JPH03283604A - Differentiation type coil - Google Patents

Differentiation type coil

Info

Publication number
JPH03283604A
JPH03283604A JP8509390A JP8509390A JPH03283604A JP H03283604 A JPH03283604 A JP H03283604A JP 8509390 A JP8509390 A JP 8509390A JP 8509390 A JP8509390 A JP 8509390A JP H03283604 A JPH03283604 A JP H03283604A
Authority
JP
Japan
Prior art keywords
coil
magnetic field
superconductor film
pattern
type coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8509390A
Other languages
Japanese (ja)
Inventor
Masayuki Ueda
雅之 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP8509390A priority Critical patent/JPH03283604A/en
Publication of JPH03283604A publication Critical patent/JPH03283604A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To make analysis of magnetic field source easy and to eliminate limitation of a base line by winding a bendable material of low temperature resistance whereon a thin superconductor film is formed to a specified pattern to form a space differentiation type coil shape. CONSTITUTION:A thin superconductor film is formed on a surface of a bendable substrate 1 of low temperature resistance, a thin superconductor film pattern 2 of approximately square loop is formed, the bendable substrate 1 is rolled to a tube shape with the thin superconductor film pattern 2 outside, and both ends thereof are laminated and bonded. Thereby the thin superconductor film pattern 2 is shaped into a space primary differentiation type coil. Therefore, it is possible to eliminate distortion of detected magnetic field like a plane differentiation type coil, to realize easy analysis of magnetic field source, and to relax limitation of a base line greatly as a coil pattern is not formed on a wafer.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は極微小磁界を計測するため、被測定磁界をピッ
クアップして磁気センサに伝達するのに使用される微分
型コイルに関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a differential coil used to pick up a magnetic field to be measured and transmit it to a magnetic sensor in order to measure extremely small magnetic fields.

〈従来の技術〉 5QUID等の磁気センサでは、被測定磁界を直接ピッ
クアップせず、磁束トランス等と称される微分型コイル
を検出コイルとした入力回路が用いられる。すなわち、
被測定磁界を微分型コイルでピックアップするとともに
、この微分型コイルに接続された入力コイルを5QUI
D等の磁気センサに磁気的に結合することによって、被
測定磁界を磁気センサに伝達するわけである。
<Prior Art> Magnetic sensors such as 5QUID do not directly pick up the magnetic field to be measured, but instead use an input circuit in which a differential coil called a magnetic flux transformer or the like is used as a detection coil. That is,
The magnetic field to be measured is picked up by a differential coil, and the input coil connected to this differential coil is connected to a 5QUI.
By magnetically coupling to a magnetic sensor such as D, the magnetic field to be measured is transmitted to the magnetic sensor.

このような用途に使用される微分型コイルとしては、大
きく分けて立体型(空間微分型)と平面型(平面微分型
)とがある。
Differential type coils used for such purposes are broadly divided into three-dimensional types (spatial differential type) and planar types (plane differential type).

立体型は第8図に例示するように、ボビン81の表面に
超電導ワイヤ82を巻回して作られる。
The three-dimensional type is made by winding a superconducting wire 82 around the surface of a bobbin 81, as illustrated in FIG.

また、平面型は第9図に例示するように、5QUID等
の磁気センサと同一のウェハ91上に、超電導体薄膜9
2をバターニングして作られる。
In the planar type, as illustrated in FIG. 9, a superconductor thin film 9
It is made by buttering 2.

〈発明が解決しようとする課題〉 以上のような従来の微分型コイルにおいて、立体型のも
のでは、コイルをワイヤの手巻き等で作る関係上、製作
に熟練を要する上、実際の検出コイル部と補償用コイル
との間の距If!II(コイル間隔)であるベースライ
ンの調整が難しく、かつ、ずれ易いという問題がある。
<Problems to be Solved by the Invention> Among the conventional differential type coils described above, the three-dimensional type requires skill to manufacture because the coil is made by hand-winding wire, etc. and the compensation coil If! There is a problem in that it is difficult to adjust the baseline, which is II (coil spacing), and it is easy to shift.

一方、平面型のものでは、以上のような問題は無いもの
の、検出した磁界の分布が歪み、磁場源を解析するのが
困難となる。また、一般に微分型コイルのベースライン
を大きくしなければ深い磁場源の情報は得られないが、
ウェハ上に作成する場合に、ウェハサイズによってベー
スラインが制限を受けるという問題がある。
On the other hand, although the flat type does not have the above problems, the distribution of the detected magnetic field is distorted, making it difficult to analyze the source of the magnetic field. Additionally, information about deep magnetic field sources cannot generally be obtained unless the baseline of the differential coil is increased.
When creating on a wafer, there is a problem that the baseline is limited depending on the wafer size.

本発明はこのような点に鑑みてなされたもので、検出し
た磁界の分布が歪むことがなく、かつ、ベースラインの
制限も殆ど無く、しかも、ベースラインのずれ等も生じ
ない微分型コイルの提供を目的としている。
The present invention has been made in view of these points, and provides a differential coil that does not distort the distribution of the detected magnetic field, has almost no baseline restrictions, and does not cause baseline deviation. intended to provide.

〈課題を解決するための手段〉 上記の目的を達成するため、本発明の微分型コイルは、
耐低温性の可撓性材料(基板)1の表面に超電導体薄膜
2が所定のパターンで形成され、かつ、その可撓性材料
1が巻回されて超電導体薄膜2が空間微分型コイル形状
を成していることによって特徴付けられる。
<Means for Solving the Problems> In order to achieve the above object, the differential coil of the present invention has the following features:
A superconductor thin film 2 is formed in a predetermined pattern on the surface of a low temperature resistant flexible material (substrate) 1, and the flexible material 1 is wound to form a spatially differentiated coil shape. It is characterized by having the following characteristics:

〈作用〉 基本的には空間微分型コイルであるので、平面微分型コ
イルのように検出した磁界の歪みがなく、コイルパター
ンはウェハ上に形成されないので、ベースラインの制限
はウェハを用いる場合に比して大幅に緩和される。また
、可撓性材料1上への超電導体薄膜2のパターン形成は
、例えばフォトリソグラフィの手法を用いることが可能
となり、良好な再現性が得られ、所期の目的を達成でき
る。
<Operation> Since it is basically a spatial differential type coil, there is no distortion of the detected magnetic field unlike a planar differential type coil, and the coil pattern is not formed on the wafer, so the baseline limit is limited when using a wafer. This will be greatly eased compared to the previous year. Further, pattern formation of the superconductor thin film 2 on the flexible material 1 can be performed using, for example, a photolithography method, and good reproducibility can be obtained, thereby achieving the intended purpose.

〈実施例〉 第1図は本発明実施例の斜視図である。<Example> FIG. 1 is a perspective view of an embodiment of the present invention.

例えばポリイミド基板等の耐低温性を有する可撓性基板
1は円筒状に巻回され、その両端部が重ね合わされてい
る。
A flexible substrate 1 having low temperature resistance, such as a polyimide substrate, is wound into a cylindrical shape, and both ends thereof are overlapped.

この可撓性基板1の表面には、略四角形ループをした超
電導体薄膜パターン2が形成されている。
On the surface of this flexible substrate 1, a superconductor thin film pattern 2 having a substantially rectangular loop is formed.

この超電導体としては、Nb、Pb等を用いることがで
きる。そして、可撓性基板1が巻回された状態でこの超
電導体薄膜パターン2は、第2図に示すような空間−次
微分型コイル形状となっている。なお、3は入力コイル
と接続するためのパッドである。
As this superconductor, Nb, Pb, etc. can be used. When the flexible substrate 1 is wound, the superconductor thin film pattern 2 has a spatially differentiated coil shape as shown in FIG. Note that 3 is a pad for connecting to the input coil.

このような本発明実施例では、パターン2が超電導状態
となる温度にまで冷却した状態において、第2図に例示
すように、上下両コイルを貫く磁束φに対して、各コイ
ルに電流■が互いに逆向きに流れ、微分型コイルとして
動作するわけである。
In this embodiment of the present invention, when the pattern 2 is cooled to a temperature at which it becomes superconducting, as illustrated in FIG. They flow in opposite directions and operate as a differential coil.

次に以上の実施例の製造方法を、第3図および第4図を
参照しつつ説明する。
Next, the manufacturing method of the above embodiment will be explained with reference to FIGS. 3 and 4.

まず、可撓性基板1の表面に超電導体薄膜を形成し、フ
ォトリソグラフィの技術を用いて第3図に示すような略
四角形ループをした超電導体薄膜パターン2を作る。
First, a superconductor thin film is formed on the surface of a flexible substrate 1, and a substantially square loop superconductor thin film pattern 2 as shown in FIG. 3 is created using photolithography.

次に、この可撓性基板1を超電導体薄膜パターン2が外
側になるよう、第4図に示すように円筒状に丸め、その
両端部を重ね合わせて接着する。
Next, this flexible substrate 1 is rolled into a cylindrical shape, as shown in FIG. 4, with the superconductor thin film pattern 2 on the outside, and both ends thereof are overlapped and bonded.

これによって第1図に示した構造の空間−次微分型コイ
ルが得られる。
As a result, a space-order differential type coil having the structure shown in FIG. 1 is obtained.

以上のような製法によると、超電導体薄膜パターン2の
精度および再現性が極めて良好となり、ベースラインの
調整やずれ等の問題は解消される。
According to the manufacturing method described above, the precision and reproducibility of the superconductor thin film pattern 2 are extremely good, and problems such as baseline adjustment and deviation are solved.

ここで、可撓性基板1の内側を中空にせず、真円に近い
円柱の回りに巻き付けるようにすると、コイルの精度が
向上する。ただし、使用する円柱の材料としては、耐低
温性があり、かつ、熱膨張率が可撓性基板1とほぼ等し
いものを選定することが望ましい。
Here, the precision of the coil will be improved if the inside of the flexible substrate 1 is not made hollow and is wound around a cylinder that is close to a perfect circle. However, it is desirable to select a material for the cylinder that is resistant to low temperatures and has a coefficient of thermal expansion approximately equal to that of the flexible substrate 1.

また、可撓性基板1を円筒状に丸めるにあたり、第3図
に示す超電導体薄膜パターン2のラインAおよびBが重
なるようにすれば、コイルの円が可撓性基板1の厚みだ
けのずれを持つ、はぼ磁気的に閉じた円となる上、上下
のコイルを結ぶライン間で磁気を感知する確率も大幅に
減少し、高感度の検出コイルとなる。
Furthermore, when rolling the flexible substrate 1 into a cylindrical shape, if the lines A and B of the superconductor thin film pattern 2 shown in FIG. In addition to forming a magnetically closed circle, the probability of sensing magnetism between the lines connecting the upper and lower coils is also significantly reduced, resulting in a highly sensitive detection coil.

第5図および第6図は以上のような本発明実施例の使用
例を示す図である。
FIG. 5 and FIG. 6 are diagrams showing an example of use of the embodiment of the present invention as described above.

第5図の例は磁気センサおよび入力コイル等が形成され
たチップ11を別置きする例で、パッド3から超電導ワ
イヤ12を介してチップ11と接続している。
The example shown in FIG. 5 is an example in which a chip 11 on which a magnetic sensor, an input coil, etc. are formed is placed separately, and is connected to the chip 11 from a pad 3 via a superconducting wire 12.

また、第6図の例は磁気センサのチップ11を可撓性基
板1上にグイボンディングした例で、チツブ11はパッ
ド3に対してワイヤボンディングで接続される。
The example shown in FIG. 6 is an example in which a magnetic sensor chip 11 is firmly bonded onto the flexible substrate 1, and the chip 11 is connected to the pad 3 by wire bonding.

この第5図および第6図において、13は可撓性基板1
の保持用円柱である。
5 and 6, 13 is the flexible substrate 1
It is a holding cylinder.

なお、本発明は以上のような空間−次微分型コイルに限
らず、より高次の空間微分型コイルにも適用できる。
Note that the present invention is not limited to the spatially differentiated coil as described above, but can also be applied to higher order spatially differentiated coils.

第7図は本発明を二次微分型コイルに適用する場合の可
撓性基板1′上への超電導体薄膜パターン2′の例であ
る。
FIG. 7 shows an example of a superconductor thin film pattern 2' on a flexible substrate 1' when the present invention is applied to a second-order differential type coil.

この場合、可撓性基板1′に切り欠き部りを設け、図中
aで示す端部を内側にして、超電導体薄膜パターン2′
が外側になるよう可撓性基板1′を二重に巻くとよい。
In this case, a notch is provided in the flexible substrate 1', and the superconductor thin film pattern 2' is placed with the end shown as a in the figure inside.
It is preferable to wrap the flexible substrate 1' twice so that the outer side is on the outside.

これにより、パッド3′の部分が切り欠き部りの下にな
って、外部回路との接続が容易となる。
This allows the pad 3' portion to be located below the notch, making it easier to connect to an external circuit.

ただし、この場合、超電導体薄膜パターン2′はライン
がクロスするので、可撓性基板1′上での多層化が必要
となる。
However, in this case, since the lines of the superconductor thin film pattern 2' cross, it is necessary to form multiple layers on the flexible substrate 1'.

〈発明の効果〉 以上説明したように、本発明によれば、基本的には空間
型微分コイルであるので、検出した磁界の分布が歪むこ
とがなく、磁場源を解析することが容易となるとともに
、可撓性基板のサイズは通常のFPCを作るサイズまで
なら充分に形成可能であり、ウェハにパターニングする
従来の平面微分型コイルに比してベースラインの制限が
大幅に緩和される。
<Effects of the Invention> As explained above, according to the present invention, since it is basically a spatial differential coil, the distribution of the detected magnetic field is not distorted, making it easy to analyze the magnetic field source. In addition, the size of the flexible substrate can be sufficiently formed up to the size for making a normal FPC, and the baseline restrictions are significantly relaxed compared to the conventional planar differential coil that is patterned on a wafer.

しかも、可撓性材料の表面に例えばフォトリソグラフィ
の手法を用いてコイルパターンを形成するとともに、そ
の可撓性材料を丸めるだけでいいので、製作に熟練を要
することなく極めて簡単に再現性よく製造することがで
き、ベースラインのずれが生じることもない。同時に、
ベースラインはフォトリソグラフィの精度で決まるため
容易に高精度化を達成することができる。
Moreover, since it is only necessary to form a coil pattern on the surface of a flexible material using, for example, photolithography, and to roll the flexible material, it is extremely easy to manufacture with good reproducibility and does not require any manufacturing skill. , and there will be no deviation of the baseline. at the same time,
Since the baseline is determined by the accuracy of photolithography, high accuracy can be easily achieved.

更に、前記したように、コイルの円を可撓性材料の厚み
だけのずれを持つほぼ磁気的に閉じた円とすることもで
き、この場合には上下のコイルを結ぶライン間で磁気を
感知する確率も大幅に減少することから、高感度の検出
コイルを得ることができる。
Furthermore, as mentioned above, the coil circles can be almost magnetically closed circles with a deviation equal to the thickness of the flexible material, in which case magnetism can be sensed between the lines connecting the upper and lower coils. Since the probability of this occurring is also significantly reduced, a highly sensitive detection coil can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明実施例の斜視図、 第2図は本発明実施例と等価な空間−次微分型コイルの
説明図、 第3図および第4図は本発明実施例の製造方法の説明図
、 第5図および第6図は本発明実施例の使用例の説明図、 第7図は本発明を空間二次微分型コイルに適用する場合
の超電導体薄膜パターンの説明図、第8図は従来の立体
型微分コイル(空間微分型コイル)の説明図、 第9図は従来の平面型微分コイル(平面微分型コイル)
の説明図である。 1・・・・可撓性基板 2・・・・超電導体薄膜パターン 3・・・・パッド 11・・・・磁気センサチップ 2・・・・超電導ワイヤ 3・・・・保持用円柱
FIG. 1 is a perspective view of an embodiment of the present invention, FIG. 2 is an explanatory diagram of a space-order differential coil equivalent to the embodiment of the present invention, and FIGS. 3 and 4 are explanations of the manufacturing method of the embodiment of the present invention. Figures 5 and 6 are explanatory diagrams of usage examples of the embodiments of the present invention. Figure 7 is an explanatory diagram of superconductor thin film patterns when the present invention is applied to a spatial second-order differential coil. is an explanatory diagram of a conventional three-dimensional differential coil (spatial differential coil), and Figure 9 is a conventional planar differential coil (planar differential coil).
FIG. 1... Flexible substrate 2... Superconductor thin film pattern 3... Pad 11... Magnetic sensor chip 2... Superconducting wire 3... Holding cylinder

Claims (1)

【特許請求の範囲】[Claims]  被測定微小磁界をピックアップして磁気センサに伝達
するためのコイルであって、耐低温性の可撓性材料の表
面に超電導体薄膜が所定のパターンで形成され、かつ、
その可撓性材料が巻回されて上記超電導体薄膜が空間微
分型コイル形状を成していることを特徴とする微分型コ
イル。
A coil for picking up a minute magnetic field to be measured and transmitting it to a magnetic sensor, the coil having a superconductor thin film formed in a predetermined pattern on the surface of a low temperature resistant flexible material, and
A differential coil characterized in that the flexible material is wound so that the superconductor thin film forms a spatially differential coil shape.
JP8509390A 1990-03-30 1990-03-30 Differentiation type coil Pending JPH03283604A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8509390A JPH03283604A (en) 1990-03-30 1990-03-30 Differentiation type coil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8509390A JPH03283604A (en) 1990-03-30 1990-03-30 Differentiation type coil

Publications (1)

Publication Number Publication Date
JPH03283604A true JPH03283604A (en) 1991-12-13

Family

ID=13848993

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8509390A Pending JPH03283604A (en) 1990-03-30 1990-03-30 Differentiation type coil

Country Status (1)

Country Link
JP (1) JPH03283604A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108053966A (en) * 2013-12-30 2018-05-18 镇江科越节能技术有限公司 Compliant conductive coil, correlation module, electromagnetically induced processing unit and correlation technique

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61176841A (en) * 1985-02-01 1986-08-08 Jeol Ltd Coil for nmr probe

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61176841A (en) * 1985-02-01 1986-08-08 Jeol Ltd Coil for nmr probe

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108053966A (en) * 2013-12-30 2018-05-18 镇江科越节能技术有限公司 Compliant conductive coil, correlation module, electromagnetically induced processing unit and correlation technique

Similar Documents

Publication Publication Date Title
JP4630544B2 (en) A method of orienting the magnetization direction of a magnetic layer of a selected magnetic element out of a plurality of magnetic elements constituting a bridge structure in a direction opposite to the magnetization direction of a magnetic layer of another magnetic element
KR100480749B1 (en) A differential solenoid magnetic
US5199178A (en) Thin film compass and method for manufacturing the same
TWI513960B (en) A sensor chip having a micro inductor structure
US9279863B2 (en) High-temperature superconducting magnetic sensor
JP5805500B2 (en) Manufacturing method of biomagnetic sensor
JP3093135B2 (en) Planar solenoid and SQUID magnetometer using planar solenoid
JP4302063B2 (en) Magnetic field sensing device
JP2005502052A (en) Three-dimensional strap for magnetoresistive sensors
JPH08313609A (en) Radial differentiation type squid fluxmeter
JPH03283604A (en) Differentiation type coil
CN107526046A (en) A kind of planar inductor type Magnetic Sensor
JP3018540B2 (en) 3-axis gradiometer
JPH06109820A (en) Three-dimensional detection coil
KR100485591B1 (en) Compact Micro Magnetic Field Detecting Sensor Using Magneto Impedance Effects and Method for Making the Same
JP3022094B2 (en) Magnetic sensor
JPH03199985A (en) Unit for measuring minute magnetic field
JPH05180917A (en) Superconducting pickup coil
JPH0666905A (en) Superconducting magnetic interferometer
JP2775969B2 (en) Pickup coil for squid vector magnetometer
JP3042148B2 (en) Orthogonal 3-axis pickup coil
JPH0738871Y2 (en) Compensation device for magnetic field gradient sensor coil
JPH0894728A (en) Magnetic field sensor and its manufacture
JPH07311249A (en) Superconducting thin film pickup coil
JPH0677053B2 (en) Pickup coil for SQUID magnetometer