JPH03285027A - Filter material for metallic molten metal - Google Patents

Filter material for metallic molten metal

Info

Publication number
JPH03285027A
JPH03285027A JP2083253A JP8325390A JPH03285027A JP H03285027 A JPH03285027 A JP H03285027A JP 2083253 A JP2083253 A JP 2083253A JP 8325390 A JP8325390 A JP 8325390A JP H03285027 A JPH03285027 A JP H03285027A
Authority
JP
Japan
Prior art keywords
binder
filter material
molten metal
particle size
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2083253A
Other languages
Japanese (ja)
Other versions
JP2801948B2 (en
Inventor
Takayuki Sugiyama
隆之 杉山
Osamu Yamakawa
治 山川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
N G K ADRECH KK
NGK Insulators Ltd
NGK Adrec Co Ltd
Original Assignee
N G K ADRECH KK
NGK Insulators Ltd
NGK Adrec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by N G K ADRECH KK, NGK Insulators Ltd, NGK Adrec Co Ltd filed Critical N G K ADRECH KK
Priority to JP2083253A priority Critical patent/JP2801948B2/en
Publication of JPH03285027A publication Critical patent/JPH03285027A/en
Application granted granted Critical
Publication of JP2801948B2 publication Critical patent/JP2801948B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

PURPOSE:To obtain a filter material for metallic molten metal having high collecting capacity for impurities and long service life by binding ceramic aggregate particles with an inorganic binder of a frit having a specified compsn. constituted of B2O3, Al2O3, CaO and MgO and having specified particle size. CONSTITUTION:Ceramic aggregate particles are binded with an inorganic binder to obtain a porous filter material. At this time, as the above binder, a frit constituted of, by weight, 15 to 80% B2O3, 2 to 60% Al2O3, 0 to 30% CaO and 5 to 50% MgO and having <=35mum 50% average particle size is used. Furthermore, as the above aggregate, ceramic particles of alumina or the like having about 0.3 to 3.0mm average particle size and about 100 to 130 shape index are suitably used. This aggregate, 100 pts.wt., is blended with the above binder by about 4 to 20 pts.wt., which is heated to about 1200 to 1400 deg.C to melt the binder, and after that, gradual cooling is executed to form a porous filter material. In this way, the filter material for metallic molten metal having high bending strength and high collecting capacity for impurities by formed aluminum boride crystals can be obtd.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は金属溶湯、特にアルミニウム溶湯中に含まれる
不純物(介在物)を濾過するに適した金属溶湯用濾材に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a filter medium for molten metal suitable for filtering impurities (inclusions) contained in molten metal, particularly molten aluminum.

[従来の技術] 金属の薄板や箔は金属溶湯なインゴットに鋳造し、これ
を圧延することにより製造される。ところが、金属溶湯
に含まれる金属酸化物や耐火物の微小破片等の固形不純
物がそのままインゴット中に混入すると、これを圧延し
て薄板や箔等を製造する過程でピンホール、表面欠陥が
発生することがある。これを防ぐには、溶湯中から固形
不純物を除去する必要かあり、そのために、従来、ガラ
スクロス、アルミナボール或はセラミックフオーム等を
溶湯性適用のフィルターとして使用していた。
[Prior Art] Metal thin plates and foils are manufactured by casting a molten metal ingot and rolling it. However, if solid impurities such as metal oxides and minute fragments of refractories contained in molten metal are mixed into the ingot, pinholes and surface defects will occur during the process of rolling the ingot into thin sheets, foils, etc. Sometimes. To prevent this, it is necessary to remove solid impurities from the molten metal, and for this purpose, glass cloth, alumina balls, ceramic foam, etc. have conventionally been used as filters for molten metal applications.

ところが、ガラスクロスは安価であるか早期に目詰まり
し易く、またアルミナボールは一旦捕獲した不純物か流
出し易いため濾過精度に劣り、更にセラミックフオーム
は気孔径が大きいため微細な不純物を十分に濾過できな
いという欠点がある。
However, glass cloth is cheap and tends to clog quickly, alumina balls have poor filtration accuracy because impurities once captured tend to flow out, and ceramic foam has large pores, making it difficult to filter fine impurities effectively. The drawback is that it cannot be done.

そこて、例えば特公昭52−22327号公報、特開昭
64−21019号公報等に示されるように、炭化珪素
やアルミナ等の骨材粒子を無機質結合材により結合させ
て骨材粒子間に無数の微細連続気孔を形成した構成のチ
ューブ状の濾材が使用されつつある。この濾材によれば
、上記した他のフィルターに比較して濾過性能が優れて
おり、目詰まりを長期間にわたり防止てき、また捕獲し
た不純物の流出がなく、しかも気孔径を適切になし得て
精密な濾過が可能になるという利点かある。
Therefore, as shown in Japanese Patent Publication No. 52-22327, Japanese Patent Application Laid-Open No. 64-21019, etc., aggregate particles such as silicon carbide or alumina are bonded with an inorganic binder, and there are countless numbers of particles between the aggregate particles. Tubular filter media with a structure in which fine continuous pores are formed are being used. This filter material has superior filtration performance compared to the other filters mentioned above, prevents clogging for a long time, prevents captured impurities from flowing out, and allows for precise pore size. This has the advantage of allowing for more efficient filtration.

[発明が解決しようとする課題] しかしながら、特公昭52−22327号公報ては、用
いられる結合材中のSiO2が10〜50重量%、B2
O3が5〜20重量%であるためホウケイ酸ガラスが生
成する。このように結合材中のS 102か多いため、
アルミニウム溶湯に還元され、耐蝕性およびSi流出の
問題がある。
[Problems to be Solved by the Invention] However, in Japanese Patent Publication No. 52-22327, SiO2 in the binder used is 10 to 50% by weight, B2
Since O3 is 5-20% by weight, borosilicate glass is formed. In this way, since there is a large amount of S102 in the binder,
It is reduced to molten aluminum, and there are problems with corrosion resistance and Si leakage.

一方、上記のように骨材粒子を無機質結合材で結合させ
る場合、無機質結合材がアルミニウムボレイト(9Af
LzO:+  ・2B20.)のごとき針状結晶を生成
すると、この結晶は例えばアルミニウム溶湯に対して濡
れ性が悪く、反応し難い(耐食性に優れた)物質である
ため、好ましい。上記した特開昭64−21019号公
報ではB20315〜80%、A文2032〜60%、
CaO3〜30%およびMgO5〜20%の組成を有す
る結合材を用いているか、このような組成の結合材にお
いても、生原料を用いた場合には、如何に均一に混合を
行なっても組成のバラツキかみられ、焼成体の強度およ
び結合材組成のバラツキか認められ、均一な溶融状態を
得ることかできず、アルミニウムボレイト(9A文20
3 ・2 B203 )の生成量が少ない。また、冷却
速度を一30〜70°C/hrで行なっても、溶融状態
か不均一であるため、アルミニウムボレイト(9ARz
O:+2B20:l)の生成量か少なく、焼成体内での
バラツキも認められる。
On the other hand, when aggregate particles are bonded with an inorganic binder as described above, the inorganic binder is aluminum borate (9Af
LzO:+・2B20. ) It is preferable to produce needle-shaped crystals such as the following, since these crystals have poor wettability with, for example, molten aluminum and are a material that is difficult to react with (excellent in corrosion resistance). In the above-mentioned Japanese Patent Application Laid-Open No. 64-21019, B20315-80%, A-2032-60%,
If a binder with a composition of 3 to 30% CaO and 5 to 20% MgO is used, or even if raw raw materials are used, the composition will change no matter how uniformly mixed. There were variations in the strength of the fired body and in the binder composition, and it was not possible to obtain a uniform molten state.
3.2 B203) production amount is small. In addition, even if the cooling rate is 130 to 70°C/hr, the molten state is not uniform, so aluminum borate (9ARz
The amount of O:+2B20:l) produced was small, and variations within the fired body were also observed.

このように、アルミニウムボレイト(9A l 203
・2 B203 )の生成量が少ない場合には、特にア
ルミニウム溶湯に対する耐食性に問題が生し、最悪の場
合には濾材が崩壊するという危険性がある。
Thus, aluminum borate (9A l 203
If the amount of 2B203) produced is small, there will be problems in corrosion resistance, especially against molten aluminum, and in the worst case, there is a risk that the filter medium will collapse.

[課題を解決するための手段] そこで、本発明者は上記した問題を解決するため種々検
討を行なったところ、無機質結合材として特定組成てか
つ特定粒度のフリットを用いることにより、アルミニウ
ムボレイトの生成量を多くすることかてき、濾材の長寿
命化が図れることを見出し、本発明を完成したものであ
る。
[Means for Solving the Problems] Therefore, the present inventor conducted various studies to solve the above-mentioned problems, and found that by using a frit of a specific composition and particle size as an inorganic binder, aluminum borate The present invention was completed based on the discovery that increasing the production amount can extend the life of the filter medium.

即ち、本発明によれば、セラミック骨材粒子を無機質結
合材により結合させた多孔質の濾材てあって、該結合材
がB2O315〜80重量%、A22032〜60重量
%、CaOO〜30重量%およびMgO5〜50重量%
の組成を有するフリットであり、該フリットの50%平
均粒子径が35g1以下であることを特徴とする金属溶
湯用濾材、か提供される。
That is, according to the present invention, there is provided a porous filter medium in which ceramic aggregate particles are bound together by an inorganic binder, and the binder contains 15 to 80% by weight of B2O3, 2 to 60% by weight of A2, 30 to 30% by weight of CaOO, and MgO5-50% by weight
Provided is a filter medium for molten metal, characterized in that the frit has a composition of 50% average particle size of 35g1 or less.

[作用] 本発明においては、結合材としてホウ酸系組成物からな
り、その粒径か所定以下であるフリットを用いることに
特徴を有するものである。
[Function] The present invention is characterized in that a frit made of a boric acid composition and whose particle size is below a predetermined value is used as a binder.

このようなフリットを結合材として用いることにより、
より多くのアルミニウムボレイト(9A見20ff ・
2B20.)が生成され、濾材の長寿命化を達成するこ
とができる。
By using such a frit as a binding material,
More aluminum borate (9A 20ff)
2B20. ) is generated, and the life of the filter medium can be extended.

本発明て用いる骨材としては、金属溶湯と反応せず、適
切な粒度のものを容易に入手てきることか必要であるか
、アルミナ質、炭化珪素質、窒化珪素質、ジルコニア質
の如きセラミック骨材粒子かそれらの条件を満足する。
The aggregate used in the present invention must be one that does not react with the molten metal and has an appropriate particle size, or is made of ceramic materials such as alumina, silicon carbide, silicon nitride, and zirconia. aggregate particles or meet these conditions.

又、用いるセラミック骨材粒子の平均粒子径は通常的0
.3〜3.01ull程度のものか用いられる。
In addition, the average particle diameter of the ceramic aggregate particles used is usually 0.
.. Approximately 3 to 3.01 ul is used.

また、骨材粒子としては下記て定義される形状指数か1
00〜130の範囲のものを用いることか好ましい。
In addition, as aggregate particles, the shape index defined below or 1
It is preferable to use a number in the range of 00 to 130.

即ち、第1図に示す骨材の投影図において、その最大直
径なM、該最大直径Mに直交する径をB、投影面積をA
、円J、す長さをPとしたとき、形状指数(SF)は次
の式て表される。
That is, in the projected view of the aggregate shown in Figure 1, its maximum diameter is M, the diameter perpendicular to the maximum diameter M is B, and the projected area is A.
, circle J, and the length of the circle is P, the shape index (SF) is expressed by the following formula.

SF= (SFI +SF2 +5F3)/3ここて、 SF、  =  (π/4)X  (M2 /A)X 
 100SF2 =  (1/4π)  X  (P2
/A)  X  l  00S F ++  =  (
M / B )  x  l OOである。
SF= (SFI +SF2 +5F3)/3 Here, SF, = (π/4)X (M2 /A)X
100SF2 = (1/4π)
/A) X l 00S F ++ = (
M/B) x l OO.

因みに、真珠の形状指数は100となる。Incidentally, the shape index of a pearl is 100.

このような形状指数の範囲の骨材粒子を用いた場合、均
一な気孔径を有する多孔質体が得られるため、濾材の不
純物の捕集精度が向上し、好ましい。
When aggregate particles having a shape index in this range are used, a porous body having a uniform pore diameter can be obtained, which improves the accuracy of collecting impurities in the filter medium, which is preferable.

無機質結合材としては、上記したように、まずその組成
が、B、0315〜80重量%、A文。
As described above, the composition of the inorganic binder is B, 0315 to 80% by weight, and A.

032〜60重量%、CaOO〜30重量%、およびM
gO5〜50重量%の範囲を有するフリットであること
が必要である。アルミニウムボレイト(9A文203・
2B203)の生成のためには上記のような組成か必要
であり、しかもフリットであるため均一溶融性を十分に
確保することができる。
032-60% by weight, CaOO-30% by weight, and M
It is necessary that the frit has a gO range of 5 to 50% by weight. Aluminum borate (9A sentence 203・
In order to produce 2B203), the above-mentioned composition is necessary, and since it is a frit, uniform meltability can be sufficiently ensured.

さらに、フリットは、その50%平均粒子径が35延1
以下、好ましくは10〜35μ膿である。50%平均粒
子径が35井■を超えると粒度分布にバラツキが出来、
得られる多孔質濾材の強度か劣ることとなり、好ましく
ない。
Furthermore, the frit has a 50% average particle diameter of 35 mm
Below, it is preferably 10 to 35 micropus. If the 50% average particle diameter exceeds 35 wells, the particle size distribution will vary,
This is not preferable because the strength of the resulting porous filter medium will be poor.

又、上記した特定組成、粒度の無機質結合材のセラミッ
ク骨材粒子に対する配合割合は、骨材粒子100重量部
に対し、無機質結合材が4〜20重量部が好ましい。
Further, the blending ratio of the inorganic binder having the above-mentioned specific composition and particle size to the ceramic aggregate particles is preferably 4 to 20 parts by weight based on 100 parts by weight of the aggregate particles.

このような特定組成、粒度の無機質結合材を骨材粒子に
結合させる場合、1200〜1400℃まで加熱して無
機質結合材を溶融させ、その後800℃までを1時間当
り30〜70℃の冷却速度にて徐冷するような条件にて
焼成・徐冷するとアルミニウムボレイト(9AJLzO
:s ・2B203)の結晶化が適切に行なわれ、好ま
しい。
When bonding an inorganic binder with such a specific composition and particle size to aggregate particles, the inorganic binder is heated to 1200 to 1400°C to melt the inorganic binder, and then cooled to 800°C at a cooling rate of 30 to 70°C per hour. When fired and slowly cooled under conditions such as slow cooling, aluminum borate (9AJLzO
:s 2B203) is suitably crystallized, which is preferable.

なお濾材の形状はチューブ状に限られず板状であっても
よい。又、濾材の厚さは通常15〜35as程度あれば
よい。
Note that the shape of the filter medium is not limited to a tube shape, but may be a plate shape. Further, the thickness of the filter medium should normally be about 15 to 35 as.

次に、本発明に係る濾材の製造方法の例を説明する。Next, an example of a method for manufacturing a filter medium according to the present invention will be explained.

例えば、アルミナ、炭化珪素、窒化珪素などのセラミッ
ク骨材粒子100重量部に対し、B、O15〜80重量
梶、A文2032〜60重量%CaO0〜30重量%お
よびMgO5〜50重量%の組成を有し、その50%平
均粒子径が35終膳以下のフリットからなる無機質結合
材を4〜20重量部添加し、カルボキシメチルセルロー
ス(CMC)、リグニンスルホン酸カルシウム、デキス
トリン等の有機バインダーと適当量の水分を加え、混練
を行なった後所定形状の成形体に成形する。次いて、得
られた成形体を乾燥後、通常1100℃以上の温度にて
焼成を行なうことにより、本発明の濾材を得ることかで
きる。
For example, for 100 parts by weight of ceramic aggregate particles such as alumina, silicon carbide, and silicon nitride, the composition of B, O 15-80% by weight, A-2032-60% by weight, CaO 0-30% by weight, and MgO 5-50% by weight is used. Add 4 to 20 parts by weight of an inorganic binder consisting of a frit with a 50% average particle size of 35% or less, and add an appropriate amount of an organic binder such as carboxymethyl cellulose (CMC), calcium lignin sulfonate, or dextrin. After adding water and kneading, the mixture is molded into a molded article of a predetermined shape. Next, the filter medium of the present invention can be obtained by drying the obtained molded body and then firing it at a temperature of usually 1100° C. or higher.

[実施例] 以下1本発明を実施例に基づきさらに詳細に説明するか
、本発明はこれらの実施例に限られるものではない。
[Examples] The present invention will be explained in more detail based on Examples below, but the present invention is not limited to these Examples.

(実施例1) 粒度か14〜28メツシユの焼結アルミナを骨材粒子と
し、無機質結合材の組成、形態、粒度な変化させ、骨材
100重量部に対し、各種重量の結合材を有機バインダ
ー、水とともに添加して混練を行なった、 次に得られた混合物を用い、外径100mmφ、内f1
60mmφ、長さ900m−のパイプ形状品を成形し、
105°Cて乾燥後結合材が十分に溶融する1300℃
まて昇温し、3時間保持した後800℃まて1時間当り
50℃の冷却速度で徐冷することにより、焼成された濾
材を作製した。
(Example 1) Using sintered alumina with a particle size of 14 to 28 mesh as aggregate particles, the composition, shape, and particle size of the inorganic binder were varied, and various weights of the binder were added to 100 parts by weight of the aggregate as organic binder. , was added with water and kneaded. Next, using the obtained mixture, an outer diameter of 100 mmφ and an inner f1
Molding a pipe-shaped product with a diameter of 60 mm and a length of 900 m.
After drying at 105°C, the binder is sufficiently melted at 1300°C.
The temperature was then raised, and after being maintained for 3 hours, the temperature was increased to 800° C. and slowly cooled at a cooling rate of 50° C. per hour, thereby producing a fired filter medium.

得られた濾材について、粉末X線回折法によりアルミニ
ウムボレイト(9AMzO:+ ・2B203)の結晶
化度(=16.5°の9 A 12032B20:lの
ピーク高/43.4”のα−A l 203のピーク高
)を求めた。また、室温における3点曲げによる抗折強
度も測定した。
Regarding the obtained filter medium, the crystallinity of aluminum borate (9AMzO:+ 2B203) (=9A of 16.5°, peak height of 12032B20:l/α-A of 43.4") was determined by powder X-ray diffraction method. The peak height of l 203) was determined.Furthermore, the bending strength by three-point bending at room temperature was also measured.

結果を表1に示す。The results are shown in Table 1.

なお、表1において、No、6.8〜12は本発明の範
囲外の場合を示している。
In Table 1, No. 6.8 to 12 indicate cases outside the scope of the present invention.

表1から明らかな通り、結合材としてホウ酸系組成物か
らなり、その粒径が所定以下であるフリットを用いると
、それ以外の場合(No、 6.8〜12)に比し、濾
材の曲げ強度、あるいはアルミニウムボレイトの結晶化
度か低くなることがわかる。
As is clear from Table 1, when a frit made of a boric acid composition and whose particle size is below a predetermined value is used as a binder, compared to other cases (No. 6.8 to 12), the filter material becomes It can be seen that the bending strength or the crystallinity of aluminum borate decreases.

(実施例2) 実施例1て作製された濾材のうち、No、 l、9.1
3.17を選び、それら濾材のホウ素(B)除去率を求
め、表2に示した。
(Example 2) Among the filter media produced in Example 1, No. 1, 9.1
3.17 were selected, and the boron (B) removal rates of these filter media were determined and shown in Table 2.

表2 溶湯からの不純物捕集性能か向上するという利点を有す
るものである。
Table 2 This has the advantage of improving the ability to collect impurities from molten metal.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は骨材の形状指数を算出する際に用いる骨材の投
影説明図である。
FIG. 1 is a projected explanatory diagram of aggregate used when calculating the shape index of aggregate.

Claims (1)

【特許請求の範囲】[Claims] (1)セラミック骨材粒子を無機質結合材により結合さ
せた多孔質の濾材であって、 該結合材がB_2O_315〜80重量%、Al_2O
_32〜60重量%、CaO0〜30重量%およびMg
O5〜50重量%の組成を有するフリットであり、該フ
リットの50%平均粒子径が35μm以下であることを
特徴とする金属溶湯用濾材。
(1) A porous filter medium in which ceramic aggregate particles are bound by an inorganic binder, the binder being B_2O_315 to 80% by weight, Al_2O
_32-60% by weight, CaO0-30% by weight and Mg
A filter medium for molten metal, characterized in that the frit has a composition of 5 to 50% by weight of O, and the 50% average particle diameter of the frit is 35 μm or less.
JP2083253A 1990-03-30 1990-03-30 Filter media for molten metal Expired - Lifetime JP2801948B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2083253A JP2801948B2 (en) 1990-03-30 1990-03-30 Filter media for molten metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2083253A JP2801948B2 (en) 1990-03-30 1990-03-30 Filter media for molten metal

Publications (2)

Publication Number Publication Date
JPH03285027A true JPH03285027A (en) 1991-12-16
JP2801948B2 JP2801948B2 (en) 1998-09-21

Family

ID=13797174

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2083253A Expired - Lifetime JP2801948B2 (en) 1990-03-30 1990-03-30 Filter media for molten metal

Country Status (1)

Country Link
JP (1) JP2801948B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06256069A (en) * 1993-02-26 1994-09-13 Kikusui Kagaku Kogyo Kk Ceramic porous material and its production

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01127168A (en) * 1987-11-11 1989-05-19 Ngk Insulators Ltd Manufacture of filter material for molten metal

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01127168A (en) * 1987-11-11 1989-05-19 Ngk Insulators Ltd Manufacture of filter material for molten metal

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06256069A (en) * 1993-02-26 1994-09-13 Kikusui Kagaku Kogyo Kk Ceramic porous material and its production

Also Published As

Publication number Publication date
JP2801948B2 (en) 1998-09-21

Similar Documents

Publication Publication Date Title
US8449644B2 (en) Silicon carbide porous body
US6413895B1 (en) Refractory NZP-type structures and method of making and using same
JP2778795B2 (en) Filter media for molten metal
WO2007015495A1 (en) Process for producing ceramic honeycomb structure
AU658760B2 (en) Filter for light metals
US6770111B2 (en) Pollucite-based ceramic with low CTE
JP2845046B2 (en) Ceramic filter for molten stainless alloy
JPH03285027A (en) Filter material for metallic molten metal
US20020132720A1 (en) Refractory NZP-type structures and method of making and using same
KR19980070463A (en) Method for preparing beta-lithiapyrite body
JPH03254805A (en) Filter material for molten aluminum
JPH05138339A (en) Filter medium for molten aluminum
JPH06128658A (en) Filter material for molten metal and its manufacture
US5998322A (en) Filter medium for molten metals
JPH0426725A (en) Filter medium for molten metal
JP2813039B2 (en) Filter material for molten metal and method for producing the same
JPH04301040A (en) Filter medium for molten metal
JP3709450B2 (en) Filter material for molten aluminum
JPH04236727A (en) Filter medium for molten metal
JP3994879B2 (en) Porous ceramic material
JPH0586460B2 (en)
JP3709451B2 (en) Filter material for molten aluminum
JPH0776100B2 (en) Method for manufacturing glass molded body
JP2000024430A (en) Filter material for molten metal
JPH03281741A (en) Filter material for metallic molten metal

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080710

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090710

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100710

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100710

Year of fee payment: 12