JPH0328369B2 - - Google Patents
Info
- Publication number
- JPH0328369B2 JPH0328369B2 JP17566284A JP17566284A JPH0328369B2 JP H0328369 B2 JPH0328369 B2 JP H0328369B2 JP 17566284 A JP17566284 A JP 17566284A JP 17566284 A JP17566284 A JP 17566284A JP H0328369 B2 JPH0328369 B2 JP H0328369B2
- Authority
- JP
- Japan
- Prior art keywords
- silicon
- reaction
- sih
- hydride
- diethyl ether
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000000034 method Methods 0.000 claims description 17
- 150000003377 silicon compounds Chemical class 0.000 claims description 16
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 claims description 15
- 229910052990 silicon hydride Inorganic materials 0.000 claims description 8
- 239000003960 organic solvent Substances 0.000 claims description 3
- 125000000217 alkyl group Chemical group 0.000 claims description 2
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical compound [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 claims 1
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 60
- 238000006243 chemical reaction Methods 0.000 description 23
- 239000000243 solution Substances 0.000 description 16
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 10
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 9
- 125000005234 alkyl aluminium group Chemical group 0.000 description 8
- 239000007789 gas Substances 0.000 description 7
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 6
- 239000002994 raw material Substances 0.000 description 6
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 5
- 229910052757 nitrogen Inorganic materials 0.000 description 5
- 229910052710 silicon Inorganic materials 0.000 description 5
- 239000010703 silicon Substances 0.000 description 5
- -1 silicon halides Chemical class 0.000 description 5
- OFBQJSOFQDEBGM-UHFFFAOYSA-N Pentane Chemical compound CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 4
- 239000006227 byproduct Substances 0.000 description 4
- HJXBDPDUCXORKZ-UHFFFAOYSA-N diethylalumane Chemical compound CC[AlH]CC HJXBDPDUCXORKZ-UHFFFAOYSA-N 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- YTHCQFKNFVSQBC-UHFFFAOYSA-N magnesium silicide Chemical compound [Mg]=[Si]=[Mg] YTHCQFKNFVSQBC-UHFFFAOYSA-N 0.000 description 4
- 229910021338 magnesium silicide Inorganic materials 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 229910000077 silane Inorganic materials 0.000 description 4
- 239000002904 solvent Substances 0.000 description 4
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 150000002170 ethers Chemical class 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 238000004817 gas chromatography Methods 0.000 description 3
- 239000007791 liquid phase Substances 0.000 description 3
- 229930195734 saturated hydrocarbon Natural products 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- 229910019018 Mg 2 Si Inorganic materials 0.000 description 2
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- 230000002378 acidificating effect Effects 0.000 description 2
- 125000001931 aliphatic group Chemical group 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 2
- SIPUZPBQZHNSDW-UHFFFAOYSA-N bis(2-methylpropyl)aluminum Chemical compound CC(C)C[Al]CC(C)C SIPUZPBQZHNSDW-UHFFFAOYSA-N 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- TUTOKIOKAWTABR-UHFFFAOYSA-N dimethylalumane Chemical compound C[AlH]C TUTOKIOKAWTABR-UHFFFAOYSA-N 0.000 description 2
- PZPGRFITIJYNEJ-UHFFFAOYSA-N disilane Chemical compound [SiH3][SiH3] PZPGRFITIJYNEJ-UHFFFAOYSA-N 0.000 description 2
- 238000004821 distillation Methods 0.000 description 2
- MGDOJPNDRJNJBK-UHFFFAOYSA-N ethylaluminum Chemical compound [Al].C[CH2] MGDOJPNDRJNJBK-UHFFFAOYSA-N 0.000 description 2
- SPRIOUNJHPCKPV-UHFFFAOYSA-N hydridoaluminium Chemical compound [AlH] SPRIOUNJHPCKPV-UHFFFAOYSA-N 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- BKIMMITUMNQMOS-UHFFFAOYSA-N nonane Chemical compound CCCCCCCCC BKIMMITUMNQMOS-UHFFFAOYSA-N 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 150000004756 silanes Chemical class 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 1
- DURPTKYDGMDSBL-UHFFFAOYSA-N 1-butoxybutane Chemical compound CCCCOCCCC DURPTKYDGMDSBL-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- 229910008045 Si-Si Inorganic materials 0.000 description 1
- 229910002808 Si–O–Si Inorganic materials 0.000 description 1
- 229910006411 Si—Si Inorganic materials 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 125000002723 alicyclic group Chemical group 0.000 description 1
- 229910021417 amorphous silicon Inorganic materials 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000005587 bubbling Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000004737 colorimetric analysis Methods 0.000 description 1
- 238000011437 continuous method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- CDHICTNQMQYRSM-UHFFFAOYSA-N di(propan-2-yl)alumane Chemical compound CC(C)[AlH]C(C)C CDHICTNQMQYRSM-UHFFFAOYSA-N 0.000 description 1
- SBZXBUIDTXKZTM-UHFFFAOYSA-N diglyme Chemical compound COCCOCCOC SBZXBUIDTXKZTM-UHFFFAOYSA-N 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- KPUWHANPEXNPJT-UHFFFAOYSA-N disiloxane Chemical compound [SiH3]O[SiH3] KPUWHANPEXNPJT-UHFFFAOYSA-N 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- GCOJIFYUTTYXOF-UHFFFAOYSA-N hexasilinane Chemical compound [SiH2]1[SiH2][SiH2][SiH2][SiH2][SiH2]1 GCOJIFYUTTYXOF-UHFFFAOYSA-N 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 238000002329 infrared spectrum Methods 0.000 description 1
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 1
- 229940057995 liquid paraffin Drugs 0.000 description 1
- 125000001280 n-hexyl group Chemical group C(CCCCC)* 0.000 description 1
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- TVMXDCGIABBOFY-UHFFFAOYSA-N octane Chemical compound CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 238000010992 reflux Methods 0.000 description 1
- 238000007086 side reaction Methods 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 238000010532 solid phase synthesis reaction Methods 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- RSNQKPMXXVDJFG-UHFFFAOYSA-N tetrasiloxane Chemical compound [SiH3]O[SiH2]O[SiH2]O[SiH3] RSNQKPMXXVDJFG-UHFFFAOYSA-N 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- VEDJZFSRVVQBIL-UHFFFAOYSA-N trisilane Chemical compound [SiH3][SiH2][SiH3] VEDJZFSRVVQBIL-UHFFFAOYSA-N 0.000 description 1
- ZQTYRTSKQFQYPQ-UHFFFAOYSA-N trisiloxane Chemical compound [SiH3]O[SiH2]O[SiH3] ZQTYRTSKQFQYPQ-UHFFFAOYSA-N 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
Landscapes
- Silicon Compounds (AREA)
Description
〔技術分野〕
本発明は一般式SixHyOz(ただしxは1以上の
正の整数、yおよびzはそれぞれ2x+2、2xを
越えない正の整数でありどちらか一方は0ではな
くまたx=1の場合はzは0でない)で表わされ
るケイ素化合物から、一般式SilH2l+2(lはxよ
り小さい正の整数)で表わされる水素化ケイ素を
製造する方法に関する。
〔背景技術〕
近年エレクトロニクス工業の発展に伴い、多結
晶シリコンあるいはアモルフアスシリコン等の半
導体用シリコンの需要が急激に増大している。水
素化ケイ素はかかる半導体用シリコンの製造原料
として最近その重要性を増しており、特にシラン
(SiH4)、ジシラン(Si2H6)は太陽電池用半導体
の原料として、今後大幅な需要像個が期待されて
いる。
従来、水素化ケイ素の製造方法はいくつか知ら
れているが、それらの中でケイ化マグネシウムと
酸との反応により製造する方法は、特に実施容易
で経済的な方法として古くから公知である。
Mg2Si+4HclinH2OorliqNH3
――――――――――→
2Mgcl2+1/nSinH2o+2+(1−1/n)H2
しかしながらこの方法においては、利用価値の
高いSiH4、Si2H6以外にも高級シランが相当量生
成し、例えば、水を溶媒に用いた場合には、常温
常圧で反応が実施できるものの、Mg2Si中のSiの
約半分がSipHqOr(pは3以上の正の整数、qお
よびrはそれぞれ2p+2、2pを越えない正の整
数で、どちらか一方は0でない)で表わされるケ
イ素化合物となるため経済性に乏しい。
この他ケイ素のハロゲン化物を還元して水素化
ケイ素を製造する場合においても高級シランが副
生することが知られており、例えば、
2Si2cl6+3LiAlH4inether
―――――――→
3Licl
+Alcl3+2Si2H6
の反応によつてSi2H6を製造する場合において
は、Si3H8などの高級シランが相当量生成する。
一方高級シランSimH2n+2(−は2以上の正の整
数)は、加熱分解あるいは無声放電等によりその
一部をSiH4やSi2H6に変え得ることが報告されて
いるが、そのSiH4、Si2H6への転化率は低く未だ
不充分である。
本発明者らは、上記の点にかんがみ、鋭意検討
したところ従来法において副生する種々のケイ素
化合物は大部分SixHyOzなる一般式で表現され
るものであり、特定の物質との反応処理を施すこ
とによつて、高収率で所望のSiH4やSi2H6等の水
素化ケイ素に転化しうることを見い出した。
〔発明の目的〕
本発明の目的は、上記のごとき従来法において
副生する種々のケイ素化合物を、SiH4、Si2H6等
の経済的に価値のある水素化ケイ素に高収率で変
換する方法を提供することである。
〔発明の開示〕
本発明に従つて一般式SixHyOz(ただしxは1
以上の生の整数、yおよびzそれぞれ2x+2、
2xを越えない正の整数でありどちらか一方は0
でなくまたx=1の場合はzは0ではない)で表
わされるケイ素化合物と、アルキルアルミニウム
ハイドライドとを接触させることにより、一般式
SilH2l+2(ただしlはxより小さい正の整数)で
表わされる水素化ケイ素を製造する方法が提供さ
れる。
以下、本発明を詳細に説明する。
本発明の方法において原料として用いられるケ
イ素化合物とは、一般式SixHyOz(ただしxは1
以上の正の整数、yおよびzはそれぞれ2x+2、
2xを越えない正の整数であり、どちらか一方は
0でない)表わされるものであり、分子中に少な
くとも一個のSi−H結合あるいはSi−Si結合を含
むものが好ましい。具体的には、例えば、ジシラ
ン(Si2H6)、トリシラン(Si3H8)、n−テトラ
シラン(Si4H10)、イソテトラシラン(Si4H10)、
シクロヘキサシラン(Si6H12)、ポリシレン
(SiH2−n)、ジシロキサン(Si2H6O)、トリシ
ロキサン(Si3H8O2)、テトラシロキサン
(Si4H10O3)、シロキセン((Si2H2O)n)などが
あげられる。これらは2種以上混合してもしくは
混合したもを用いることも可能である。またこれ
らは後述するように脂肪族飽和炭化水素や芳香族
炭化水素、エーテルなどの希釈剤もしくは有機溶
媒に溶解あるいはけん濁して使用することも可能
であり、気相、液相、固相のいずれにおいても用
い得る。
また本発明の方法で用いるアルキルアルミニウ
ムハイドライドとは、一般式R1R2AlHまたは
R3AlH2で示される還元能力を有する化合物であ
る。ここでR1、R2、R3はどちらも炭素数1から
10までのアルキル基であり、例えば、エチル基、
n−プロピル基、イソブチル基、n−ヘキシル
基、n−オクチル基などである。R1とR2は同一
であつても異なつていてもよい。上記一般式で示
される化合物の内、好ましい例を挙げれば、ジメ
チルアルミニウムハイドライド、ジエチルアルミ
ニウムハイドライド、ジイソプロピルアルミニウ
ムハイドライド、ジイソブチルアルミニウムハイ
ドライド、ジ−2−メチルブチルアルミニウムエ
ハイドライド、エチルアルミニウムジハイドライ
ドである。これらは2種以上併用することも可能
であり、後述するような有機溶媒で所望の濃度に
希釈して用いることが好ましい。これらのアルキ
ルアルミニウムハイドライドの使用割合は特に制
限はないが、原料のケイ素化合物中のケイ素に対
して、概して0.001乃至100倍モルの範囲である。
次に本発明におけるケイ素化合物とアルキルア
ルミニウムハイドライドとの接触方法について述
べる。基本的には気相、液相、固相のいずれの方
法においても行なうことができ、最も実施し易い
方法として、例えば以下のような方法を採用でき
る。
(1) 溶媒中にケイ素化合物とアルキルアルミニウ
ムハイドライドを溶解させ、液相中にて接触反
応させる。
(2) 溶媒に溶解させたアルキルアルミニウムハイ
ドライドにガス状のケイ素化合物を流通接触さ
せる。
本発明は、もちろんこれらの方法に限定される
ものではない。ここで用いられる溶媒としては、
ケイ素化合物に対する溶解性にすぐれていて、か
つアルキルアルミニウムハイドライドと反応しな
いものが好ましく、例えば脂肪族飽和炭化水素、
脂環族飽和炭化水素、芳香族炭化水素、エーテル
などがあげられる。更に具体的には、ペンタン、
ヘプタン、オクタン、ノナン、シクロヘキサン、
流動パラフイン、ベンゼン、トルエン、キシレ
ン、ジエチルエーテル、ジブチルエーテル、ジエ
チレングリコールジメチルエーテル、テトラヒド
ロフラン、ジオキサンなどがあげられる。これら
は2種以上混合して用いることもでき、脱水を十
分に行なうことが望ましい。
反応温度については特に制限はないが、あまり
に低いと反応が遅く、またあまりに高いとアルキ
ルアルミニウム類が自己分解すること、副反応が
起こることから、一般には−30℃乃至100℃の範
囲が、好ましくは0乃至50℃の範囲が用いられ
る。また反応時間は反応様式によつて異なるが、
好ましくは1分乃至48時間である反応圧力は、常
圧ないしは2Kg/cm2(ゲージ圧)で充分である
が、反応温度または装置との関係で減圧または加
圧下で行なつても良い。この反応に使用する原料
および生成物質は活性であり、特に酸素および水
分と反応して分解または発火するものが殆んどで
あるから、必ず反応は使用原料や生成物質に対し
不活性な雰囲気下で行なわねばならない。例え
ば、充分に脱酸素、脱火したヘリウム、アルゴン
等の不活性ガスや窒素、水素雰囲気下でなければ
ならない。この反応は、バツチ方式、セミバツチ
方式、連続式のどの方法でも行うことができる。
〔発明を実施するための好ましい形態〕
以下、本発明を実施例によつてより具体的に説
明する。
実施例 1
容量4のセパブルフラスコに、濃度20wt%
の塩酸水溶液2、ジエチルエーテル300gを装
入した。水素ガス雰囲気中、上記混合液が還流し
ている条件下(反応温度35℃)で更にケイ化マグ
ネシウム60gを(粒度100乃至200メツシユ、
782mmol−Si)撹拌しながら200分かけて、0.3
g/minの一定速度で加え続けた。反応終了後
(ケイ化マグネシウム投入終了後)、反応液を0℃
に冷却し、静置後、ジエチルエーテル層約0.4
を分離した。反応器中の酸性水溶液は80℃にまで
昇温し、溶解している少量のジエチルエーテルを
追出し、上記二層分離したジエチルエーテル層と
混合した。反応中、二層分離および酸性水溶液の
加熱処理の操作の間に生成したガスは、初め−70
℃に冷却したジエチルエーテルの入つたトラツプ
(トラツプ())にて、次に液体チツ素温度で冷
却したトラツプ(トラツプ())にて捕集した。
次に二層分離後のジエチルエーテル層およびト
ラツプ()中のエーテルを混合したものを、実
段数約3段の蒸留塔にて蒸留し、Si2H4、Si2H6
を蒸留分離し、SiH4(bp−112℃)、Si2H6(bp−
14.5℃)を液体チツ素温度で冷却したトラツプ
()中に追加、捕集した。トラツプ()およ
び蒸留後のジエチルエーテル層に残つたSiH4、
Si2H6、Si3H8、Si4H10の量は、ガスクロマトグ
ラフにより分析、定量した。
トラツプ()およびジエチルエーテル層中の
シラン類の量は以下に示す値であつた。
[Technical field] The present invention is based on the general formula SixHyOz (where x is a positive integer of 1 or more, y and z are 2x+2 and a positive integer not exceeding 2x, respectively, and one of them is not 0 and x=1) The present invention relates to a method for producing silicon hydride represented by the general formula SilH 2l+2 (l is a positive integer smaller than x) from a silicon compound represented by (z is not 0). [Background Art] With the development of the electronics industry in recent years, the demand for silicon for semiconductors such as polycrystalline silicon or amorphous silicon has increased rapidly. Silicon hydride has recently become more important as a raw material for manufacturing silicon for semiconductors, and demand for silane (SiH 4 ) and disilane (Si 2 H 6 ) in particular is expected to increase significantly in the future as raw materials for semiconductors for solar cells. is expected. Several methods for producing silicon hydride have been known, among which a method for producing silicon hydride by reacting magnesium silicide with an acid has been known for a long time as a particularly easy and economical method. Mg 2 Si + 4HclinH 2 OorliqNH 3 ――――――――――→ 2Mgcl 2 +1/nSinH 2o+2 + (1-1/n)H 2However , in this method, SiH 4 and Si 2 , which have high utility value, In addition to H 6 , a considerable amount of higher silane is produced, and for example, when water is used as a solvent, the reaction can be carried out at normal temperature and pressure, but about half of the Si in Mg 2 Si is SipHqOr (p is 3 The above positive integers, q and r, are positive integers not exceeding 2p+2 and 2p, respectively, and one of them is not 0), so it is not economical. In addition, it is known that higher silane is produced as a by-product when silicon hydride is produced by reducing silicon halides. For example, 2Si 2 cl 6 + 3LiAlH 4 inether ――――――――→ 3Licl When Si 2 H 6 is produced by the reaction of +Alcl 3 +2Si 2 H 6 , a considerable amount of higher silanes such as Si 3 H 8 are produced. On the other hand, it has been reported that high-grade silane SimH 2n+2 (- is a positive integer of 2 or more) can be partially converted into SiH 4 or Si 2 H 6 by thermal decomposition or silent discharge. 4 , the conversion rate to Si 2 H 6 is low and still insufficient. In view of the above points, the present inventors have conducted extensive studies and found that most of the various silicon compounds that are produced as by-products in conventional methods are expressed by the general formula SixHyOz. In particular, it has been found that the desired silicon hydrides such as SiH 4 and Si 2 H 6 can be converted in high yield. [Objective of the Invention] The object of the present invention is to convert various silicon compounds produced as by-products in the conventional methods described above into economically valuable silicon hydrides such as SiH 4 and Si 2 H 6 in high yield. The goal is to provide a method to do so. [Disclosure of the Invention] According to the present invention, the general formula SixHyOz (where x is 1
raw integers greater than or equal to, y and z each 2x+2,
A positive integer not exceeding 2x, one of which is 0
, and when x=1, z is not 0) and an alkyl aluminum hydride, the general formula
A method is provided for producing silicon hydride represented by SilH 2l+2 , where l is a positive integer smaller than x. The present invention will be explained in detail below. The silicon compound used as a raw material in the method of the present invention has the general formula SixHyOz (where x is 1
positive integers greater than or equal to, y and z are each 2x+2,
It is a positive integer not exceeding 2x, one of which is not 0), and preferably contains at least one Si--H bond or Si--Si bond in the molecule. Specifically, for example, disilane (Si 2 H 6 ), trisilane (Si 3 H 8 ), n-tetrasilane (Si 4 H 10 ), isotetrasilane (Si 4 H 10 ),
Cyclohexasilane (Si 6 H 12 ), polysilene (SiH 2 -n), disiloxane (Si 2 H 6 O), trisiloxane (Si 3 H 8 O 2 ), tetrasiloxane (Si 4 H 10 O 3 ), Examples include siloxene ((Si 2 H 2 O) n). It is also possible to use a mixture of two or more of these or a mixture thereof. Furthermore, as described below, these can be used dissolved or suspended in diluents such as aliphatic saturated hydrocarbons, aromatic hydrocarbons, and ethers, or organic solvents, and can be used in any of the gas, liquid, and solid phases. It can also be used in Furthermore, the alkyl aluminum hydride used in the method of the present invention has the general formula R 1 R 2 AlH or
It is a compound with the reducing ability represented by R 3 AlH 2 . Here, R 1 , R 2 , and R 3 all have carbon numbers starting from 1.
up to 10 alkyl groups, e.g. ethyl group,
Examples include n-propyl group, isobutyl group, n-hexyl group, and n-octyl group. R 1 and R 2 may be the same or different. Among the compounds represented by the above general formula, preferred examples are dimethylaluminum hydride, diethylaluminum hydride, diisopropylaluminum hydride, diisobutylaluminum hydride, di-2-methylbutylaluminum hydride, and ethylaluminum dihydride. It is also possible to use two or more of these in combination, and it is preferable to use them after diluting them to a desired concentration with an organic solvent as described below. The proportion of these alkylaluminum hydrides to be used is not particularly limited, but is generally in the range of 0.001 to 100 times the molar amount of silicon in the raw material silicon compound. Next, a method of contacting a silicon compound and an alkyl aluminum hydride in the present invention will be described. Basically, it can be carried out in any of the gas phase, liquid phase, and solid phase methods, and as the easiest method to implement, for example, the following method can be adopted. (1) Dissolve a silicon compound and an alkyl aluminum hydride in a solvent and cause a contact reaction in the liquid phase. (2) A gaseous silicon compound is brought into contact with an alkyl aluminum hydride dissolved in a solvent. Of course, the present invention is not limited to these methods. The solvent used here is
Those that have excellent solubility in silicon compounds and do not react with alkyl aluminum hydrides are preferred, such as aliphatic saturated hydrocarbons,
Examples include alicyclic saturated hydrocarbons, aromatic hydrocarbons, and ethers. More specifically, pentane,
heptane, octane, nonane, cyclohexane,
Examples include liquid paraffin, benzene, toluene, xylene, diethyl ether, dibutyl ether, diethylene glycol dimethyl ether, tetrahydrofuran, and dioxane. These can be used in combination of two or more kinds, and it is desirable to perform sufficient dehydration. There is no particular restriction on the reaction temperature, but if it is too low, the reaction will be slow, and if it is too high, the alkylaluminum will self-decompose and side reactions will occur, so generally a range of -30°C to 100°C is preferred. A range of 0 to 50°C is used. Also, the reaction time varies depending on the reaction mode, but
The reaction pressure, which is preferably from 1 minute to 48 hours, is sufficient to be normal pressure or 2 kg/cm 2 (gauge pressure), but the reaction may be carried out under reduced pressure or increased pressure depending on the reaction temperature or equipment. The raw materials and products used in this reaction are active, and most of them react with oxygen and moisture to decompose or ignite, so the reaction must be carried out in an atmosphere that is inert to the raw materials and products. It must be done. For example, it must be in an atmosphere of inert gas such as helium, argon, nitrogen, or hydrogen that has been sufficiently deoxidized and deignited. This reaction can be carried out in any of the batch, semi-batch and continuous methods. [Preferred Modes for Carrying Out the Invention] The present invention will now be described in more detail with reference to Examples. Example 1 Concentration 20wt% in a separable flask with a capacity of 4
2 and 300 g of diethyl ether were charged. In a hydrogen gas atmosphere, under conditions where the above mixture was refluxing (reaction temperature 35°C), 60 g of magnesium silicide (particle size 100 to 200 mesh,
782mmol-Si) over 200 minutes with stirring, 0.3
Addition continued at a constant rate of g/min. After the reaction is completed (after adding magnesium silicide), the reaction solution is heated to 0°C.
After cooling and standing still, a diethyl ether layer of approximately 0.4
was separated. The temperature of the acidic aqueous solution in the reactor was raised to 80°C, and a small amount of dissolved diethyl ether was expelled and mixed with the diethyl ether layer separated into two layers. During the reaction, the gas generated during the two-layer separation and heating treatment operations of the acidic aqueous solution was initially −70
It was collected in a trap (trap ()) containing diethyl ether cooled to 0.degree. C., and then in a trap (trap ()) cooled at the temperature of liquid nitrogen. Next, the mixture of the diethyl ether layer after the two-layer separation and the ether in the trap () is distilled in a distillation column with about 3 plates to produce Si 2 H 4 , Si 2 H 6
is distilled to separate SiH 4 (bp-112℃) and Si 2 H 6 (bp-
14.5°C) was added to and collected in a trap () cooled at the temperature of liquid nitrogen. SiH 4 remaining in the trap () and the diethyl ether layer after distillation,
The amounts of Si 2 H 6 , Si 3 H 8 , and Si 4 H 10 were analyzed and quantified by gas chromatography. The amounts of silanes in the trap () and diethyl ether layers were as shown below.
【表】
またジエチルエーテル層中のSi量を比色分析し
たところ含有量324mmolであつた。またIRスペ
クトルにより、該ケイ素化合物中にはSi−Si結
合、Si−H結合の他にSi−O−Si結合が相当量存
在することが認められた。これに更にジエチルエ
ーテルを追加し、ジエチルエーテル溶液()
0.5を得た。この溶液()中のSi濃度は
0.649mmol Siatm/ml solm、またSi3H8、
Si4H10の濃度はそれぞれ0.030mmol/ml solm、
0.021mmol/mlsolmであつた。
次にこのエーテル溶液()をモレキユラシー
ブー3A55gにて脱水処理することにより、Si濃
度0.649mmol Siatm/ml solmのジエチルエー
テル溶液()を得た。この溶液中のSi3H8、
Si4H10の濃度はそれぞれ0.033mmol/mlsolm、
0.020mmol/mlsolm、また含水量は2ppmであつ
た。
−15℃に設定した還流コンデンサーを取り付け
た内容積約50mlの反応器に、ジエチルアルミニウ
ムハイドライドのヘキサン溶液(濃度5.9mmol/
ml)を20ml装入し、その後上記のケイ素化合物を
含むジエチルエーテル溶液()10mlを加え、室
温下にて反応を行なつた。反応は撹拌しながら行
ない、また雰囲気ガスは水素とし、生成したガス
は液体チツ素温度で冷却したトラツプ中に捕集し
た。1時間後反応を終了し、捕集したSiH4、
Si2H6の量をガスクロマトグラフにより分析、定
量した。
SiH4、Si2H6の量は、それぞれ2.09mmol、
0.97mmolで、これは反応液として用いたジエチ
レルエーテル中のケイ素の62.1%に相当する。ま
たSiH4とSi2H6の生成割合はケイ素アトムベース
で(SiH4/Si2H6=1.08)であつた。
実施例2乃至4
実施例1において、ジエチルアルミニウムハイ
ドライドのかわりに濃度がそれぞれ5.5mmol/
ml、5.7mmol/ml、4.8mmol/mlのジイソブチル
アルミニウムハイドライド、ジメチルアルミニウ
ムハイドライド、エチルアルミニウムジハイドラ
イドのヘキサン溶液をそれぞれ20ml装入した以外
は実施例1と同様に実験を行なつた。
結果を第1表に示す。
実施例 5、6
実施例1において、ケイ化マグネシウムと塩酸
との反応をジエチルエーテルのかわりにペンタ
ン、ベンゼンを用いて行ない、それぞれ下記に示
すケイ素化合物の溶液を得た。[Table] Furthermore, colorimetric analysis of the amount of Si in the diethyl ether layer revealed that the content was 324 mmol. In addition, the IR spectrum revealed that the silicon compound contained a considerable amount of Si-O-Si bonds in addition to Si-Si bonds and Si-H bonds. Add diethyl ether to this and diethyl ether solution ()
Got 0.5. The Si concentration in this solution () is
0.649mmol Siatm/ml solm, also Si 3 H 8 ,
The concentration of Si 4 H 10 is 0.030 mmol/ml solm, respectively.
It was 0.021 mmol/mlsolm. Next, this ether solution () was dehydrated using 55 g of Molecular Sibu 3A to obtain a diethyl ether solution () with a Si concentration of 0.649 mmol Siatm/ml solm. Si 3 H 8 in this solution,
The concentration of Si 4 H 10 is 0.033 mmol/mlsolm, respectively.
The water content was 0.020 mmol/mlsolm and 2 ppm. A hexane solution of diethylaluminum hydride (concentration 5.9 mmol/
ml), and then 10 ml of diethyl ether solution () containing the above silicon compound was added, and the reaction was carried out at room temperature. The reaction was carried out with stirring, the atmospheric gas was hydrogen, and the gas produced was collected in a trap cooled at the temperature of liquid nitrogen. After 1 hour, the reaction was completed and the collected SiH 4
The amount of Si 2 H 6 was analyzed and quantified by gas chromatography. The amounts of SiH 4 and Si 2 H 6 are 2.09 mmol and 2.09 mmol, respectively.
It was 0.97 mmol, which corresponds to 62.1% of the silicon in diethyl ether used as the reaction solution. Furthermore, the generation ratio of SiH 4 and Si 2 H 6 was (SiH 4 /Si 2 H 6 = 1.08) based on silicon atoms. Examples 2 to 4 In Example 1, the concentration was 5.5 mmol/instead of diethyl aluminum hydride.
The experiment was carried out in the same manner as in Example 1, except that 20 ml of hexane solutions of diisobutyl aluminum hydride, dimethyl aluminum hydride, and ethyl aluminum dihydride of 5.7 mmol/ml, 4.8 mmol/ml, and 4.8 mmol/ml were respectively charged. The results are shown in Table 1. Examples 5 and 6 In Example 1, the reaction between magnesium silicide and hydrochloric acid was carried out using pentane and benzene instead of diethyl ether to obtain the silicon compound solutions shown below.
【表】
実施例1において、ジエチルエーテル溶液
()のかわりにそれぞれ上記の溶液10mlを用い
た以外は実施例1と同様に実験を行なつた。
結果を第1表に示す。
実施例 7、8
実施例1において、ジエチルエーテル溶液
()のかわりにSi3H8およびSiH3OSiH2OSiH3
をそれぞれ0.221mmol/mlsolm、0.248mmol/ml
solm含むジエチルエーテル溶液を用いた以外は
実施例1と同様に実験を行なつた。
結果を第1表に示す。
実施例 9
−15℃に設定した還流コンデンサーを取付けた
内容積約50mlの円筒型の反応器に、ジエチルアル
ミニウムハイドライドのヘキサン溶液(濃度
5.9mmol/ml)を10ml装入し、これに水素ガスで
希釈したSi3H8のガス(濃度5.5vol%)を
1mmol/hrの一定速度で、室温下にて6時間吹
込んだ。生成ガスは液体チツ素で冷却したトラツ
プ中に捕集し、反応終了後ガスクロマトグラフに
よりSiH4、Si2H6の量を定量した。
結果を第1表に示す。[Table] In Example 1, an experiment was carried out in the same manner as in Example 1, except that 10 ml of each of the above solutions was used instead of the diethyl ether solution (). The results are shown in Table 1. Examples 7 and 8 In Example 1, Si 3 H 8 and SiH 3 OSiH 2 OSiH 3 were used instead of the diethyl ether solution ().
0.221mmol/mlsolm and 0.248mmol/ml respectively
An experiment was conducted in the same manner as in Example 1 except that a diethyl ether solution containing solm was used. The results are shown in Table 1. Example 9 A hexane solution of diethylaluminum hydride (conc.
5.9 mmol/ml), and added Si 3 H 8 gas (concentration 5.5 vol%) diluted with hydrogen gas.
Bubbling was carried out at a constant rate of 1 mmol/hr for 6 hours at room temperature. The generated gas was collected in a trap cooled with liquid nitrogen, and after the reaction was completed, the amounts of SiH 4 and Si 2 H 6 were determined by gas chromatography. The results are shown in Table 1.
【表】
(発明の効果及び産業上の利用可能性)
以上のごとく、本発明は種々の方法により、例
えばSiH4、Si2H6などの水素化ケイ素を製造する
場合において副生する一般式SixHyOzで表わさ
れるケイ素化合物の一部を、アルキルアルミニウ
ムハイドライドと接触させることにより、きわめ
て容易にかつ収率良く有用なSiH4、Si2H6等に変
え得るもので、その産業上の利用可能性はきわめ
て高いといわねばならない。なお、本発明の方法
を従来のSiH4、SixH6等の水素化ケイ素の製造
プロセスにおいて適用することにより、該プロセ
ス自体の経済性が大幅に向上するいことはいうま
でもない。[Table] (Effects and Industrial Applicability of the Invention) As described above, the present invention uses various methods to reduce the general formula that is produced as a by-product when silicon hydride such as SiH 4 and Si 2 H 6 is produced. By contacting a part of the silicon compound represented by SixHyOz with an alkyl aluminum hydride, it can be converted into useful SiH 4 , Si 2 H 6 , etc. very easily and with high yield, and its industrial applicability must be said to be extremely high. It goes without saying that by applying the method of the present invention to a conventional manufacturing process of silicon hydrides such as SiH 4 and SixH 6 , the economic efficiency of the process itself is greatly improved.
Claims (1)
数でありどちらか一方は0ではなくまたx=1の
場合は1は0ではない)で表わされるケイ素化合
物と、アルキルアルミニウムハイドライドとを接
触させることにより、一般式SilH2l+2(ただしl
はxより小さい正の整数)で表わされる水素化ケ
イ素を製造する方法。 2 ケイ素化合物(SixHyOz)が一般式
SixH2x+2(xは2以上の正の整数)で表わされる
特許請求の範囲第1項に記載の方法。 3 水素化ケイ素(SilH2l+2)がSiH4あるいは
Si2H6である特許請求の範囲第1項に記載の方
法。 4 ケイ素化合物が有機溶媒に溶解している特許
請求の範囲第1項に記載の方法。[Claims] 1. A silicon compound represented by the general formula SixHyOz (where x is a positive integer of 1 or more, one of which is not 0, and if x=1, 1 is not 0), and an alkyl By contacting with aluminum hydride, the general formula SilH 2 l +2 (where l
is a positive integer smaller than x). 2 Silicon compound (SixHyOz) has the general formula
The method according to claim 1, represented by SixH 2x+2 (x is a positive integer of 2 or more). 3 Silicon hydride (SilH 2 l +2 ) is SiH 4 or
The method according to claim 1, wherein Si 2 H 6 is Si 2 H 6 . 4. The method according to claim 1, wherein the silicon compound is dissolved in an organic solvent.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17566284A JPS6153109A (en) | 1984-08-23 | 1984-08-23 | Production of silicon hydride |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17566284A JPS6153109A (en) | 1984-08-23 | 1984-08-23 | Production of silicon hydride |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6153109A JPS6153109A (en) | 1986-03-17 |
JPH0328369B2 true JPH0328369B2 (en) | 1991-04-18 |
Family
ID=16000023
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP17566284A Granted JPS6153109A (en) | 1984-08-23 | 1984-08-23 | Production of silicon hydride |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6153109A (en) |
-
1984
- 1984-08-23 JP JP17566284A patent/JPS6153109A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS6153109A (en) | 1986-03-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8147789B2 (en) | Composition comprising neopentasilane and method of preparing same | |
US4276424A (en) | Methods for the production of organic polysilanes | |
US8900654B2 (en) | Methods of polymerizing silanes and cyclosilanes using N-heterocyclic carbenes, metal complexes having N-heterocyclic carbene ligands, and lanthanide compounds | |
JP5921569B2 (en) | Method for producing hydridosilane | |
US8461367B2 (en) | Preparation process of trisilylamine | |
JP2017523134A (en) | Monoaminosilane compound | |
JP6584496B2 (en) | Diaminosilane compound | |
US2900225A (en) | Process for the production of sih2cl2 | |
KR20060086378A (en) | Method for producing organosilane | |
TWI791547B (en) | Method of preparing pentachlorodisilane and purified reaction product comprising same | |
CN112110948B (en) | Preparation method of liquid diamino substituted disilane and application of product thereof | |
JPH0328369B2 (en) | ||
CN112645976B (en) | Method for preparing methyl chlorosilane organic silicon by utilizing tail gas FTrPSA of chlorine-based CVD crystal film growth process | |
US6103942A (en) | Method of high purity silane preparation | |
JPH0480845B2 (en) | ||
JPH0480849B2 (en) | ||
JPH0480844B2 (en) | ||
JPH0480847B2 (en) | ||
JPH0436090B2 (en) | ||
JPS6172614A (en) | Production of silicon hydride | |
CN116284098A (en) | Preparation method of double-bond-containing siloxane | |
JPH0470247B2 (en) | ||
JPS60260418A (en) | Manufacture of silicon hydride | |
JPH034486B2 (en) | ||
JPH0480846B2 (en) |