JPH01127168A - Manufacture of filter material for molten metal - Google Patents

Manufacture of filter material for molten metal

Info

Publication number
JPH01127168A
JPH01127168A JP62284581A JP28458187A JPH01127168A JP H01127168 A JPH01127168 A JP H01127168A JP 62284581 A JP62284581 A JP 62284581A JP 28458187 A JP28458187 A JP 28458187A JP H01127168 A JPH01127168 A JP H01127168A
Authority
JP
Japan
Prior art keywords
inorganic binder
molten metal
binder
raw material
filter material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62284581A
Other languages
Japanese (ja)
Other versions
JP2523707B2 (en
Inventor
Tatsuji Suzuki
鈴木 辰司
Osamu Yamakawa
治 山川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Yogyo Kk
NGK Insulators Ltd
Original Assignee
Fuji Yogyo Kk
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Yogyo Kk, NGK Insulators Ltd filed Critical Fuji Yogyo Kk
Priority to JP62284581A priority Critical patent/JP2523707B2/en
Publication of JPH01127168A publication Critical patent/JPH01127168A/en
Application granted granted Critical
Publication of JP2523707B2 publication Critical patent/JP2523707B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D43/00Mechanical cleaning, e.g. skimming of molten metals
    • B22D43/001Retaining slag during pouring molten metal
    • B22D43/004Retaining slag during pouring molten metal by using filtering means

Abstract

PURPOSE:To improve the quality of a filter material by forming the raw material of the inorg. binder and alumina aggregate particle contg. B2O3, Al2O3, CaO and MgO at specified wt.% respectively by mixing them at the specified percentage and heating and cooling under specified conditions. CONSTITUTION:An inorg. binder is prepd. by taking 15-80wt.% B2O3, 2-60% Al2O3, 0-30% CaO and 5-50% MgO as the raw material composition. The binder is then dried by forming it by mixing at the rate of 8-20pts.wt. for an alumina aggregate particle 100pts.wt. The forming body is heated to 1,200-1,400 deg.C to melt the binder raw material and the binder is crystallized by cooling it at the cooling speed of 30-70 deg.C/hr up to 800 deg.C. The thermal expansion of the filter material is reduced by the crystallization of the binder and the alumina aggregate improves the wettability with a molten metal. The filtering efficiency of the filter material is therefore improved and its breakdown is prevented. Consequently the quality of the filter material is improved.

Description

【発明の詳細な説明】 [発明の目的] (産業−にの利用分野) 本発明は金属溶湯中から固形不純物を濾過するための金
属溶湯用濾材の製造方法に関する。
Detailed Description of the Invention [Object of the Invention] (Field of Industrial Application) The present invention relates to a method for manufacturing a filter medium for molten metal for filtering solid impurities from molten metal.

(従来の技術) 金属の薄板や箔は金属溶湯をインゴットに鋳造し、これ
を圧延して製造される。ところが、金属溶湯に含まれる
金属酸化物や耐火物の微小破片等の固形不純物がそのま
まインゴット中に混入すると゛、これを圧延して薄板や
箔等を製造する過程でピンホールや表面欠陥が発生する
ことがある。これを防ぐには、溶湯中から固形不純物を
除去する必要があり、そのために、従来、多孔質セラミ
ックによりバイブ状に成形した濾過バイブを例えば炭化
珪素製の鏡板間に段数本固定してカートリッジ化し、こ
れを金属溶湯内に配置する構成の濾過装置が使用されて
いる。そして、このための金属溶湯用濾材は、従来、例
えば炭化珪素、窒化珪素或はアルミナ等の骨材粒子を無
機質結合材原料と混練して中空バイブ状に成形し、その
後所定温度にまで加熱して冷却することにより製造され
ていた。この製造方法によれば、ガラス化した無機質結
合材により骨材粒子が互いに結合させられ、骨材粒子間
に無数の微細連続気孔を有する構成となる。
(Prior Art) Metal thin plates and foils are manufactured by casting molten metal into an ingot and rolling the ingot. However, if solid impurities such as metal oxides and minute fragments of refractories contained in molten metal are mixed into the ingot, pinholes and surface defects occur during the process of rolling the ingot into thin sheets, foils, etc. There are things to do. To prevent this, it is necessary to remove solid impurities from the molten metal. To this end, conventionally, a filter vibrator made of porous ceramic is fixed in stages between end plates made of silicon carbide to form a cartridge. A filtration device is used in which the filtration device is placed inside the molten metal. Conventionally, filter media for molten metal for this purpose is made by kneading aggregate particles such as silicon carbide, silicon nitride, or alumina with an inorganic binder raw material, forming it into a hollow vibe shape, and then heating it to a predetermined temperature. It was produced by cooling. According to this manufacturing method, the aggregate particles are bonded to each other by the vitrified inorganic binding material, resulting in a structure having countless fine continuous pores between the aggregate particles.

(発1″す1が解決しようとする問題点)しかしながら
上述の製造方法により製造した濾過パイプでは、常温か
ら使用温度まで昇温させたときの濾過パイプの伸び率が
0.5%以上と比較的大きいため大゛きな熱応力が発生
し、ときには濾過パイプや鏡板が破損したり、クラック
が発生したりするという問題があった。このようなりラ
ックが発生すれば、そのクラックに固形不純物を含んだ
金属溶湯が集中的に通過するため濾過不良を生じ、また
濾過パイプや鏡板の破損が生じたときにはカートリッジ
の交換及び金属溶湯の再濾過のために多大な損失が生ず
る。
(Problem that Part 1 attempts to solve) However, in the filtration pipe manufactured by the above-mentioned manufacturing method, the elongation rate of the filtration pipe when raised from room temperature to the operating temperature is 0.5% or more. Due to the large surface area, a large amount of thermal stress is generated, which sometimes causes damage to the filtration pipe and head plate, or causes cracks.If such a rack occurs, solid impurities can be trapped in the crack. The concentrated flow of the molten metal therein causes poor filtration, and if the filter pipe or end plate is damaged, a large amount of loss occurs due to cartridge replacement and refiltration of the molten metal.

斯かる不具合を解決せんとする試みとして、例えば実開
昭59−68663号公報或は実開昭59−69959
号公報に示されているように、濾過パイプと鏡板との間
に耐熱性のパツキンを介装する構成も考えられているが
、これではパツキンを通して金属溶湯の漏れが発生し易
い上、濾過パイプの固定の安定性に欠けてカートリッジ
の輸送・取扱い時に濾過パイプが外れて破損し易い等の
欠点がある。
As an attempt to solve this problem, for example, Japanese Utility Model Application Publication No. 59-68663 or Japanese Utility Model Application No. 59-69959
As shown in the publication, a configuration in which a heat-resistant packing is interposed between the filtration pipe and the end plate has been considered, but in this case, molten metal is likely to leak through the packing, and the filtration pipe There are disadvantages such as the lack of stability in fixing the cartridge, and the filtration pipe being easily dislodged and damaged during transportation and handling of the cartridge.

また、濾過パイプ即ち濾材の熱膨脹を極力抑えるために
、その骨材粒子をアルミナよりも熱膨張率が小さな炭化
珪素や窒化珪素とすることも試みられているが、これら
の材料はアルミナに比べて金属溶湯との濡れ性が悪く、
このため濾過効率が大きく低ドするという問題を生じて
しまう。
In addition, in order to suppress the thermal expansion of the filter pipe, that is, the filter medium, attempts have been made to use silicon carbide or silicon nitride as the aggregate particles, which have a smaller coefficient of thermal expansion than alumina, but these materials have a lower coefficient of thermal expansion than alumina. Poor wettability with molten metal,
This causes a problem in that the filtration efficiency is greatly reduced.

本発明はL記事情に鑑みてなされたもので、従ってその
目的は、金属溶湯の濾過効率を十分に確保しながら、熱
膨脹を小さくでき、もって鏡板間に配置した状態でも熱
応力による破損やクラックの発生を未然に防市し得、し
かも金属溶湯の漏れを確実に防11−できる等の効果を
奏する金属溶湯用濾材の製造方法を提供するにある。
The present invention has been made in view of the above circumstances, and its purpose is to reduce thermal expansion while ensuring sufficient filtration efficiency for molten metal, thereby preventing damage and cracks due to thermal stress even when placed between mirror plates. It is an object of the present invention to provide a method for producing a filter medium for molten metal, which has effects such as preventing the occurrence of molten metal and reliably preventing leakage of molten metal.

[発明の構成] (問題点を解決するための手段) 本発明に係る金属溶湯用濾材の製造方法は、骨祠拉子を
アルミナとすると共に、その100ffiQ部に対して
8〜20重量部の無機質結合材を配し、且つ無機質結合
材の原料組成を B20315〜80%、Al2032
〜60%、Ca OO〜30%及び!11y05〜50
%とし、骨材粒子と無機質結合材原料とを混合して成形
・乾燥した後1200℃〜1400℃まで加熱して無機
質結合材原料を溶融させ、その後、800℃までを1時
間当り30℃〜70℃の冷却速度にて徐冷することによ
り無機質結合材を結晶化させるところに特徴を有するも
のである。
[Structure of the Invention] (Means for Solving the Problems) The method for producing a filter medium for molten metal according to the present invention includes using alumina as the alumina, and adding 8 to 20 parts by weight of alumina to 100 ffiQ parts thereof. An inorganic binder is arranged, and the raw material composition of the inorganic binder is B20315-80%, Al2032.
~60%, Ca OO ~30% and! 11y05-50
%, aggregate particles and inorganic binder raw material are mixed, molded and dried, heated to 1200°C to 1400°C to melt the inorganic binder raw material, and then heated at 30°C to 800°C per hour. It is characterized in that the inorganic binder is crystallized by slow cooling at a cooling rate of 70°C.

(作用) 」−記手段により製造された金属溶湯用濾材によれば、
骨祠拉子が金属溶湯に対し濡れ性に優れるアルミナであ
るから、金属溶湯が骨材粒子間の気孔を通過し易く、濾
過効率に優れる。また、骨材粒子を互いに結合させてい
る無機質結合材は結晶化しているから、金属溶湯に対す
る濡れ性に優れてはいるものの熱膨張率が比較的大きい
という問題があるアルミナを骨材粒子としていても、無
機質結合材がガラス質である従来の金属溶湯用濾材に比
べて使用時における全体の熱膨脹を小さくすることがで
きる。更に、無機質結合材はA1□o3・ B203 
 ・Ca0−kO系であるから、金属溶湯に対する耐蝕
性にも優れる。
(Function) - According to the filter medium for molten metal produced by the means described above,
Since the alumina has excellent wettability for molten metal, the molten metal easily passes through the pores between the aggregate particles, resulting in excellent filtration efficiency. In addition, since the inorganic binder that binds aggregate particles to each other is crystallized, alumina, which has excellent wettability with molten metal but has a relatively large coefficient of thermal expansion, is used as aggregate particles. Also, the overall thermal expansion during use can be reduced compared to conventional filter media for molten metal in which the inorganic binder is vitreous. Furthermore, the inorganic binder is A1□o3・B203
- Since it is Ca0-kO based, it also has excellent corrosion resistance against molten metal.

ここで、骨材粒子と無機質結合材原料とを混合して成形
・乾燥した後、1200℃〜1400℃まで加熱して無
機質結合材原料を溶融させ、その後、800℃までを1
時間当り30℃〜70℃の冷却速度にて徐冷することか
、無機質結合材を結晶化させるに最も重要な条件である
。尚、800℃までで結晶化はほとんど完了するから、
その温度以下における冷却条件は問わない。
Here, the aggregate particles and the inorganic binder raw material are mixed, molded and dried, and then heated to 1200°C to 1400°C to melt the inorganic binder raw material, and then heated to 800°C for 1 time.
Slow cooling at a cooling rate of 30° C. to 70° C. per hour is the most important condition for crystallizing the inorganic binder. Furthermore, since crystallization is almost complete at temperatures up to 800°C,
The cooling conditions below that temperature do not matter.

また、無機質結合材の原料組成を B2O,15〜80
%、Al2O,2〜60%、Ca OO〜30 %及び
附05〜50%とするのは、この範囲の組成とすると無
機質結合材原料が1200℃〜1400℃の温度で溶融
可能となってその後の結晶化が適切に行われるからであ
る。即ち、 B203  は金属溶融、特にアルミニウ
ム溶湯に対する耐蝕性を向上させる観点から15%以上
含まれることが必要で、溶融温度を適切な程度にまで高
める観点から80%以下であることが必要である。また
、Al2O3を2〜60%、CaOを0〜30%及び附
0を5〜50%とする意味は主として溶融温度を適切な
範囲内に納めるためで、特に各々の上限を越えるときに
は溶融温度を過剰に高めなくてはならず、 B2 o3
  の飛散という問題を生ずる。
In addition, the raw material composition of the inorganic binder was B2O, 15-80
%, Al2O, 2 to 60%, CaOO to 30%, and 05 to 50% because if the composition falls within this range, the inorganic binder raw material can be melted at a temperature of 1200°C to 1400°C. This is because the crystallization of is properly performed. That is, B203 needs to be contained in an amount of 15% or more from the viewpoint of improving the corrosion resistance against metal melting, especially molten aluminum, and it needs to be contained at 80% or less from the viewpoint of raising the melting temperature to an appropriate level. In addition, the meaning of setting Al2O3 to 2 to 60%, CaO to 0 to 30%, and 0 to 5 to 50% is mainly to keep the melting temperature within an appropriate range, especially when the upper limits of each are exceeded. Must be excessively high, B2 o3
This causes the problem of scattering.

更に、骨材粒子100重量部に対し無機質結合材を8〜
20重量部とするのは、それが8重量部未満では骨材粒
子の相対量が増大するため、アルミナの熱膨張が寄与し
て全体の熱膨張が大きくなってしまい、20重量部を越
えると骨材粒子間の空隙を無機質結合材が埋める傾向と
なって濾過効率が低ドするからである。尚、無機質結合
材の最適な添加量は上述の範囲内で骨材粒径に応じて異
なる。また、骨材粒子は電融アルミナ又は焼結アルミナ
のいずれも使用することができる。
Furthermore, 8 to 8 parts of an inorganic binder is added to 100 parts by weight of aggregate particles.
The reason why it is set at 20 parts by weight is that if it is less than 8 parts by weight, the relative amount of aggregate particles increases, and the thermal expansion of alumina contributes to the overall thermal expansion. This is because the inorganic binder tends to fill the voids between aggregate particles, reducing filtration efficiency. Note that the optimum amount of the inorganic binder added varies depending on the aggregate particle size within the above-mentioned range. Moreover, either fused alumina or sintered alumina can be used as the aggregate particles.

(実施例) 以下、本発明をいくつかの実施例及び比較例を参照して
具体的に述べる。
(Examples) Hereinafter, the present invention will be specifically described with reference to some examples and comparative examples.

全ての実施例及び比較例において骨材粒子は14〜28
メツシユのアルミナを使用している。無機質結合材原料
は次の6表に示す組成となるように配合し、骨材粒子、
有機バインダー及び水と共に混練し、この後、所定形状
に成形して乾燥し、6表に示す最高温度まで加熱した後
、各冷却速度で冷却した。焼成後、常温から800℃に
まで昇温させたときの伸び率と通気量とを測定し、総合
評価を与えた。
In all Examples and Comparative Examples, the aggregate particles were 14 to 28
It uses Metsuyu alumina. The inorganic binder raw materials are blended to have the composition shown in Table 6 below, and aggregate particles,
The mixture was kneaded with an organic binder and water, then molded into a predetermined shape, dried, heated to the maximum temperature shown in Table 6, and then cooled at various cooling rates. After firing, the elongation rate and air permeability were measured when the temperature was raised from room temperature to 800°C, and a comprehensive evaluation was given.

(1)800℃までの冷却速度について第1表乃至?5
4表は適切な冷却速度の範囲を示唆する。同一の表内の
各実施例及び比較例は、無機質結合材組成及びその添加
量並びに焼成最高温度は同一であるが、800℃までの
冷却速度が1時間当り20.30,50,70.80℃
の5種類に異なる。
(1) Table 1 regarding cooling rate up to 800℃? 5
Table 4 suggests a range of suitable cooling rates. In the Examples and Comparative Examples in the same table, the composition of the inorganic binder, the amount added, and the maximum firing temperature are the same, but the cooling rate to 800°C is 20.30, 50, 70.80 per hour. ℃
There are five different types.

冷却速度を1時間当り20℃或は80℃とした比較例1
〜8では、伸び率が0.40%以上と比較的大き〈従来
例に近いが、冷却速度を1時間当り30℃〜70℃とし
た実施例1〜12では伸び率を0.45%以下に抑える
ことができた。従って、伸び率を0.45%以下に抑え
るために適切な冷却速度の範囲は1時間当り30℃〜7
0℃の範囲にあると考えられる。
Comparative Example 1 where the cooling rate was 20°C or 80°C per hour
-8, the elongation rate is relatively large at 0.40% or more (close to the conventional example, but in Examples 1 to 12 where the cooling rate was 30°C to 70°C per hour, the elongation rate was 0.45% or less) I was able to keep it down to Therefore, in order to suppress the elongation rate to 0.45% or less, the appropriate cooling rate range is 30°C to 7°C per hour.
It is thought to be in the range of 0°C.

(2)無機質結合材組成及びその添加量について第5表
は無機質結合材の適切な組成及びその添加はを示唆して
いる。比較例9〜11は無機質結合材の原料組成にいず
れも八203を含まない。
(2) Composition of inorganic binder and its addition amount Table 5 suggests the appropriate composition of the inorganic binder and its addition. Comparative Examples 9 to 11 do not contain 8203 in the raw material composition of the inorganic binder.

このような配合の場合、最高焼成温度や冷却速度を異な
らせても、伸び率が前記実施例1〜12に比べて著しく
大きくなる。その理由は、このような配合では無機質結
合材原料を一旦溶融させて徐冷しても、適当な鉱物相を
生成せずに結晶化が行われないためと考えられる。また
、実験結果を掲げてはいないが、無機質結合材の原料組
成がB2O215〜80%、Alt032〜60%、C
aO0〜30%及びM905〜50%の範囲を逸脱する
と、比較例9〜11と同様に伸び率が著しく大きくなる
結果が得られた。従って、適切な結晶化が可能になる無
機質結合材の原料組成は、上述の範囲にあると考えられ
る。
In the case of such a formulation, even if the maximum firing temperature and cooling rate are different, the elongation rate is significantly higher than that of Examples 1 to 12. The reason for this is thought to be that in such a formulation, even if the inorganic binder raw material is once melted and slowly cooled, an appropriate mineral phase is not generated and crystallization does not occur. In addition, although the experimental results are not listed, the raw material composition of the inorganic binder is B2O2 15-80%, Alt032-60%, C
When the aO was out of the range of 0 to 30% and the M9 was in the range of 5 to 50%, results were obtained in which the elongation rate significantly increased as in Comparative Examples 9 to 11. Therefore, it is considered that the raw material composition of the inorganic binder that enables appropriate crystallization is within the above-mentioned range.

))s比較例12.13は、無機質結合材の組成及び焼
成条件については第2表に示した実施例5と同様である
が、その添加量を骨材粒子100重凱二定対し6重工部
及び22重二部としたものである。比較例12では伸び
率が0.52%と従来例よりも大きくなる。これは熱膨
張率が比較的大きいアルミナ骨材粒子の相対量が増大す
るため、無機質結合材が結晶化してその部分の熱膨張は
小さくなっても、アルミナの熱膨張の寄与により全体と
しての伸び率が大きくなっているものと考えられる。ま
た、比較例13では通気量が低ドする。
)) Comparative Example 12.13 is the same as Example 5 shown in Table 2 with respect to the composition and firing conditions of the inorganic binder, but the amount added is 6 to 6 to 100 to 100 of aggregate particles. 1 part and 22 parts. Comparative Example 12 has an elongation rate of 0.52%, which is greater than that of the conventional example. This is because the relative amount of alumina aggregate particles, which have a relatively large coefficient of thermal expansion, increases, so even if the inorganic binder crystallizes and the thermal expansion of that part decreases, the overall elongation increases due to the contribution of the thermal expansion of alumina. It is thought that the ratio has increased. Furthermore, in Comparative Example 13, the amount of ventilation is low.

これは、無機質結合材の割合いが過剰であるため、骨材
粒子間の隙間が無機質結合Hにより埋められて11詰ま
り状態となるからと考えられる。従って、これらの比較
例12.13及び掲載を省略した他の実験結果から、骨
材粒子100弔礒部に対し無機質結合材の適切な添加量
は伸び率を極力抑える観点から8i″r+′瓜部以上で
あって、通気量を確保する観点から20重二部以下が望
ましいと判明した。
This is thought to be because the proportion of the inorganic binder is excessive, and the gaps between the aggregate particles are filled with the inorganic binder H, resulting in a clogging state. Therefore, from the results of Comparative Examples 12 and 13 and other experiments not shown, the appropriate amount of inorganic binder to be added to 100 parts of aggregate particles is 8i''r+' part from the viewpoint of minimizing the elongation rate. Based on the above, it has been found that 20 parts or less is desirable from the viewpoint of ensuring the amount of ventilation.

第  1  表 第  2  表 第  3  表 第  4  表 第  5  表 さて、第1図は本発明方法により製造した金属溶湯用濾
材の使用例を示している。ここで、1は一対の鏡板であ
って、Si O2結合の炭化珪素製である。2は鏡板1
,1間に挟まれた濾過パイプで、一端を閉塞した中空円
筒状をなし、両端部が各鏡板1に形成した四部1a内に
嵌め込まれている。
Table 1 Table 2 Table 3 Table 4 Table 5 Now, FIG. 1 shows an example of the use of a filter medium for molten metal produced by the method of the present invention. Here, reference numeral 1 denotes a pair of end plates, which are made of silicon carbide with SiO2 bonds. 2 is mirror plate 1
, 1, and has a hollow cylindrical shape with one end closed, and both ends are fitted into the four parts 1a formed on each end plate 1.

濾過パイプ2の各端部と凹部1aの底との間にはそれぞ
れ約7順の余裕があり、ここに耐熱性モルタル3が埋め
込まれて濾過パイプ1が鏡板2に固定されている。この
)濾過パイプ2は本発明ノブ法により製造され、具体的
には次の通りである。即ち、無機質結合材の原料組成は
八20340%、B2O325%、Ca020%、MS
F015%とし、これをアルミナ骨材粒子100ffi
、H部に対し14゜3重量部添加して有機バインダー及
び水と共にミキサーで混練し、所定形状に成形する。そ
して、乾燥後、最高温度1350℃まで加熱し、1時間
当り50℃の冷却速度で冷却した。
There are about seven margins between each end of the filtration pipe 2 and the bottom of the recess 1a, and heat-resistant mortar 3 is embedded in this space to fix the filtration pipe 1 to the end plate 2. This) filtration pipe 2 is manufactured by the knob method of the present invention, specifically as follows. That is, the raw material composition of the inorganic binder is 820340%, B2O325%, Ca020%, MS
F0 is 15%, and this is 100ffi of alumina aggregate particles.
, 14.3 parts by weight is added to part H, kneaded with an organic binder and water in a mixer, and formed into a predetermined shape. After drying, it was heated to a maximum temperature of 1350°C and cooled at a cooling rate of 50°C per hour.

斯かる構成の濾過装置はアルミニウム溶湯が供給される
濾過槽内に配置され、濾過パイプ2の無数の連続気孔内
をアルミニウム溶湯が通過することにより、濾過パイプ
2内から固形不純物が除去されたアルミニウム溶湯が流
出するようになる。
The filtration device having such a configuration is placed in a filtration tank to which molten aluminum is supplied, and the molten aluminum passes through the countless continuous pores of the filtration pipe 2 to remove solid impurities from the filtration pipe 2. Molten metal begins to flow out.

この場合、鏡板1や濾過パイプ2の温度は約700℃〜
800℃となるが、上記濾過パイプ2が常温から800
℃に加熱されたときの伸び率は0゜43%に11−まる
から、濾過パイプ2は使用状態では常温よりも4 n+
+a弱伸びることになる。しかし、濾過槽自体の膨脹及
びモルタルの収縮を考慮すると実際には4 mn+以下
の膨脹には十分耐えることができるから、熱応力により
濾過パイプ2や鏡板1にクラックが発生したり、破損し
たりすることは確実に防止することができる。また、こ
のように熱膨張によるクラックの発生や破損を考慮する
必・冴かないから、パツキンを用いることなく濾過パイ
プ2を鏡板1にモルタル3により確実に同定して輸送時
や取扱い時の安全を図ることもnJ能になる。史に、骨
44粒子をアルミナとしているから、濾過パイプ2内の
連続気孔に金属溶湯が通り易く、濾過効率に優れるもの
であった。尚、第2図に本発明に係る濾過パイプ2、従
来の濾過パイプ、鏡板1及びアルミナの常温から昇温さ
れたときの伸び率を夫々示した。同図からも明らかなよ
うに、従来の濾過パイプにあっては800℃における伸
び串が0.57%程度あり、本発明に斯かる濾過パイプ
2に比べて大であることが明らかである。
In this case, the temperature of the mirror plate 1 and filter pipe 2 is approximately 700°C ~
The temperature is 800℃, but the filtration pipe 2 is 800℃ from room temperature.
Since the elongation rate when heated to 0°C is 11 - 43%, the filtration pipe 2 in use is 4n+ higher than at room temperature.
It will grow by a little more than +a. However, considering the expansion of the filtration tank itself and the contraction of the mortar, it can actually withstand an expansion of 4 mn+ or less, so the filtration pipe 2 and head plate 1 may crack or break due to thermal stress. This can definitely be prevented. In addition, since it is not necessary or convenient to take into account the occurrence of cracks and damage due to thermal expansion, the filter pipe 2 is reliably identified by the mortar 3 on the end plate 1 without using packing to ensure safety during transportation and handling. It also becomes nJ Noh. Historically, since the bone 44 particles were made of alumina, the molten metal could easily pass through the continuous pores in the filter pipe 2, resulting in excellent filtration efficiency. FIG. 2 shows the elongation rates of the filtration pipe 2 according to the present invention, the conventional filtration pipe, the end plate 1, and alumina when the temperature is raised from room temperature. As is clear from the figure, in the conventional filtration pipe, the elongation at 800°C is about 0.57%, which is clearly larger than the filtration pipe 2 according to the present invention.

[発明の効果〕 以1、述べたように、本発明の製造方法によれば、骨)
4粒子がアルミナであるから金属溶湯との濡れ性に優れ
て濾過効率が良く、しかもそれでいながら骨材粉子を結
合せる無機質結合材が結晶化して熱膨張が小さくなるた
め、熱応力によるクラックの発生や破損を防雨できると
いう優れた金属溶湯用(点材を提供することができる。
[Effects of the Invention] 1. As described above, according to the production method of the present invention, bone)
4 Because the particles are alumina, they have excellent wettability with molten metal and high filtration efficiency.Moreover, the inorganic binder that binds the aggregate powder crystallizes and reduces thermal expansion, which prevents cracks due to thermal stress. We can provide an excellent point material for molten metal that can prevent rain and damage.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る金属溶湯用濾材の使用例を示す濾
過装置の縦断面図、第2図は本発明に係る濾過パイプ′
、りのW?m時の伸び率を示すグラフである。 図面中、1は鏡板、2は濾過パイプ、3は耐熱性モルタ
ルである。
FIG. 1 is a longitudinal sectional view of a filtration device showing an example of the use of the filter medium for molten metal according to the present invention, and FIG. 2 is a filtration pipe according to the present invention.
, Rino W? It is a graph showing the elongation rate at m. In the drawings, 1 is a mirror plate, 2 is a filter pipe, and 3 is a heat-resistant mortar.

Claims (1)

【特許請求の範囲】[Claims] 1、骨材粒子を無機質結合材により結合させた金属溶湯
用濾材を製造する濾材の製造方法であって、前記骨材粒
子をアルミナとすると共に、その100重量部に対して
8〜20重量部の無機質結合材を配し、且つ前記無機質
結合材の原料組成をB_2O_315〜80%、Al_
2O_32〜60%、CaO0〜30%及びMgO5〜
50%とし、前記骨材粒子と前記無機質結合材原料とを
混合して成形・乾燥した後1200℃〜1400℃まで
加熱して無機質結合材原料を溶融させ、その後、800
℃までを1時間当り30℃〜70℃の冷却速度にて徐冷
することにより前記無機質結合材を結晶化させることを
特徴とする金属溶湯用濾材の製造方法。
1. A method for manufacturing a filter medium for molten metal in which aggregate particles are bound by an inorganic binder, wherein the aggregate particles are alumina, and 8 to 20 parts by weight per 100 parts by weight of the aggregate particles. , and the raw material composition of the inorganic binder is B_2O_315-80%, Al_
2O_32~60%, CaO0~30% and MgO5~
50%, the aggregate particles and the inorganic binder raw material are mixed, molded and dried, heated to 1200 ° C to 1400 ° C to melt the inorganic binder raw material, and then 800 ° C.
A method for producing a filter medium for molten metal, characterized in that the inorganic binder is crystallized by slowly cooling the inorganic binder at a cooling rate of 30°C to 70°C per hour.
JP62284581A 1987-11-11 1987-11-11 Method for manufacturing filter material for molten metal Expired - Lifetime JP2523707B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62284581A JP2523707B2 (en) 1987-11-11 1987-11-11 Method for manufacturing filter material for molten metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62284581A JP2523707B2 (en) 1987-11-11 1987-11-11 Method for manufacturing filter material for molten metal

Publications (2)

Publication Number Publication Date
JPH01127168A true JPH01127168A (en) 1989-05-19
JP2523707B2 JP2523707B2 (en) 1996-08-14

Family

ID=17680312

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62284581A Expired - Lifetime JP2523707B2 (en) 1987-11-11 1987-11-11 Method for manufacturing filter material for molten metal

Country Status (1)

Country Link
JP (1) JP2523707B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03285027A (en) * 1990-03-30 1991-12-16 Ngk Insulators Ltd Filter material for metallic molten metal
JPH0929423A (en) * 1995-07-19 1997-02-04 Mitsui Mining & Smelting Co Ltd Filter for filtering molten aluminum
TWI657878B (en) * 2018-11-01 2019-05-01 中國鋼鐵股份有限公司 Mold powder for continuous casting of high aluminum steel

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03285027A (en) * 1990-03-30 1991-12-16 Ngk Insulators Ltd Filter material for metallic molten metal
JPH0929423A (en) * 1995-07-19 1997-02-04 Mitsui Mining & Smelting Co Ltd Filter for filtering molten aluminum
TWI657878B (en) * 2018-11-01 2019-05-01 中國鋼鐵股份有限公司 Mold powder for continuous casting of high aluminum steel

Also Published As

Publication number Publication date
JP2523707B2 (en) 1996-08-14

Similar Documents

Publication Publication Date Title
EP1364930B1 (en) Honeycomb structure and method for preparation thereof
US4428895A (en) Composite inorganic structures and process of producing same
JPH0345030B2 (en)
US4552800A (en) Composite inorganic structures
EP0086500B1 (en) A process for making a composite inorganic article
EP1428807B2 (en) Refractory system for glass melting furnaces
WO2001092183A1 (en) Porous high alumina cast refractory and method for its production
EP0726234A2 (en) High-temperature ceramic filters, their manufacture and use
JPH01127168A (en) Manufacture of filter material for molten metal
AU2010320042A1 (en) Refractory material, continuous casting nozzle using the refractory material, production method for the continuous casting nozzle, and continuous casting method using the continuous casting nozzle
JPH03254805A (en) Filter material for molten aluminum
EP0586102A1 (en) High-Temperature ceramic filter
JPH06305828A (en) Aluminum titanate composite material and its production
JP2680841B2 (en) Filter cartridge for molten aluminum filtration and filtration device using the same
JP2000351679A (en) Production of silicon carbide-based porous form and the resultant silicon carbide-based porous form
US2889229A (en) Process for the manufacture of fire resistant material containing silicates
JPH10130066A (en) Production of casting material using alumina based refractory waste material
JP2823140B2 (en) Method for producing cordierite porous body
CA1185081A (en) Process for freezing an inorganic particulate slurry or suspension
JPH0586460B2 (en)
JPH04301040A (en) Filter medium for molten metal
JP2801948B2 (en) Filter media for molten metal
JPH0421725A (en) Filter material for metallic molten metal
JPH0780709B2 (en) Refractory material
JP3026883B2 (en) SiC refractory

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080531

Year of fee payment: 12