JPH0328377Y2 - - Google Patents

Info

Publication number
JPH0328377Y2
JPH0328377Y2 JP19058786U JP19058786U JPH0328377Y2 JP H0328377 Y2 JPH0328377 Y2 JP H0328377Y2 JP 19058786 U JP19058786 U JP 19058786U JP 19058786 U JP19058786 U JP 19058786U JP H0328377 Y2 JPH0328377 Y2 JP H0328377Y2
Authority
JP
Japan
Prior art keywords
sample
weighing
container
sorter
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP19058786U
Other languages
Japanese (ja)
Other versions
JPS6396463U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP19058786U priority Critical patent/JPH0328377Y2/ja
Publication of JPS6396463U publication Critical patent/JPS6396463U/ja
Application granted granted Critical
Publication of JPH0328377Y2 publication Critical patent/JPH0328377Y2/ja
Expired legal-status Critical Current

Links

Description

【考案の詳細な説明】[Detailed explanation of the idea]

(産業上の利用分野) 本考案は金属の成分分析、例えば金属中ガス分
析において金属中ガス分析を行う際に金属試料
(サンプル)から切り出した、削片状の試料を分
析装置へ迅速に、精度良く、自動的に供給する自
動試料供給装置に関するものである。 (従来の技術) 通常、金属中ガス成分分析を行う場合、第9図
に示すように金属試料(サンプル)からボール盤
(ドリル)や適当な工作機械を用いて、削片状の
試料を切出し、この試料を容器に一旦保管する。
この後ガス分析の対象成分によつて各々試料を秤
量し、秤量した試料を各分析装置に供給して分析
を行つている。 従来削片状の試料の切出しは、例えば切粉試料
自動調整装置(日本切断機製NSK式DS−2形)
のようなものにより自動化されている。又、分析
装置は試料が所定の位置にセツトされた後に分析
結果を印字する。例えば、EMIA−3200(堀場製
作所製)のような自動化装置がある。 しかし、前記した試料の保管、運搬、秤量、試
料セツトはすべて人手作業で行つており、削片状
の試料を自動的に複数の分析装置へ供給する装置
は未だない。 (考案が解決しようとする問題点) 従来の方法は前記したように、すべて人手作業
で行つているため、手間と時間を要するという欠
点がある。又、前記工程を自動化するためには以
下の問題点があり、各部位の単体装置の組み合せ
だけでは、不可能である。 (1) 第1表に示すように、切粉試料自動調整装置
(NSK式DS−2形)で切出した試料中に粒度
が略30メツシユ以下のものが混在すると、 微粒であることから表面積が大きく、単位
重量あたりのコンタミネーシヨン、吸着等が
大きいこと、 金属中の析出物(炭化物)であること、 等の原因のため、特に炭素の分析において分析値
が高くなることがわかつている。従つて略30メツ
シユ以下のものを除去しなければならない。
(Industrial Application Field) The present invention is designed to quickly transfer a flake-like sample cut from a metal sample to an analyzer when performing metal component analysis, such as gas-in-metal analysis. This invention relates to an automatic sample supply device that automatically supplies samples with high precision. (Prior art) Normally, when performing gas component analysis in metal, a particle-shaped sample is cut out from a metal sample using a drill or other suitable machine tool, as shown in Figure 9. This sample is temporarily stored in a container.
Thereafter, each sample is weighed according to the target component of the gas analysis, and the weighed samples are supplied to each analyzer for analysis. Conventionally, particle-shaped samples are cut using, for example, a chip sample automatic adjustment device (NSK type DS-2 type manufactured by Nippon Cutting Machine).
It is automated by something like Further, the analyzer prints the analysis results after the sample is set in a predetermined position. For example, there is an automation device such as EMIA-3200 (manufactured by Horiba, Ltd.). However, the above-mentioned sample storage, transport, weighing, and sample setting are all done manually, and there is still no device that automatically supplies particle-shaped samples to a plurality of analyzers. (Problems to be Solved by the Invention) As mentioned above, the conventional method has the drawback of being labor-intensive and time-consuming because it is all done manually. In addition, there are the following problems in automating the process, and it is not possible to automate the process simply by combining individual devices for each part. (1) As shown in Table 1, if particles with a particle size of approximately 30 mesh or less are mixed in the sample cut with the automatic chip sample preparation device (NSK type DS-2), the surface area will decrease due to the fine particles. It is known that analysis values are particularly high in carbon analysis due to factors such as large contamination and adsorption per unit weight, and being a precipitate (carbide) in metal. Therefore, those with approximately 30 meshes or less must be removed.

【表】 (2) 金属試料内で例えば成分が偏在していると第
10図に示すようにドリルによる深さ方向の切
出し位置により成分濃度が異なるため、複数の
分析装置に供給する場合、供試料を均一化しな
ければならない。 (3) 通常、金属中ガス分析を行う分析装置へ供給
する試料の量は、少量(1g以下)であり、そ
してそれを精度良く分析を行うためには供給す
る試料の量の変動を極力小さくしなければなら
ない。 この考案の目的は、上記の人手作業による欠点
と、自動化の際の問題点を解決することにより、
分析供試料を分析装置へ迅速に、精度良く、自動
的に供給することの可能な自動試料供給装置を提
供することにある。 (問題点を解決するための手段) 本考案の要旨は次のとおりである。すなわち、 サンプル金属から切り出した試料(削片)を次
工程へ送る選別器と、上記選別器から試料を受け
取り試料秤量容器と試料保管容器とに所定量の試
料を分配し、試料秤量容器に分配された試料を分
析器への搬送系に払いだす試料払い出し装置とか
らなり、 上記選別器は、所定の傾斜に設けた金属切粉供
給シユータと、その下部において金属切粉の流動
方向に直行して仕切られ、手前の微粉排除用ホツ
パー、先方の試料用ホツパー並びに試料用ホツパ
ーから試料を受け取り次工程へ送るコンベヤから
なり、 上記試料払い出し装置は上記コンベヤより試料
を受け取り、所定の振幅で振子動作しつつ下方の
上記試料秤量容器と試料保管容器へ試料を払いだ
す分配ホツパーと、上記試料秤量容器の試料を容
器ごと秤量する秤量器と、秤量した試料を分析器
への搬送系入口に払いだすための秤量容器の前後
移動・反転装置と、上記試料保管容器の供給装置
と、試料を受け取つた後所定位置に移動する試料
保管容器の搬送装置とよりなる金属成分分析装置
の試料供給装置。 このような本考案は次のような特長がある。 サンプル金属からドリル等で切り出した切粉
を上記選別器にかけて、粒度の大きい削片状の
切粉のみを試料に供するようにした。このた
め、前記したような微粉混入による分析誤差を
回避できる。 上記試料を上記試料払い出し装置の分配ホツ
パーにより複数の試料秤量容器及び試料保管容
器へ、成分の偏りがないように分配するととも
に自動秤量を行ない、更に秤量後の試料を分析
系に自動払い出しを行なう。また試料保管容器
の供給・退出を自動化した。このため、均質な
微量試料を分析系へ自動的に払い出すことがで
きる。 (考案の実施例) 以下本考案を金属中ガス分析装置の試料供給装
置に適用した例について図面に従い説明する。上
記金属中ガス分析装置の試料供給装置は、サンプ
ル金属11から切出された切粉のうち32メツシユ
以下の微粉と削片状試料を選別する選別部7、選
別した後の試料を連続的に払い出す搬送部8、試
料を各分析対象の成分毎の試料と保管用試料にそ
れぞれ分割し、試料の秤量を行う分割秤量部9
(第2図)、保管用容器の供給払い出しを行う保管
試料搬送部12、秤量した試料を分析装置へ供給
する搬送部70とで構成されている。 選別部7は第3図に示すように、サンプル金属
11から、切粉状試料を切出す切粉試料自動調整
装置(図示していない)のサンプル金属11を挟
む固定台10に、予め調整した所定の角度を持た
せているシユータ1を取り付け、シユータ1の下
部に、32メツシユ以下の微粉を捕集して32メツシ
ユ以上の削片状試料を選別するために、内部が2
室に仕切られている選別器2を設けている。この
選別器2は、シユータ1の手前の室3′に32メツ
シユ以下のものが、供給口3に32メツシユ以上の
試料がそれぞれとりこまれるようになつている。 搬送部8は第1図、第3図に示すように、前記
選別器2の32メツシユ以上の試料を供給する供給
口3の直下に一端を設置しているベルトコンベヤ
16′と、その支持台13とから成り、ベルトコ
ンベヤ16′は駆動モーター部14と、2個のロ
ーラー15と、ベルト16と、周囲の粉塵を取込
むことを避けるための風防17からなつている。 分割・秤量部9は、第2図、第4図に示すよう
に、搬送部8の一端のベルト16の直下に設置し
ている左右に振子振動を行なうホツパー4と、こ
のホツパー4が左右で停止する各位置の直下に
各々設置した試料受け用容器5,6と、ホツパー
4、試料受け用容器5,6を駆動させる機能と供
試料の秤量を行うための天秤機能を持つた駆動・
秤量部18、及び前記ホツパー4、試料受け用容
器5,6と駆動・秤量部18を所定の位置に移動
させるための駆動部19とからなつている。 駆動・秤量部18は第4図、第5図、第6図に
示すように、ホツパー4の供給口を保管容器47
上の位置から試料受け用容器5,6の位置,
にそれぞれ振子振動させるための駆動モータ2
0と、試料受け用容器5,6を支持させ、試料の
秤量を行うための支持棒21,21′と、支持棒
21,21′の所定の位置に設けた支点ピン22,
22′及びピン24,24′によつて固定された分
銅23,23′と、試料と分銅23,23′のバラ
ンスを位置決めで検出するために支持棒21,2
1′の一端に設けられた位置決め棒25,25′
と、これを光で検出することの可能な近接スイツ
チ26,26′と、試料受け用容器5,6中の試
料を試料受け用容器5,6を同時に反転させるこ
とにより直下に落下させるために設けてある駆動
モータ27と、同時反転のためのギヤー28,2
9及びギヤー29から、支持棒21′に連結され
たギヤー30と、ギヤー29,30にピン31,
31′でそれぞれ連結され、架台40とボールベ
アリング32,32′により回転が可能となる回
転体33,33′と、回転体33,33′と支持体
34,34′をそれぞれ固定する支点ピン22,
22′とからなつている。 駆動部19は、第2図、第7図に示すように、
前記駆動・秤量部18を支え、移動可能なように
レール36,37を有する支持台38と、支持台
38を支える支持棒41,41′,42,42′
と、駆動・秤量部18を所定の位置へ移動するた
めの、支持台38に固定されたエアシリンダー4
3とからなつている。 保管試料搬送部12は第1図、第7図に示すよ
うにあらかじめセツトしておいたツメ48を有す
る保管試料用容器47を所定の位置(第7図B部
近傍)へ搬送するためのベルトコンベア49と、
保管試料用容器47を所定の位置に搬送するため
の駆動部50と、駆動部50を支え、移動が可能
なようにレール52を有する支持台53と、駆動
部50を移動させるためのラツクピニオン機構2
6と回転モータ35を組み合せた直線動作のでき
る駆動部51と、保管試料用容器47を所定の位
置に搬送するためのベルトコンベア63とからな
つている。 駆動部50は、移動が可能なようにレール52
と連結させたガイドレール62を有する固定台5
4と、固定台54をピン58,59,60,61
(61は図示していない)で平行に固定した固定
台66と、固定台66に設置されたエアシリンダ
ー55の駆動棒64に連結されてエアシリンダー
55の駆動により保管試料用容器47の昇降を行
なう支持棒65を有する移動板67とからなつて
おり、移動板67が固定台54に対して垂直に移
動できるように固定台54に固定された軸棒5
6,57及び固定台66に固定されて軸棒56,
57の垂直方向の軸を保持するために、軸棒5
6,57と接触し円滑なスライドが可能な円筒6
8,69(69の上方は図中で省いている)が設
けられている。 搬送部70は第1図、第8図に示すように、試
料受け用容器5,6で秤量された供試料を分析装
置へ搬送するための試料受け用ロート71,7
1′と、試料受け用ロート71,71′と連結され
た搬送管72,72′と、吸引装置(図示してい
ない)に連結された吸引管73,73′を有する
サイクロン74,74′と試料を散逸させること
なく分析装置上にあらかじめセツトした燃焼用ル
ツボ(図示していない)へ供給するために、燃焼
用ルツボの直上に設けられた試料投入用ロート7
5,75′と、試料を入れた燃焼用ルツボの移動
時、試料投入用ロート75,75′を昇降させる
ための支持棒80,80′を固定するガイドレー
ル82,82′に連結した固定台81,81′と、
上記サイクロン74,74′及びエアシリンダー
76,76′とを支持棒77,77′,78,7
8′,79,79′を介して固定する架台83とか
らなつている。 (考案の作用) この考案の試料供給装置は以上の如く構成され
ており、以下この装置を用いた試料の選別、分
割・秤量及び搬送動作について述べる。 まず選別は、第3図に示すように切粉試料自動
調整装置(図示していない)によつて切出された
粒度の不均一な切粉がシユータ1を介して選別器
2へ供給される。この際、シユータ1に所定の角
度を持たせているため、粒度が32メツシユ以下の
微粉は手前の室3′に落下し、それ以上の削片状
試料は供給口3へ落下する。これと同時に、ベル
トコンベアー16′が作動し、供給口3から供給
された試料は、ベルト16により分割・秤量部9
へ搬送される。 上記選別操作が開始されると同時に、ホツパー
4と試料受け用容器5,6と駆動・秤量部18
は、エアシリンダ45によりレール37を介して
第1図、第7図に示すようにホツパー4がベルト
コンベア16′の一端の直下迄移動する。従つて、
ホツパー4、試料受け用容器5,6とあらかじめ
セツトされた保管試料用容器47(詳細の動作は
後述する。)の位置関係は第7図に示す如くであ
る。ホツパー4と試料受け用容器5,6と駆動・
秤量部18が所定の位置に移動した後、試料が供
給される前に駆動モーター20が作動し、ホツパ
ー4が点線で示した如く、左右の所定の位置,
間で振子振動する。その後ベルトコンベア1
6′により搬送された所定量の試料は順次ホツパ
ー4に供給され、ホツパー4が上記した如く振子
振動することにより、試料受け用容器5,6と保
管試料用容器47へ均等に供給される。 試料受け用容器5,6中に所定重量の試料が入
つた時、支持棒21,21′とバランス支点ピン
22,22′を介してバランスをとるように、分
銅23,23′をピン24,24′でそれぞれ、適
当な位置にあらかじめ固定しておき、試料がホツ
パー4の振子振動により、均一に試料受け用容器
5,6へ供給されて所定重量に達すると、上記天
秤機能を有した支持棒21,21′は水平になる
ようにしている。この時位置決め用棒25,2
5′は、近接スイツチ26,26′の光を遮るよう
になつているので、近接スイツチ26,26′が
作動して、ホツパー4の動作をの位置で停止す
るようにしている。所定重量が試料受け用容器5
と6で異なる場合は所定重量に達していない方、
例えばとの間をホツパー4が傾動し、上記と
同様の作用で所定重量に達する迄繰返す。以上の
如く供試料の秤量が行えるようになつている。試
料受け用容器5,6に所定重量の供試料が供給さ
れた後、ホツパー4と試料受け用容器5,6が試
料受け用ロート71,71′のそれぞれ直上に位
置するように、駆動・秤量部18をエアシリンダ
ー43によりレール37(第7図)を介して移動
する。移動が完了した後、駆動モータ27が回転
しギヤー28,29、回転体33、支持体34を
介して支持棒21を回転させる。ギヤー30はギ
ヤー29と連動しており、支持棒21′は回転体
34′、支持体33′を介して支持棒21に対して
反対方向に回転する。以上の動作により、試料受
け用容器5,6は、180゜回転し、直下にある試料
受け用ロート71,71′に試料を払出す。払出
した後は駆動モータ27が逆に回転して、試料受
け用容器5,6は元の位置に戻る。 保管試料用容器47の供給、払い出しは、第7
図に示すように駆動部51により駆動部50が図
中矢印B部に位置し、エアシリンダー55によつ
て移動板67が下降している。あらかじめセツト
された保管試料用容器47は、試料の切出しが始
まる前に図中矢印Cの位置迄移動して、ツメ48
が駆動部50の支持棒65上に位置する。エアシ
リンダー55により、移動板67、支持棒65を
介して、保管試料用容器47は上昇した後、駆動
部51により駆動部50を介して図中矢印Dに位
置し、この時のホツパー4、試料受け用容器5,
6との位置関係は第4図に示した如くである。前
記した試料の分割・秤量が完了し、駆動秤量部1
8が所定の位置へ移動した後、駆動部50は駆動
部51により、図中矢印Eの位置に移動し、エア
シリンダー55により移動板67、支持棒65を
介して保管試料用容器47は下降し、ベルトコン
ベアー63上にセツトされる。この後、ベルトコ
ンベアー63により、保管試料用容器47は所定
の位置へ搬送される。 試料の分析装置への搬送は、以下の如くであ
る。第1図に示すように、試料受け用ロート7
1,71′に払出された試料は、搬送管72,7
2′の図中矢印A部にあるが、落下した直後に第
8図のサイクロン74,74′に連結された吸引
装置(図示していない)が作動して矢印F方向に
搬送され、試料投入用ロート75,75′を介し
てあらかじめ、分析装置(図示していない)にセ
ツトされた燃焼用ルツボ(図示していない)に試
料が供給され精秤される。燃焼用ルツボは水平方
向に移動するため、移動時には試料投入用ロート
75,75′はエアシリンダー76,76′により
ガイドレール82,82′を介して上方に移動し、
燃焼用ルツボが移動し、新しい燃焼ルツボが供給
された後は、再び試料投入用ロート75,75′
は下方に移動して元の位置に戻る。 上記試料の入つた燃焼用ルツボは、分析装置で
分析され、金属中ガス成分の定量結果を得る。 以上の動作は図示も省略した自動制御装置によ
り自動的に行なわれ、本考案装置の運転に人手を
必要としない。 (考案の効果) 以上述べたように、この考案の自動試料供給装
置は、選別部と搬送部、駆動・秤量部を有し、前
記2室に区切られた選別器を有する選別部により
切粉中の微粉試料を除去し、ベルトコンベアを有
する搬送部により、逐次、搬送を行い、振子振動
可能なホツパーを有し、天秤機能を有する駆動・
秤量部からなる分割・秤量部により、偏析のない
秤量された試料を供給できるので、複数の分析装
置へ迅速に、精度良く、自動的に試料を供給する
ことができる効果を有する。
[Table] (2) If, for example, a component is unevenly distributed within a metal sample, the concentration of the component will differ depending on the depthwise cutting position with a drill, as shown in Figure 10. The sample must be homogenized. (3) Normally, the amount of sample supplied to an analyzer that performs gas analysis in metals is small (1 g or less), and in order to perform accurate analysis, fluctuations in the amount of sample supplied must be minimized. Must. The purpose of this invention is to solve the above-mentioned drawbacks of manual labor and problems with automation.
An object of the present invention is to provide an automatic sample supply device capable of automatically supplying an analysis sample to an analyzer quickly, accurately, and automatically. (Means for solving the problems) The gist of the present invention is as follows. That is, there is a sorter that sends the sample (chip) cut out from the sample metal to the next process, and a sorter that receives the sample from the sorter and distributes a predetermined amount of sample to a sample weighing container and a sample storage container, and then distributes it to the sample weighing container. The sorter consists of a sample dispensing device for discharging the collected sample to a transport system to an analyzer, and the sorter consists of a metal chips supplying device installed at a predetermined inclination, and a metal chips supplying device arranged at a predetermined inclination, and a device disposed at a lower part thereof that runs perpendicularly to the flow direction of the metal chips. It consists of a hopper for removing fine particles at the front, a sample hopper at the front, and a conveyor that receives the sample from the sample hopper and sends it to the next process. a distribution hopper that dispenses the sample to the sample weighing container and the sample storage container below, a weigher that weighs the sample in the sample weighing container together with the container, and a weighed sample that dispenses the weighed sample to the entrance of the transport system to the analyzer. A sample supply device for a metal component analyzer, comprising a device for moving and reversing a weighing container back and forth, a supply device for the sample storage container, and a transport device for the sample storage container that moves to a predetermined position after receiving the sample. The present invention has the following features. Chips cut out from the sample metal with a drill or the like were passed through the sorter, so that only the chips with large particle size were provided to the sample. Therefore, it is possible to avoid analysis errors due to the fine powder contamination as described above. The sample is distributed to a plurality of sample weighing containers and sample storage containers using the distribution hopper of the sample dispensing device so that the components are not biased, automatic weighing is performed, and the sample after weighing is automatically discharged to the analysis system. . Additionally, the supply and removal of sample storage containers was automated. Therefore, a homogeneous trace sample can be automatically delivered to the analysis system. (Example of the invention) An example in which the invention is applied to a sample supply device of a gas in metal analyzer will be described below with reference to the drawings. The sample supply device of the gas-in-metal analyzer includes a sorting section 7 that separates fine powder of 32 meshes or less from chips cut out from the sample metal 11 and flake-like samples; A transport unit 8 that dispenses the sample, a division weighing unit 9 that divides the sample into a sample for each component to be analyzed and a sample for storage, and weighs the sample.
(FIG. 2), it is comprised of a storage sample transport section 12 that supplies and dispenses storage containers, and a transport section 70 that supplies weighed samples to an analyzer. As shown in FIG. 3, the sorting unit 7 is pre-adjusted to a fixing table 10 that sandwiches the sample metal 11 of an automatic chip sample adjustment device (not shown) that cuts out a chip-like sample from the sample metal 11. A shooter 1 with a predetermined angle is installed, and a two-way inside is installed at the bottom of the shooter 1 to collect fine particles of 32 meshes or less and to sort out particle-like samples of 32 meshes or more.
A sorter 2 partitioned into rooms is provided. In this sorter 2, samples of 32 meshes or less are taken into a chamber 3' in front of the shooter 1, and samples of 32 meshes or more are taken into a supply port 3. As shown in FIGS. 1 and 3, the conveyance section 8 includes a belt conveyor 16', one end of which is installed directly below the supply port 3 for supplying 32 meshes or more of samples to the sorter 2, and a support stand for the belt conveyor 16'. 13, and the belt conveyor 16' consists of a drive motor section 14, two rollers 15, a belt 16, and a windshield 17 to avoid taking in surrounding dust. As shown in FIGS. 2 and 4, the dividing/weighing section 9 includes a hopper 4 that performs pendulum vibration from side to side, which is installed directly under the belt 16 at one end of the conveyance section 8, and a hopper 4 that performs left and right vibrations. There are sample receiving containers 5 and 6 installed directly below each stopping position, and a drive unit having a function of driving the hopper 4 and sample receiving containers 5 and 6 and a balance function for weighing the sample.
It consists of a weighing section 18, and a drive section 19 for moving the hopper 4, sample receiving containers 5 and 6, and the drive/weighing section 18 to a predetermined position. As shown in FIGS. 4, 5, and 6, the drive/weighing unit 18 connects the supply port of the hopper 4 to the storage container
The position of sample receiving containers 5 and 6 from the top position,
drive motor 2 for making the pendulum vibrate, respectively.
0, support rods 21, 21' for supporting the sample receiving containers 5, 6 and weighing the sample, and fulcrum pins 22 provided at predetermined positions of the support rods 21, 21'.
22' and weights 23, 23' fixed by pins 24, 24', and support rods 21, 2 to detect the balance between the sample and the weights 23, 23' by positioning.
Positioning rods 25, 25' provided at one end of 1'
, proximity switches 26 and 26' capable of detecting this with light, and a device for dropping the sample in the sample receiving containers 5 and 6 directly below by simultaneously inverting the sample receiving containers 5 and 6. A drive motor 27 and gears 28, 2 for simultaneous reversal are provided.
9 and the gear 29, a gear 30 is connected to the support rod 21', and a pin 31 is connected to the gears 29, 30.
Rotating bodies 33, 33' are connected at 31' and can be rotated by a frame 40 and ball bearings 32, 32', and a fulcrum pin 22 fixes the rotating bodies 33, 33' and supports 34, 34', respectively. ,
22'. As shown in FIGS. 2 and 7, the drive unit 19
A support stand 38 that supports the driving/weighing section 18 and has rails 36, 37 so as to be movable, and support rods 41, 41', 42, 42' that support the support stand 38.
and an air cylinder 4 fixed to a support base 38 for moving the drive/weighing section 18 to a predetermined position.
It consists of 3. The storage sample transport section 12 is a belt for transporting a storage sample container 47 having a preset claw 48 to a predetermined position (near section B in FIG. 7) as shown in FIGS. 1 and 7. Conveyor 49 and
A drive section 50 for transporting the storage sample container 47 to a predetermined position, a support stand 53 having a rail 52 to support the drive section 50 and enable movement, and a rack pinion for moving the drive section 50. Mechanism 2
6 and a rotary motor 35, and a belt conveyor 63 for conveying the storage sample container 47 to a predetermined position. The drive unit 50 is mounted on a rail 52 so as to be movable.
A fixed base 5 having a guide rail 62 connected to
4 and fixing base 54 with pins 58, 59, 60, 61
(61 is not shown) is connected to a fixed base 66 fixed in parallel and a drive rod 64 of an air cylinder 55 installed on the fixed base 66, and the storage sample container 47 is raised and lowered by driving the air cylinder 55. a movable plate 67 having a support rod 65 for movement, and a shaft rod 5 fixed to the fixed base 54 so that the movable plate 67 can move perpendicularly to the fixed base 54.
6, 57 and the shaft rod 56 fixed to the fixed base 66,
To hold the vertical axis of 57, the axis rod 5
Cylinder 6 that makes contact with 6 and 57 and allows smooth sliding
8 and 69 (the area above 69 is omitted in the figure). As shown in FIGS. 1 and 8, the transport section 70 includes sample receiving funnels 71 and 7 for transporting the sample weighed in the sample receiving containers 5 and 6 to the analyzer.
1', transport pipes 72, 72' connected to sample receiving funnels 71, 71', and suction pipes 73, 73' connected to a suction device (not shown). In order to supply the sample to the combustion crucible (not shown) set in advance on the analyzer without scattering the sample, a sample input funnel 7 is provided directly above the combustion crucible.
5, 75', and a fixing base connected to guide rails 82, 82' for fixing support rods 80, 80' for raising and lowering the sample input funnels 75, 75' when moving the combustion crucible containing the sample. 81, 81' and
The above cyclones 74, 74' and air cylinders 76, 76' are connected to support rods 77, 77', 78, 7.
8', 79, 79' and a frame 83 fixed thereto. (Function of the invention) The sample supply device of this invention is constructed as described above, and the operations of sorting, dividing, weighing, and transporting samples using this device will be described below. First, in sorting, as shown in FIG. 3, chips with non-uniform particle sizes are cut out by an automatic chip sample adjustment device (not shown) and are supplied to a sorter 2 via a shooter 1. . At this time, since the shooter 1 has a predetermined angle, fine powder with a particle size of 32 mesh or less falls into the front chamber 3', and particles larger than that fall into the supply port 3. At the same time, the belt conveyor 16' is operated, and the sample supplied from the supply port 3 is transferred to the dividing/weighing section 9 by the belt 16.
transported to. At the same time as the above-mentioned sorting operation is started, the hopper 4, the sample receiving containers 5 and 6, and the drive/weighing section 18
1 and 7, the hopper 4 is moved by the air cylinder 45 via the rail 37 to just below one end of the belt conveyor 16'. Therefore,
The positional relationship between the hopper 4, the sample receiving containers 5 and 6, and the preset storage sample container 47 (detailed operation will be described later) is as shown in FIG. Hopper 4, sample receiving containers 5, 6 and drive
After the weighing section 18 has moved to a predetermined position, the drive motor 20 is activated and the hopper 4 is moved to a predetermined position on the left and right, as shown by the dotted line, before the sample is supplied.
The pendulum oscillates between Then belt conveyor 1
A predetermined amount of the sample transported by 6' is sequentially supplied to the hopper 4, and as the hopper 4 vibrates in a pendulum manner as described above, it is evenly supplied to the sample receiving containers 5, 6 and the storage sample container 47. When a sample of a predetermined weight is placed in the sample receiving containers 5, 6, the weights 23, 23' are moved to the pins 24, 24, 24, 24, 24, 22', etc. so as to maintain balance via the support rods 21, 21' and the balance fulcrum pins 22, 22'. 24' are fixed at appropriate positions in advance, and when the sample is uniformly supplied to the sample receiving containers 5 and 6 by the pendulum vibration of the hopper 4 and reaches a predetermined weight, the support with the above-mentioned balance function is The rods 21, 21' are arranged horizontally. At this time, the positioning rods 25, 2
5' is designed to block the light from the proximity switches 26, 26', so that the proximity switches 26, 26' operate to stop the operation of the hopper 4 at the position. The predetermined weight is the sample receiving container 5.
If there is a difference between 6 and 6, the one that has not reached the specified weight,
For example, the hopper 4 is tilted between and, and the same action as above is repeated until a predetermined weight is reached. As described above, the sample can be weighed. After a predetermined weight of the sample is supplied to the sample receiving containers 5 and 6, the driving and weighing operations are performed so that the hopper 4 and the sample receiving containers 5 and 6 are located directly above the sample receiving funnels 71 and 71', respectively. The section 18 is moved by the air cylinder 43 via the rail 37 (FIG. 7). After the movement is completed, the drive motor 27 rotates to rotate the support rod 21 via the gears 28, 29, the rotating body 33, and the support body 34. The gear 30 is interlocked with the gear 29, and the support rod 21' rotates in the opposite direction to the support rod 21 via the rotating body 34' and the support body 33'. By the above-described operation, the sample receiving containers 5 and 6 are rotated by 180 degrees, and the sample is delivered to the sample receiving funnels 71 and 71' directly below. After dispensing, the drive motor 27 rotates in the opposite direction, and the sample receiving containers 5 and 6 return to their original positions. The storage sample container 47 is supplied and dispensed by the seventh
As shown in the figure, the drive unit 50 is positioned at the arrow B in the figure by the drive unit 51, and the moving plate 67 is lowered by the air cylinder 55. Before sample cutting begins, the storage sample container 47 that has been set in advance is moved to the position indicated by arrow C in the figure, and the claw 48 is moved to the position indicated by arrow C in the figure.
is located on the support rod 65 of the drive section 50. After the storage sample container 47 is raised by the air cylinder 55 via the moving plate 67 and the support rod 65, it is moved by the drive unit 51 to the position indicated by the arrow D in the figure via the drive unit 50, and at this time the hopper 4, sample receiving container 5,
The positional relationship with 6 is as shown in FIG. After the above-mentioned dividing and weighing of the sample is completed, the drive weighing section 1
8 is moved to a predetermined position, the drive unit 50 is moved by the drive unit 51 to the position indicated by the arrow E in the figure, and the storage sample container 47 is lowered by the air cylinder 55 via the moving plate 67 and the support rod 65. Then, it is set on the belt conveyor 63. Thereafter, the storage sample container 47 is transported to a predetermined position by the belt conveyor 63. The sample is transported to the analyzer as follows. As shown in Fig. 1, the sample receiving funnel 7
The sample discharged to 1, 71' is transferred to transport pipes 72, 7
2', immediately after the drop, the suction device (not shown) connected to the cyclones 74 and 74' in Figure 8 is activated, and the sample is transported in the direction of arrow F, and the sample is introduced. A sample is supplied in advance to a combustion crucible (not shown) set in an analyzer (not shown) through the funnels 75, 75' and precisely weighed. Since the combustion crucible moves horizontally, during movement, the sample input funnels 75, 75' are moved upward via guide rails 82, 82' by air cylinders 76, 76'.
After the combustion crucible is moved and a new combustion crucible is supplied, the sample input funnels 75, 75'
moves downward and returns to its original position. The combustion crucible containing the sample is analyzed by an analyzer to obtain quantitative results of gas components in the metal. The above operations are automatically performed by an automatic control device (not shown), and no human effort is required to operate the device of the present invention. (Effects of the invention) As described above, the automatic sample supply device of this invention has a sorting section, a conveying section, a driving/weighing section, and a sorting section having a sorter divided into two chambers, which allows chips to be The fine powder sample inside is removed, and the sample is sequentially transported by a conveyor section with a belt conveyor.
Since the dividing/weighing section consisting of the weighing section can supply a weighed sample without segregation, it has the effect of being able to quickly, accurately, and automatically supply samples to a plurality of analyzers.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案の全体構成の説明図、第2図は
分割・秤量部の構成説明用の部分拡大図、第3図
は選別器の説明図、第4図は振子振動ホツパーか
ら試料秤量容器ならびに試料保管容器への試料供
給を説明する正面図、第5図は秤量部の構造を説
明するための部分側断面図、第6図は第5図の
−矢視図、第7図は試料保管容器の給排機構と
試料分割・秤量部の位置関係を説明するための斜
視図、第8図は分割・秤量済試料の搬送系の説明
図、第9図は従来の人手による作業の工程説明
図、第10図はサンプル金属から切り出した切粉
の成分ばらつきの説明図である。 2……選別器、4……振子振動ホツパー、5,
6……試料秤量容器、26……重量検知部、47
……試料保管容器。
Figure 1 is an explanatory diagram of the overall configuration of the present invention, Figure 2 is a partially enlarged diagram to explain the configuration of the dividing/weighing section, Figure 3 is an explanatory diagram of the sorter, and Figure 4 is a sample weighing from a pendulum vibrating hopper. 5 is a partial side cross-sectional view illustrating the structure of the weighing section; FIG. 6 is a view taken along the - arrow in FIG. 5; and FIG. A perspective view to explain the positional relationship between the supply and discharge mechanism of the sample storage container and the sample division/weighing section, Figure 8 is an explanatory diagram of the transport system for divided and weighed samples, and Figure 9 is an illustration of the conventional manual operation. The process explanatory diagram, FIG. 10, is an explanatory diagram of the compositional variation of the chips cut out from the sample metal. 2... Sorter, 4... Pendulum vibration hopper, 5,
6...Sample weighing container, 26...Weight detection section, 47
...Sample storage container.

Claims (1)

【実用新案登録請求の範囲】 サンプル金属から切り出した試料(削片)を次
工程へ送る選別器と、上記選別器から試料を受け
取り試料秤量容器と試料保管容器とに所定量の試
料を分配し、試料秤量容器に分配された試料を分
析器への搬送系に払いだす試料払い出し装置とか
らなり、 上記選別器は、所定の傾斜に設けた金属切粉供
給シユータと、その下部において金属切粉の流動
方向に直行して仕切られ、手前の微粉排除用ホツ
パー、先方の試料用ホツパー並びに試料用ホツパ
ーから試料を受け取り次工程へ送るコンベヤから
なり、 上記試料払い出し装置は上記コンベヤより試料
を受け取り、所定の振幅で振子動作しつつ下方の
上記試料秤量容器と試料保管容器へ試料を払いだ
す分配ホツパーと、上記試料秤量容器の試料を容
器ごと秤量する秤量器と、秤量した試料を分析器
への搬送系入口に払いだすための秤量容器の前後
移動・反転装置と、上記試料保管容器の供給装置
と、試料を受け取つた後所定位置に移動する試料
保管容器の搬送装置とよりなる金属成分分析装置
の試料供給装置。
[Scope of Claim for Utility Model Registration] A sorter that sends the sample (slabs) cut out from the sample metal to the next process, and a sorter that receives the sample from the sorter and distributes a predetermined amount of the sample to a sample weighing container and a sample storage container. The sorter consists of a sample dispensing device that dispenses the sample distributed in the sample weighing container to a transport system to the analyzer. The sample dispensing device receives the sample from the conveyor and sends it to the next process. A distribution hopper that dispenses the sample into the sample weighing container and the sample storage container below while operating with a pendulum at a predetermined amplitude, a weighing device that weighs the sample in the sample weighing container together with the container, and a weighing device that transfers the weighed sample to the analyzer. A metal component analysis device consisting of a device for moving/reversing a weighing container back and forth for discharging it to the entrance of a transportation system, a supply device for the sample storage container, and a transportation device for the sample storage container that moves to a predetermined position after receiving the sample. sample supply device.
JP19058786U 1986-12-12 1986-12-12 Expired JPH0328377Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19058786U JPH0328377Y2 (en) 1986-12-12 1986-12-12

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19058786U JPH0328377Y2 (en) 1986-12-12 1986-12-12

Publications (2)

Publication Number Publication Date
JPS6396463U JPS6396463U (en) 1988-06-22
JPH0328377Y2 true JPH0328377Y2 (en) 1991-06-18

Family

ID=31143944

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19058786U Expired JPH0328377Y2 (en) 1986-12-12 1986-12-12

Country Status (1)

Country Link
JP (1) JPH0328377Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3288081B2 (en) * 1992-10-09 2002-06-04 日機装株式会社 Automatic sampling device

Also Published As

Publication number Publication date
JPS6396463U (en) 1988-06-22

Similar Documents

Publication Publication Date Title
JP3391707B2 (en) Pipette tip set machine
US3439800A (en) Aggregate size testing apparatus and process
EP0620765B1 (en) Automatic particle size analyzer using stacked sieves
US5423216A (en) Apparatus for automatically determining bulk specific gravity of powdery product
CN108569572A (en) A kind of automatic sample Weighing system
KR20010023803A (en) Weight sorter
JPH0328377Y2 (en)
US8640557B2 (en) Automatic analysis of finely divided solids
CN106423896A (en) Automatic size detector
JPH10305260A (en) Weight sorting device
EP0606121A1 (en) Automatic apparatus for inspecting powdery product
CN206891792U (en) Sampler
JP2007163189A (en) Weighing method, weighing device and preprocessing apparatus for sample analysis
CN215964872U (en) Automatic screening device
CN208155917U (en) A kind of automatic sample-adding system
US3524352A (en) Material sampler
CN208150538U (en) A kind of automatic sample Weighing system
CN206325851U (en) A kind of size automatic detecting machine
US1912837A (en) Sand handling and conditioning apparatus
CN218912280U (en) Quantitative feeding mechanism for building construction
CN220819164U (en) Material quantifying equipment
JPH0557254A (en) Method for classifying glass plate
CN117169064A (en) Automatic fodder ingredient screening grading equipment of sampling analysis
JP3732920B2 (en) Analytical sample preparation device
KR100510026B1 (en) Powder Automatic Weighing System