JPH03283255A - High-pressure discharge lamp - Google Patents
High-pressure discharge lampInfo
- Publication number
- JPH03283255A JPH03283255A JP8079590A JP8079590A JPH03283255A JP H03283255 A JPH03283255 A JP H03283255A JP 8079590 A JP8079590 A JP 8079590A JP 8079590 A JP8079590 A JP 8079590A JP H03283255 A JPH03283255 A JP H03283255A
- Authority
- JP
- Japan
- Prior art keywords
- metal member
- rhenium
- base metal
- electrode
- axis
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000013078 crystal Substances 0.000 claims abstract description 18
- 239000010953 base metal Substances 0.000 claims abstract description 15
- 229910052702 rhenium Inorganic materials 0.000 claims abstract description 13
- WUAPFZMCVAUBPE-UHFFFAOYSA-N rhenium atom Chemical compound [Re] WUAPFZMCVAUBPE-UHFFFAOYSA-N 0.000 claims abstract description 13
- 229910000691 Re alloy Inorganic materials 0.000 claims abstract description 7
- 229910001404 rare earth metal oxide Inorganic materials 0.000 claims abstract description 7
- DECCZIUVGMLHKQ-UHFFFAOYSA-N rhenium tungsten Chemical compound [W].[Re] DECCZIUVGMLHKQ-UHFFFAOYSA-N 0.000 claims abstract description 6
- 239000002245 particle Substances 0.000 claims description 4
- 238000010438 heat treatment Methods 0.000 claims description 2
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 10
- 229910052721 tungsten Inorganic materials 0.000 description 10
- 239000010937 tungsten Substances 0.000 description 10
- 238000001953 recrystallisation Methods 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- ZCUFMDLYAMJYST-UHFFFAOYSA-N thorium dioxide Chemical compound O=[Th]=O ZCUFMDLYAMJYST-UHFFFAOYSA-N 0.000 description 5
- 229910003452 thorium oxide Inorganic materials 0.000 description 5
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical group [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 4
- MRELNEQAGSRDBK-UHFFFAOYSA-N lanthanum(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[La+3].[La+3] MRELNEQAGSRDBK-UHFFFAOYSA-N 0.000 description 4
- 229910045601 alloy Inorganic materials 0.000 description 3
- 239000000956 alloy Substances 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000001179 sorption measurement Methods 0.000 description 3
- 229910052724 xenon Inorganic materials 0.000 description 3
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- SIWVEOZUMHYXCS-UHFFFAOYSA-N oxo(oxoyttriooxy)yttrium Chemical compound O=[Y]O[Y]=O SIWVEOZUMHYXCS-UHFFFAOYSA-N 0.000 description 2
- 101100096653 Arabidopsis thaliana SRO1 gene Proteins 0.000 description 1
- 229910000420 cerium oxide Inorganic materials 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- BMMGVYCKOGBVEV-UHFFFAOYSA-N oxo(oxoceriooxy)cerium Chemical compound [Ce]=O.O=[Ce]=O BMMGVYCKOGBVEV-UHFFFAOYSA-N 0.000 description 1
- 238000010587 phase diagram Methods 0.000 description 1
- 239000000941 radioactive substance Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Landscapes
- Discharge Lamp (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は小型のキセノンランプ、出力30KWて水冷型
のキセノンランプ、及び高圧水銀灯等に用いられる高圧
放電灯に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a small xenon lamp, a water-cooled xenon lamp with an output of 30 KW, and a high-pressure discharge lamp used in a high-pressure mercury lamp, etc.
[従来の技術]
従来、高圧放電灯の電極として、本出願と同一の出願人
か既に提案しているように、酸化イツトリウムもしくは
酸化ランタンを含有したタングステンからなる電極(実
開昭63−9762号公報参照)や、酸化セリウムと酸
化トリウムとを含有したタングステンからなる電極(実
開昭63−9763号公報参照)等がある。[Prior Art] Conventionally, electrodes made of tungsten containing yttrium oxide or lanthanum oxide have been used as electrodes for high-pressure discharge lamps (Utility Model Application No. 63-9762), as already proposed by the same applicant as the present application. There are electrodes made of tungsten containing cerium oxide and thorium oxide (see Japanese Utility Model Application No. 63-9763).
[発明か解決しようとする課題]
従来から電極材料として用いられているランタン酸化物
やイツトリウム酸化物等の希土類酸化物を含有したタン
グステンは本来、溶接用電極棒として開発されたもので
高圧放電灯用の電極に適した結晶組織にはなっていない
という問題かある。[Invention or problem to be solved] Tungsten containing rare earth oxides such as lanthanum oxide and yttrium oxide, which has been conventionally used as an electrode material, was originally developed as an electrode rod for welding and is used in high-pressure discharge lamps. The problem is that the crystal structure is not suitable for use as electrodes.
即ち、高圧放電灯においでは、例えば、陰極に使用され
た場合、陰極の電流密度は約3000A/crrf程度
の高密度の電流か流れることになり、その上、電極間の
アークの安定性も保たなければならないという課題かあ
る。That is, in a high-pressure discharge lamp, for example, when used as a cathode, a high current density of about 3000 A/crrf flows through the cathode, and in addition, the stability of the arc between the electrodes is maintained. There are some challenges that must be met.
従って、高密度の電流か流れることによる高温に耐えて
、さらに、アークの安定性を保つ上では、電子放出特性
(エミッション)か良好なこと、即ち、電子放出物質(
エミッタ)である希土類酸化物か内部から絶えず順調に
電極の先端に供給されるように結晶組織を整えることか
必要な課題となっている。Therefore, in order to withstand the high temperatures caused by the flow of high-density current and maintain the stability of the arc, it is important to have good electron-emitting properties (emissions).
The issue is how to arrange the crystal structure of the rare earth oxide (emitter) so that it is constantly and smoothly supplied from the inside to the tip of the electrode.
また、エミッタとして酸化トリウムを含有したタングス
テンからなる電極もあるが、酸化トリウムは放射性物質
てあり、これを含有するタングステンは取扱いに注意を
要し、動作温度が高く、損耗が激しいという問題がある
。There are also electrodes made of tungsten containing thorium oxide as an emitter, but thorium oxide is a radioactive substance, and tungsten containing thorium oxide requires careful handling, has high operating temperatures, and suffers from severe wear and tear. .
その上、従来の酸化トリウムを含有したタングステンは
再結晶温度か2000℃以下であるために、再結晶か生
じ易く、その結果、エミッタの供給か円滑に行われない
という問題がある。Furthermore, since the recrystallization temperature of conventional tungsten containing thorium oxide is 2000° C. or lower, recrystallization is likely to occur, and as a result, there is a problem that emitter supply cannot be carried out smoothly.
この発明はかかる課題を解決するためになされたものて
、取扱いか容易で、かつ高温に耐て、エミッタの供給か
円滑に行われて、アークを安定させることかてきる電極
を有する高圧放電灯を提供することを目的とする。This invention has been made to solve these problems, and is a high-pressure discharge lamp having an electrode that is easy to handle, can withstand high temperatures, and can smoothly supply the emitter to stabilize the arc. The purpose is to provide
[課題を解決するための手段]
上記の目的を達成するために、この発明の高圧放電灯は
、レニウムを1乃至27重量%含むタングステン−レニ
ウム合金に、エミッタとして希土類酸化物を分散させた
基体金属部材を、先端部かアークを支持するのに適した
平面状もしくは球面状に加工する手段と共に、熱処理手
段により、前記基体金属部材の中心軸から軸に垂直な方
向の少くとも10%以内の領域では、当該部材の結晶組
織の軸方向に垂直な方向の平均粒子径W≦0゜1層■に
なるように形成した当該部材を電極として具備し、さら
に、放電用ガスもしくは蒸気が、点灯中1気圧以上とな
るよう構成されたものである。[Means for Solving the Problems] In order to achieve the above object, the high pressure discharge lamp of the present invention includes a base material in which a rare earth oxide is dispersed as an emitter in a tungsten-rhenium alloy containing 1 to 27% by weight of rhenium. In addition to processing the metal member into a planar or spherical shape suitable for supporting the tip or arc, heat treatment is used to reduce the area within at least 10% of the central axis of the base metal member in the direction perpendicular to the axis. In the area, the member is provided as an electrode with an average particle diameter W≦0° in a direction perpendicular to the axial direction of the crystal structure of the member, and one layer is formed. It is constructed to have a pressure of 1 atm or more.
[作用]
上記の構成を有することにより、電極の結晶組織は安定
し、高温になるまて再結晶は妨げられて粒界は安定して
いるのて、エミッタの供給か円滑に行われ、アークは安
定する。[Function] By having the above structure, the crystal structure of the electrode is stabilized, recrystallization is prevented until the temperature rises, and the grain boundaries are stabilized, so that the emitter supply is performed smoothly and the arc becomes stable.
また、ランプを作ったときに、ランプ内に不純物として
残留する水素ガスがあるが、レニウムはタングステンに
比して水素ガスの吸着性は弱いのて、ランプの始動時に
電極に吸着した水素ガスを放出して点灯不良を招くこと
も少く、従って、点灯性も改善される。Also, when a lamp is made, there is hydrogen gas that remains as an impurity inside the lamp, but since rhenium has a weak adsorption ability for hydrogen gas compared to tungsten, it absorbs the hydrogen gas adsorbed on the electrodes when starting the lamp. It is less likely to be emitted and cause poor lighting, and therefore lighting performance is improved.
さらに、レニウムをタングステンに含有させたものは、
レニウムを含有しないものに比して仕事関数か低く、仕
事関数が低ければ動作温度か下がり、そのため、同一電
流の場合は電極温度を下げることかでき、その結果、電
極の損耗か少い。Furthermore, tungsten containing rhenium is
It has a lower work function than one that does not contain rhenium, and the lower the work function, the lower the operating temperature.Therefore, for the same current, the electrode temperature can be lowered, resulting in less wear and tear on the electrode.
[実施例コ
第1図は本発明の一実施例である電極内部の結晶構造を
、従来のものと比較して説明するために示した図て、l
は電極である基体金属部材。[Example Figure 1 is a diagram shown to explain the crystal structure inside an electrode according to an example of the present invention in comparison with a conventional one.
is a base metal member that is an electrode.
2はこの基体金属部材lの内部に存在する結晶粒子、3
はこの結晶粒子2間にできる粒界、4.5はそれぞれ基
体金属部材1の側面及び先端を示したものである。2 is a crystal particle existing inside this base metal member l, 3
denotes the grain boundary formed between the crystal grains 2, and 4.5 denotes the side surface and tip of the base metal member 1, respectively.
従来の電極においでは、エミッタか基体金属部材1の周
辺の側面4へ拡散してから、基体金属部材lの表面を伝
わって先端5へ進むようになるため、アークか不安定に
なり易かった。In conventional electrodes, the emitter diffuses to the side surface 4 around the base metal member 1 and then travels along the surface of the base metal member l to the tip 5, which tends to cause the arc to become unstable.
ところが、第1図の基体金属部材1においでは、その中
心軸から軸に垂直な方向の少くとも10%以内の領域て
、エミッタの大部分が、結晶組織の軸方向に垂直な方向
の平均粒子径0.1m■以下の縦長に形成された結晶粒
子2の粒界3を伝わって、前記基体金属部材1の先端へ
まっすぐ進むように供給されるのて、エミッションかよ
く、アークは安定する。However, in the base metal member 1 shown in FIG. 1, most of the emitters within at least 10% of the area from the central axis in the direction perpendicular to the axis are composed of average grains in the direction perpendicular to the axis of the crystal structure. The arc is supplied straight to the tip of the base metal member 1 through the grain boundaries 3 of vertically formed crystal grains 2 with a diameter of 0.1 m or less, resulting in good emission and stable arc.
第2図は、例えば1984年1月30日、丸善株式会社
発行「金属データフック」等に記載されたタンクステン
ーレニウム合金の金属及び合金の状態図である。図中、
実線より下方は固相状態、点線より上方は液相状態であ
る。FIG. 2 is a state diagram of metals and alloys of tank stainless rhenium alloy, which is described in, for example, "Metal Data Hook" published by Maruzen Co., Ltd. on January 30, 1984. In the figure,
The area below the solid line is a solid state, and the area above the dotted line is a liquid state.
第2図から明らかなように、レニウムか27%を超えた
高い含有率のときは融点か低く、別の結晶層をつくるの
て避けなければならない上に、しニウムはタングステン
に比して極端に高価であるのて大量には用いられない。As is clear from Figure 2, when rhenium has a high content exceeding 27%, its melting point is low and must be avoided as it creates another crystal layer. It is expensive and therefore not used in large quantities.
このようにタングステン−レニウム合金として融点か低
いものを電極として用いた場合、電極の損耗か起こり易
い。In this way, when a tungsten-rhenium alloy with a low melting point is used as an electrode, the electrode is likely to be worn out.
それに反してレニウムの含有率か27%以下であるとき
は、3000°Cかそれ以下の温度においては完全に合
金化した状態(固相)である。On the other hand, when the rhenium content is 27% or less, it is in a completely alloyed state (solid phase) at a temperature of 3000°C or lower.
高圧放電灯の点灯時における実際の動作温度は2500
℃近傍から3000℃までは達しないのて、この温度に
充分耐え得る含有率としてレニウムか27%以下かよい
。そして、第2図から明らかなように安定した合金エミ
ッタの供給は円滑に行われ、アークの安定性は保たれる
。The actual operating temperature of a high-pressure discharge lamp when lit is 2500.
Since the temperature does not reach 3000° C., the rhenium content should be 27% or less to be able to withstand this temperature. As is clear from FIG. 2, stable supply of the alloy emitter is carried out smoothly, and the stability of the arc is maintained.
その上、レニウムは前述の如く、水素の吸着性かタング
ステンに比して弱いので、点灯不良を起こすことも少く
、また仕事関数が低いのて、動作温度を下げ、その結果
、電極の損耗か少い。Furthermore, as mentioned above, rhenium has a weak hydrogen adsorption property compared to tungsten, so rhenium is less likely to cause lighting failures, and its low work function lowers the operating temperature, reducing electrode wear and tear. Few.
この構造の結晶粒子は、基体金属部材1において、その
中心軸から、軸に垂直な方向の少くとも10%以内の領
域(図示6)が必要である。Crystal grains having this structure require an area (6 in the figure) within at least 10% of the central axis of the base metal member 1 in a direction perpendicular to the axis.
これは、先端5の領域が、電極径の10%以内の径を有
し、この領域に、電極内部から直接粒界を通してエミッ
タが、供給されるため、電極の中心軸から軸に垂直な方
向の少くとも10%以内の領域か電極先端へのエミッタ
供給に重要であることより言える。This is because the region of the tip 5 has a diameter within 10% of the electrode diameter, and the emitter is supplied to this region from inside the electrode directly through the grain boundary, so the direction perpendicular to the axis from the central axis of the electrode This can be said because the area within at least 10% of the area is important for supplying the emitter to the tip of the electrode.
このような構造により、エミッタの大部分は、横幅か0
.ト■以下の縦長に形成されたM品数子2の粒界3を伝
わって、電極先端5に円滑に供給されるのて、エミッシ
ョンがよく、アークも安定する。With this structure, most of the emitter has a width of 0 or 0.
.. It passes through the grain boundaries 3 of the M-product number 2, which are formed in a vertically elongated manner, and is smoothly supplied to the electrode tip 5, resulting in good emission and stable arcing.
尚、本発明の希土類酸化物は、ceo2を使用したが、
特にこれに限るものてはない。Although CEO2 was used as the rare earth oxide of the present invention,
There is no particular limitation to this.
その含有量は、放電灯の種類によって変化させるか5.
0重量%以上では、焼結体の加工が困難になり、0.1
%以下ではエミッタとしての効果かないため、0.1乃
至5.0重量%か好ましい
以上のようにして形成された電極を、150Wのキセノ
ンランプに使用すると、1ooo時間点灯してもアーク
は安定していた。5. Does the content change depending on the type of discharge lamp?
If it is more than 0% by weight, it will be difficult to process the sintered body, and if it is more than 0.1
If the amount is less than 0.1 to 5.0% by weight, it will not be effective as an emitter, so if the electrode formed in this way is used in a 150W xenon lamp, the arc will be stable even if it is lit for 100 hours. was.
[発明の効果]
以上説明した通り、従来のW/Th02の再結晶温度か
低いため、再結晶が生し易く、エミッタの供給に支障か
あるが、本発明の電極は、粒子の結晶は細長く、かつ、
その結晶組織が安定し、高温になるまて再結晶か妨げら
れて粒界は安定しているのて、エミッタの供給か円滑に
行われ、アークは安定する。[Effects of the Invention] As explained above, the recrystallization temperature of conventional W/Th02 is low, so recrystallization tends to occur and there is a problem in supplying the emitter, but in the electrode of the present invention, the particle crystals are elongated. ,and,
The crystal structure is stabilized and recrystallization is inhibited when the temperature rises, and the grain boundaries are stabilized, so that the emitter is smoothly supplied and the arc is stabilized.
また、レニウムをタングステンに含有させることにより
、水素の吸着性の弱さにより、点灯性は改善され、かつ
、仕事関係の所以て電極温度を下げるのて電極の損耗は
少い。Furthermore, by incorporating rhenium into tungsten, lighting performance is improved due to weak adsorption of hydrogen, and wear of the electrodes is reduced because the electrode temperature is lowered for work-related reasons.
第1図は本発明の一実施例である電極内部の結晶構造を
、従来のものと比較して説明するために示した図、第2
図はタングステン−レニウム合金の金属及び合金の状態
図である。
図中、
l二基体金属部材 2:結晶粒子
:粒界
4、側面
先端Figure 1 is a diagram showing the crystal structure inside an electrode according to an embodiment of the present invention in comparison with a conventional one.
The figure is a phase diagram of metals and alloys of tungsten-rhenium alloy. In the figure, l two-substrate metal member 2: crystal grain: grain boundary 4, side tip
Claims (1)
ム合金に、エミッタとして希土類酸化物を分散させた基
体金属部材を、 先端部がアークを支持するのに適した平面状もしくは球
面状に加工する手段と共に、 熱処理手段により、前記基体金属部材の中心軸から軸に
垂直な方向の少くとも10%以内の領域では、当該部材
の結晶組織の軸方向に垂直な方向の平均粒子径W≦0.
1mmになるように形成した当該部材を電極として具備
し、 さらに、放電用ガスもしくは蒸気が、点灯中1気圧以上
となるよう構成されたことを特徴とする高圧放電灯。[Scope of Claims] A base metal member made of a tungsten-rhenium alloy containing 1 to 27% by weight of rhenium with a rare earth oxide dispersed therein as an emitter, the tip of which has a planar or spherical shape suitable for supporting an arc. In a region within at least 10% from the central axis of the base metal member in the direction perpendicular to the axis, the average particle diameter W in the direction perpendicular to the axis of the crystal structure of the base metal member is reduced by the heat treatment means. ≦0.
A high-pressure discharge lamp, comprising the member formed to have a thickness of 1 mm as an electrode, and further configured such that discharge gas or steam is at 1 atm or more during lighting.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8079590A JP2782262B2 (en) | 1990-03-30 | 1990-03-30 | High pressure discharge lamp |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8079590A JP2782262B2 (en) | 1990-03-30 | 1990-03-30 | High pressure discharge lamp |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH03283255A true JPH03283255A (en) | 1991-12-13 |
JP2782262B2 JP2782262B2 (en) | 1998-07-30 |
Family
ID=13728395
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8079590A Expired - Lifetime JP2782262B2 (en) | 1990-03-30 | 1990-03-30 | High pressure discharge lamp |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2782262B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6768263B2 (en) * | 2001-10-30 | 2004-07-27 | Ushio Denki Kabushiki Kaisya | Short arc type mercury lamp |
-
1990
- 1990-03-30 JP JP8079590A patent/JP2782262B2/en not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6768263B2 (en) * | 2001-10-30 | 2004-07-27 | Ushio Denki Kabushiki Kaisya | Short arc type mercury lamp |
Also Published As
Publication number | Publication date |
---|---|
JP2782262B2 (en) | 1998-07-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7279839B2 (en) | Short arc high-pressure discharge lamp | |
JP3175592B2 (en) | Discharge lamp electrode | |
JP3665862B2 (en) | Tungsten anode for discharge lamp | |
JP5293172B2 (en) | Discharge lamp | |
JP2851727B2 (en) | Electrode for discharge lamp | |
JP6098271B2 (en) | Short arc type discharge lamp | |
JP2005519436A (en) | Mercury short arc lamp with cathode containing lanthanum oxide | |
JP2005519436A6 (en) | Mercury short arc lamp with cathode containing lanthanum oxide | |
JP3882093B2 (en) | Tungsten electrode material and heat treatment method thereof | |
JPH03283255A (en) | High-pressure discharge lamp | |
US5081396A (en) | Ac high pressure discharge lamp, especially for high current level operation | |
JP2003132837A (en) | Short arc-type mercury lamp | |
US4392047A (en) | Non-consumable electrode | |
JPH03283254A (en) | High-pressure discharge lamp | |
JP3009296B2 (en) | Electrode for discharge lamp | |
US5512240A (en) | Tungsten electrode material | |
SU353495A1 (en) | Cathode for electric arc processes in active media | |
JP2781555B2 (en) | Ultra high pressure mercury lamp | |
US6639361B2 (en) | Metal halide lamp | |
JPH02295056A (en) | Electrode for discharge lamp | |
KR20030095190A (en) | electrode materials for discharge tube, manufacturing method thereof and cold cathode using that | |
JPH04132154A (en) | Short-arc type xenon discharge lamp | |
Matsuda et al. | Fundamental arc characteristics of La-, Y-and Ce-oxide tungsten electrodes | |
JP2015230828A (en) | Discharge lamp | |
JPH02295057A (en) | Electrode for discharge lamp |