基準
値と検出された吹き出し潟とを比較しておりステップ(
74)の場合は検出された吹き出し温が基嘲値より高け
れば正常,低ければ異常と判断する。
FIG. 4(b) shows a flowchart of the 1,000-stage comparison operation (76) that performs this operation. In step (71), the current operation details of the air conditioner are confirmed.
In step (72), the air outlet temperature of the indoor unit (i) after a certain period of time after the compressor (9) starts operating is detected by the air outlet temperature sensor (4), and the air outlet temperature of the indoor unit (i) is detected by the indoor microcomputer (15).
), and in step (73) it is checked whether the operation content is heating. If it is heating, step (7)
Proceed to step 4), and in case of cooling or drying, proceed to step (75). Steps (74) and (75) compare the reference value of the blowout temperature and the detected blowout temperature, and step (
In the case of 74), if the detected blowing temperature is higher than the standard value, it is determined to be normal, and if it is lower, it is determined to be abnormal.

よって第3図に示す様な誤配線の場合は暖房運転しても
冷房運転になってしまうので吹き出し温は非常に低くな
り吹き出し温の基準値には達しないので異常と判断され
る。またステソブ(75)の場合はステップ(74)の
場合とは逆に検出された吹き出し温が基準値より低けれ
ば正常高ければ兄常と判断する。よってリレー(7)が
溶着1,て接点が閉じたままなどの故障を起こした時は
、冷房運転にもかかわらず暖房運転になってしまい.吹
き出し温が基準値を越えてしまうので異常と判断される
なお,上記実施例では第4図(b)に示すようにステッ
プ(7l)で空調機の運転内容確認,ステップ(72)
で室内ユニソ}(1)の吹き出し温度の検出を行ってい
るが,ステノブ(7l)で室内ユニットの吹き出し温度
の検出,ステップ(72)で空調機の運転内容確認を行
ってもよい。
Therefore, in the case of incorrect wiring as shown in FIG. 3, even if the heating operation is performed, the cooling operation is performed, and the air outlet temperature becomes extremely low and does not reach the reference value of the air outlet temperature, so that it is determined that there is an abnormality. Further, in the case of Stesobu (75), contrary to the case of step (74), if the detected outlet temperature is lower than the reference value, it is determined that it is normal and higher than the reference value. Therefore, if the relay (7) is welded and the contact remains closed, the system will go into heating mode even though it is in cooling mode. Since the outlet temperature exceeds the standard value, it is determined that there is an abnormality.In the above embodiment, as shown in FIG.
Although the temperature of the air outlet from the indoor unit (1) is detected in step (72), the temperature of the air outlet from the indoor unit may also be detected using the steno knob (7l), and the operating details of the air conditioner may be confirmed in step (72).

〔発明の効果〕〔Effect of the invention〕

以Lの様に,この発明によれば電流検出回路を備え電源
投入時からある一定時間強制的に圧縮機を述転させて電
流を検出する方法と,空調機運転中に圧縮機が運転し始
めてからある一定時間後の室内機の吹き出し温度と空調
機の運転内容とを比較する方法をソフトで行うことで空
調機の異常を検知できるようにしたので,室内ユニット
と室外ユニットとの信号のやりとりを行う送受信回路や
室外マイフンは必要とせず空調機が安価で得られるとい
う効果がある。
As shown in L below, according to the present invention, there is a method that includes a current detection circuit and detects the current by forcibly rotating the compressor for a certain period of time from the time the power is turned on, and a method that detects the current by forcibly rotating the compressor for a certain period of time from the time the power is turned on, and a method that detects the current when the compressor is running while the air conditioner is operating. We have made it possible to detect abnormalities in the air conditioner by using software to compare the air temperature of the indoor unit after a certain period of time with the operation of the air conditioner. There is no need for transmitter/receiver circuits or outdoor microphones for communication, and the air conditioner can be obtained at low cost.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例による空調機の配線図.第
2図は電流検出回路の回路図,第3図は第l図の空調機
の配線図が誤配線となった場合の一実施例を示す配線図
,第4図(a)は圧縮機運転手段と電流比較手段を表し
たフローチャー ト.第4図(l〕)は室内機の吹き出
し温と運転内容を比較する比較演算手段を表したフロー
チャート,第5図は従来の空調機の動作保護装置を示す
ブロック図第6図(a)は従来の室内ユニットの処理手
順を示すフローチャート,第6図(b)は従来の室外ユ
ニットの処理手順を示すフローチャートである。 (3)は電流検出回路,(4)は吹き出し温センサ,(
9)は圧縮機, (64)は圧縮機運転手段. (65
)は電流比較手段, (7B)は比較演算手段である。 なお図中同一符号は回−又は相当部分を示す。
Figure 1 is a wiring diagram of an air conditioner according to an embodiment of the present invention. Figure 2 is a circuit diagram of the current detection circuit, Figure 3 is a wiring diagram showing an example of a case where the air conditioner wiring diagram in Figure 1 is incorrectly wired, and Figure 4 (a) is a diagram of compressor operation. Flowchart showing the means and current comparison means. Figure 4 (l) is a flowchart showing a comparison calculation means for comparing the indoor unit outlet temperature and operation details, and Figure 5 is a block diagram showing a conventional air conditioner operation protection device. FIG. 6(b) is a flowchart showing the processing procedure of a conventional indoor unit. FIG. 6(b) is a flowchart showing the processing procedure of a conventional outdoor unit. (3) is the current detection circuit, (4) is the outlet temperature sensor, (
9) is a compressor, and (64) is a compressor operating means. (65
) is a current comparison means, and (7B) is a comparison calculation means. Note that the same reference numerals in the figures indicate circuits or corresponding parts.

Claims (1)

【特許請求の範囲】[Claims] 冷暖房を可能とする空調機において全負荷電流を検出す
る電流検出回路を備え、電源投入時からある一定時間強
制的に圧縮機を運転させる圧縮機運転手段と、その時に
前記電流検出回路で検出された電流値と電流値の基準値
とを比較する電流比較手段と、空調機の運転中に圧縮機
が運転し始めてからある一定時間後の室内機吹き出し温
度と空調機の運転内容とを比較演算する比較演算手段と
で異常検知を行うことを特徴とする空調機。
An air conditioner that enables heating and cooling is equipped with a current detection circuit that detects a full load current, and a compressor operating means for forcibly operating a compressor for a certain period of time from when the power is turned on; A current comparison means that compares the current value and a reference value of the current value, and a comparison calculation between the indoor unit outlet temperature and the operation details of the air conditioner after a certain period of time after the compressor starts operating while the air conditioner is operating. An air conditioner characterized in that an abnormality is detected using a comparison calculation means.
JP1165019A 1989-06-27 1989-06-27 Air conditioner Pending JPH0328650A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1165019A JPH0328650A (en) 1989-06-27 1989-06-27 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1165019A JPH0328650A (en) 1989-06-27 1989-06-27 Air conditioner

Publications (1)

Publication Number Publication Date
JPH0328650A true JPH0328650A (en) 1991-02-06

Family

ID=15804297

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1165019A Pending JPH0328650A (en) 1989-06-27 1989-06-27 Air conditioner

Country Status (1)

Country Link
JP (1) JPH0328650A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5797329A (en) * 1995-05-16 1998-08-25 Dataproducts Corporation Hot melt ink printer and method printing
JP2009074191A (en) * 2007-09-19 2009-04-09 National Institute Of Fitness & Sports In Kanoya Upper wear with function for assisting forward ukemi
US7570464B2 (en) * 2002-10-11 2009-08-04 Lg Electronics Inc. Overload protective apparatus of a compressor and a method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5797329A (en) * 1995-05-16 1998-08-25 Dataproducts Corporation Hot melt ink printer and method printing
US7570464B2 (en) * 2002-10-11 2009-08-04 Lg Electronics Inc. Overload protective apparatus of a compressor and a method thereof
JP2009074191A (en) * 2007-09-19 2009-04-09 National Institute Of Fitness & Sports In Kanoya Upper wear with function for assisting forward ukemi

Similar Documents

Publication Publication Date Title
US4301660A (en) Heat pump system compressor fault detector
US4246763A (en) Heat pump system compressor fault detector
CN106247530A (en) Many air-conditionings self checking method is dragged in many control frequency conversion one
CN102789230A (en) Method for automatically detecting air conditioner outdoor unit control panel
KR19990043509A (en) Multi-inverter air conditioning equipment and test method with installation check
JPH0328650A (en) Air conditioner
JPH05231754A (en) Operational failure detection device for air conditioner
US7197429B2 (en) Diagnosis system for household electric appliances
JPH0972610A (en) Hot water supply equipment and detecting method for failure of temperature-detecting means of hot water supply equipment
JPH02223752A (en) Air conditioner
CN111765592A (en) Air conditioner self-checking method, computer storage medium and vehicle
JP3594358B2 (en) Air conditioner
KR0170856B1 (en) Fault detection device for airconditioner
KR20020096422A (en) Method and apparatus for testing in airconditioner
US20230392844A1 (en) Refrigeration system
KR0150472B1 (en) Operating control method of an airconditioner
JP2002349928A (en) Troubleshooting device for air conditioner
JP2760168B2 (en) Air conditioner
CN219889732U (en) Communication fault detection circuit and air conditioner
KR20010028950A (en) thermal sensor error judgement method of air-conditioner
JP2708756B2 (en) Protection method for electrical equipment
JPH01210752A (en) Sensor discrimination of air conditioner
JP3428227B2 (en) Refrigeration cycle system
JPH063636B2 (en) Air conditioner abnormality display device
KR0186056B1 (en) Overload control method of heat pump airconditioner