JPH03283181A - Semiconductor storage device - Google Patents

Semiconductor storage device

Info

Publication number
JPH03283181A
JPH03283181A JP2084012A JP8401290A JPH03283181A JP H03283181 A JPH03283181 A JP H03283181A JP 2084012 A JP2084012 A JP 2084012A JP 8401290 A JP8401290 A JP 8401290A JP H03283181 A JPH03283181 A JP H03283181A
Authority
JP
Japan
Prior art keywords
substrate
generation circuit
circuit
high level
low level
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2084012A
Other languages
Japanese (ja)
Inventor
Manabu Nishiyama
学 西山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2084012A priority Critical patent/JPH03283181A/en
Publication of JPH03283181A publication Critical patent/JPH03283181A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Memories (AREA)
  • Dram (AREA)

Abstract

PURPOSE:To reduce a consumption current and the area of a chip and to stabilize a substrate voltage by providing a control means controlling a substrate potential generation circuit in accordance with the change of an external address input signal. CONSTITUTION:The substrate voltage generation circuits 20, 21-2n waveform- shape internal address signals a0, a1-an in invertors INV1 and INV2 and they are inputted to a voltage doubler generation circuit VV. The voltage doubler generation circuit VV is activated once by a change that the internal signals a0, a1-an return from a low level to a high level or from the high level to the low level. Then, capacity adjusted to a substrate current which flows at two changes (from the high level to the low level, and from the low level to the high level) of the internal address signals is given. Thus, a circuit scale and the consumption current can be reduced and the substrate voltage can be stabilized.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は基板電圧発生回路を内蔵する半導体記憶装置に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor memory device incorporating a substrate voltage generation circuit.

〔従来の技術〕[Conventional technology]

第4図は従来の半導体記憶装置に用いられる基板電圧発
生回路を示すブロック図、第5図は半導体記憶装置の従
来例であるダイナミックランダムアクセスメモリを示す
回路図、第6図は第4図の従来例において基板に流れ込
む電流量を示す図である。
FIG. 4 is a block diagram showing a substrate voltage generation circuit used in a conventional semiconductor memory device, FIG. 5 is a circuit diagram showing a dynamic random access memory which is a conventional example of a semiconductor memory device, and FIG. FIG. 3 is a diagram showing the amount of current flowing into a substrate in a conventional example.

基板電圧をGND、Vcc以外の電圧に設定している半
導体記憶装置(特にダイナミックランダムアクセスメモ
リDRAM)ではMOSトランジスタの特性により、回
路動作時イオン化電流が発生し一部が基板30に流れ、
基板電圧か浮き上がることが現出する。このような基板
電圧の変動を防ぎ回路の安定動作を企てるためDRAM
ではチップ上に基板電圧発生回路41.42が具備され
るのが一般的である(第4図)。この基板電圧発生回路
はPNジャンクションに起因するスタンドバイ時のリー
ク電流(数μA〜数10μA)に対応するためイオン吸
収能力の比較的小さな基板電圧発生回路41と、アクテ
ィブ時の大消費電流に伴うイオン化基板電流(数百μA
程度)に対応する基板電圧発生回路42とから構成され
るのが船釣である。イオン化電流は通常ICC(電源消
費電流)に比例して発生する。
In a semiconductor memory device (particularly a dynamic random access memory DRAM) in which the substrate voltage is set to a voltage other than GND or Vcc, an ionization current is generated during circuit operation due to the characteristics of the MOS transistor, and a portion of it flows to the substrate 30.
It appears that the substrate voltage is rising. In order to prevent such substrate voltage fluctuations and ensure stable operation of the circuit, DRAM
In general, substrate voltage generation circuits 41 and 42 are provided on the chip (FIG. 4). This substrate voltage generation circuit has a substrate voltage generation circuit 41 with a relatively small ion absorption capacity in order to cope with the leakage current (several μA to several tens of μA) during standby caused by the PN junction, and a substrate voltage generation circuit 41 that has a relatively small ion absorption capacity due to the large current consumption during active operation. Ionized substrate current (several hundred μA
The boat fishing is comprised of a substrate voltage generating circuit 42 corresponding to the degree of Ionization current is normally generated in proportion to ICC (power consumption current).

以下に外部アドレスに依存する部分について第5図、第
6図を参照して説明する。
The parts that depend on external addresses will be explained below with reference to FIGS. 5 and 6.

外部アドレス信号A。、A1.〜.Aoの変化により、
内部アドレス発生回路が動作し内部アドレス信号aO+
 aI +〜、aoさらに部分デコーダ61、カラムデ
コーダ62が変化する。それに伴って、基板に電流が流
れ込むことになる。また、カラムデコーダ62により選
択されたメモリセルアレイ63のデータがl10967
に出力されデータアンプ64で増幅後、出力バッファ6
5により出力されるが、それぞれの回路の動作も基板電
流を流し込む原因となる。一方、書き込み時も同様に入
力バッファ68等の動作に伴う基板への電流の流れ込み
がある。これれらの電流を基板に流し込む回路のうち、
アドレスに依存しないものとして、出力バッファ、人力
へ′ツファがあり、これらの回路は、入出力データの値
に依存する。
External address signal A. , A1. ~. Due to changes in Ao,
The internal address generation circuit operates and generates the internal address signal aO+.
aI+~, ao, and the partial decoder 61 and column decoder 62 change. Accordingly, current flows into the substrate. Also, the data of the memory cell array 63 selected by the column decoder 62 is l10967
After being amplified by the data amplifier 64, the data is output to the output buffer 6.
5, but the operation of each circuit also causes substrate current to flow. On the other hand, during writing as well, current flows into the substrate due to the operation of the input buffer 68 and the like. Of the circuits that flow these currents into the board,
Non-address dependent circuits include output buffers and human input buffers, which depend on the values of input and output data.

データアンプ64のように外部アドレスに依存した信号
により活性化される回路の基板に流れ込む電流は、外部
アドレス、出力データの両方に依存する。
The current flowing into the substrate of a circuit activated by a signal dependent on an external address, such as the data amplifier 64, depends on both the external address and output data.

また、外部アドレス信号、人出力データに依存しない回
路としては、ワード線駆動回路71、センスアンプ72
等かある。
In addition, as circuits that do not depend on external address signals and human output data, the word line drive circuit 71 and the sense amplifier 72
There is something like that.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述した従来の半導体記憶装置は、アクティブ用の基板
電圧発生回路42の電流能力は、アクティブ時に基板に
流れ込む電流の最大値に十分足る電流能力でなければな
らない。一方現在の半導体記憶装置は大容量化に伴フて
、アドレス信号に係わる回路が全体の回路に占める割合
がより大きくなりつつあり、また、外部アドレスの変化
に応じて内部信号も変化させる動作モード(スタティッ
クカラム動作等)も取り入れられている。
In the conventional semiconductor memory device described above, the current capacity of the substrate voltage generation circuit 42 for active use must be sufficient for the maximum value of the current flowing into the substrate during active operation. On the other hand, as the capacity of current semiconductor memory devices increases, the circuits related to address signals occupy a larger proportion of the overall circuitry, and there are operating modes in which internal signals also change according to changes in external addresses. (Static column operation, etc.) has also been incorporated.

そのため外部アドレスが短い周期で変化した場合と、変
化しない場合とで基板に流れ込んだ電流値が大きく変化
するが、基板電圧発生回路はその最大値に足る能力を持
つように設計する必要があり、その場合回路が大きくな
りまた基板電位発生回路での消費電流も増加するという
欠点がある。
Therefore, the value of the current flowing into the board changes greatly depending on whether the external address changes in a short period or when it does not change, but the board voltage generation circuit must be designed to have the ability to handle the maximum value. In this case, there are disadvantages in that the circuit becomes larger and the current consumption in the substrate potential generation circuit also increases.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の半導体記憶装置は、内蔵する基板電位発生回路
を外部アドレス入力信号の変化に従って制御する制御手
段を有する。
The semiconductor memory device of the present invention has control means for controlling a built-in substrate potential generation circuit according to changes in an external address input signal.

〔作   用〕[For production]

制御手段が外部アドレス入力信号の変化に従って、必要
とされる電流量のみを基板に流し込むように基板電圧発
生回路を制御する。
The control means controls the substrate voltage generation circuit so that only the required amount of current flows into the substrate according to changes in the external address input signal.

〔実 施 例〕〔Example〕

次に、本発明の実施例について図面を参照して説明する
Next, embodiments of the present invention will be described with reference to the drawings.

第1図は本発明の半導体記憶装置の第1の実施例を示す
回路図である。
FIG. 1 is a circuit diagram showing a first embodiment of a semiconductor memory device of the present invention.

°内部アドレス発生回路10は、外部アドレス信号Ao
 、 A + 、〜、Anを入力し、内部アドレス信号
a。、al、〜、aoを出力する。内部アドレス信号a
。、al、〜、anはそれぞれ基板電圧発生回路20,
21.〜.2n等の内部回路に供給される。各基板電圧
発生回路20,21゜〜、2nは、内部アドレス信号a
O+ a l g〜anを入力するインバータI NV
、と、インバータI NV、に縦列接続されたインバー
タINV2と、倍電型発生回路vvとからなっている。
°The internal address generation circuit 10 generates an external address signal Ao.
, A + , ~, An are input, and the internal address signal a. , al, to, ao are output. Internal address signal a
. , al, -, an are respectively the substrate voltage generation circuits 20,
21. ~. It is supplied to internal circuits such as 2n. Each substrate voltage generation circuit 20, 21° to 2n receives an internal address signal a.
Inverter INV inputting O+alg~an
, an inverter INV2 connected in series with the inverter INV, and a voltage doubler generation circuit vv.

倍電圧発生回路VVは、ダイオード接続され、基板30
とアース間に直列に挿入されたトランジスタQ+、Q2
と、トランジスタQl、Q2の接続点とインバータIN
V2の出力端子とを接続するコンデンサCとからなって
いる。
The voltage doubler generating circuit VV is diode-connected, and the substrate 30
Transistors Q+ and Q2 inserted in series between
, the connection point of transistors Ql and Q2, and the inverter IN
It consists of a capacitor C connected to the output terminal of V2.

次に、本実施例の動作について説明する。Next, the operation of this embodiment will be explained.

基板電圧発生回路20,21.〜,2nは、内部アドレ
ス信号a。、al、〜、anをインバータINV+ 、
I NV2て波形整形し、倍電圧発生回路VVに入力さ
れる。倍電圧発生回路VVは内部信号ao 、a、、〜
、anがロウレベルからハイレベル、またはハイレベル
がらロウレベルにもどる変化で1回活性化される。そし
て、内部アドレス信号の2回の変化(ハイレベルからロ
ウレベルと、ロウレベルからハイレベル)で流れ込む基
板電流に見合うだけの能力をもたされている。本実施例
は、内部アドレスがハイレベルからロウレベルまたはロ
ウレベルからハイレベルの変化の方が大きな基板電流を
流す特性をもつ場合に基板電圧を安定化させるために特
に有効である。その場合インバータの段数を増減し、コ
ンデンサCに印加されるインバータの出力の極性を合わ
せる必要かある。
Substrate voltage generation circuits 20, 21. . . . , 2n are internal address signals a. ,al,~,an as inverter INV+,
The waveform is shaped by INV2 and input to the voltage doubler generation circuit VV. The voltage doubler generating circuit VV receives internal signals ao, a, .
, an is activated once when changing from low level to high level or from high level back to low level. It is provided with the ability to match the substrate current that flows due to two changes in the internal address signal (from high level to low level and from low level to high level). This embodiment is particularly effective for stabilizing the substrate voltage when the internal address has a characteristic that a larger substrate current flows when changing from a high level to a low level or from a low level to a high level. In that case, it is necessary to increase or decrease the number of inverter stages and match the polarity of the inverter output applied to the capacitor C.

第2図は本発明の第2の実施例に用いられる基板電圧発
生回路を示す回路図、第3図は第2図の回路の動作を示
す波形図である。
FIG. 2 is a circuit diagram showing a substrate voltage generation circuit used in a second embodiment of the present invention, and FIG. 3 is a waveform diagram showing the operation of the circuit of FIG. 2.

内部アドレス信号a。は遅延回路DLとインバータIN
Vにより反転、遅延させられ、排他的論理和回路EXが
遅延信号す。と内部アドレス信号anの排他的論理和を
とる。
Internal address signal a. is delay circuit DL and inverter IN
The signal is inverted and delayed by V, and the exclusive OR circuit EX outputs the delayed signal. and the internal address signal an.

出力C1は、内部アドレス信号anの変化のたびにワン
ショット信号波形を出力し、倍電圧発生回路2nを、内
部アドレス信号a。の変化のたびに活性化し、基板に流
れ込む電流を補うことができるため、より基板電圧を安
定化させることかできる利点がある。
The output C1 outputs a one-shot signal waveform every time the internal address signal an changes, and the voltage doubler generating circuit 2n receives the internal address signal a. It is activated every time there is a change in , and can compensate for the current flowing into the substrate, which has the advantage of further stabilizing the substrate voltage.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、外部アドレスに同期した
内部アドレス信号により活性化される基板電圧発生回路
を備えることで消費電流およびチップ面積を少なくする
とともに基vi雷電圧より安定化さる効果がある。
As explained above, the present invention has the effect of reducing current consumption and chip area and stabilizing the voltage compared to the base voltage by providing a substrate voltage generation circuit activated by an internal address signal synchronized with an external address. .

また、すべての内部アドレス信号により活性化される基
板電圧発生回路を備える必要はなく、外部アドレスの変
化による基板に流れ込む電流量が大きなアドレスに関し
てのみ本発明による基板電圧発生回路を備えることて十
分な効果を得ることができるのは明らかである。たとえ
ば、第5図で示したデータアンプ64の活性化信号a、
か変化したときの基板に流れ込む電流か特に大きいので
あれば、活性化信号a1により活性化される基板電圧発
生回路を備えるたけで十分な効果が得られる。
Further, it is not necessary to provide a substrate voltage generation circuit that is activated by all internal address signals, and it is sufficient to provide the substrate voltage generation circuit according to the present invention only for addresses where a large amount of current flows into the substrate due to a change in the external address. It is clear that the effects can be obtained. For example, the activation signal a of the data amplifier 64 shown in FIG.
If the current flowing into the substrate when the voltage changes is particularly large, a sufficient effect can be obtained by simply providing a substrate voltage generation circuit activated by the activation signal a1.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の半導体記憶装置の第1の実施例を示す
回路図、第2図は本発明の第2の実施例に用いられる基
板電圧発生回路を示す回路図、第3図は第2図の回路の
動作を示す波形図、第4図は従来の半導体記憶装置に用
いられる基板電圧発生回路を示すブロック図、第5図は
半導体記憶装置の従来例であるダイナミックランダムア
クセスメモリを示す回路図、第6図は第4図の従来例に
おいて基板に流れ込む電流量を示す図である。 10・・・内部アドレス発生回路、 20.21.〜2n・・・基板電圧発生回路、30・・
・基板、 INV+ 、INV2 、INV・・・インバ ’;’
、C・・・コンデンサ、 Ql、Q2  ・・・トランジスタ、 DL・・・遅延回路、 EX・・・排他的論理和回路。
FIG. 1 is a circuit diagram showing a first embodiment of a semiconductor memory device of the present invention, FIG. 2 is a circuit diagram showing a substrate voltage generation circuit used in a second embodiment of the present invention, and FIG. Figure 2 is a waveform diagram showing the operation of the circuit, Figure 4 is a block diagram showing a substrate voltage generation circuit used in a conventional semiconductor memory device, and Figure 5 is a dynamic random access memory that is a conventional example of a semiconductor memory device. The circuit diagram, FIG. 6, is a diagram showing the amount of current flowing into the substrate in the conventional example of FIG. 4. 10... Internal address generation circuit, 20.21. ~2n...Substrate voltage generation circuit, 30...
・Board, INV+, INV2, INV... Inva ';'
, C... Capacitor, Ql, Q2... Transistor, DL... Delay circuit, EX... Exclusive OR circuit.

Claims (1)

【特許請求の範囲】 1、基板電位発生回路を内蔵する半導体記憶装置におい
て、 該基板電位発生回路を外部アドレス入力信号の変化に従
って制御する制御手段を有することを特徴とする半導体
記憶装置。
[Scope of Claims] 1. A semiconductor memory device incorporating a substrate potential generation circuit, characterized by comprising: control means for controlling the substrate potential generation circuit according to changes in an external address input signal.
JP2084012A 1990-03-30 1990-03-30 Semiconductor storage device Pending JPH03283181A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2084012A JPH03283181A (en) 1990-03-30 1990-03-30 Semiconductor storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2084012A JPH03283181A (en) 1990-03-30 1990-03-30 Semiconductor storage device

Publications (1)

Publication Number Publication Date
JPH03283181A true JPH03283181A (en) 1991-12-13

Family

ID=13818674

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2084012A Pending JPH03283181A (en) 1990-03-30 1990-03-30 Semiconductor storage device

Country Status (1)

Country Link
JP (1) JPH03283181A (en)

Similar Documents

Publication Publication Date Title
KR0140351B1 (en) Dynamic memory device having a plurality of internal power sources
US5696729A (en) Power reducing circuit for synchronous semiconductor device
JP3247647B2 (en) Semiconductor integrated circuit device
US5455803A (en) Semiconductor device which operates at a frequency controlled by an external clock signal
US6421281B2 (en) Semiconductor memory device with reduced power consumption and stable operation in data holding state
JPH0660648A (en) Pulse signal generating circuit and semiconductor storage device
US4688196A (en) Semiconductor dynamic memory device with less power consumption in internal refresh mode
US5740118A (en) Semiconductor memory device
JPH04344387A (en) Semiconductor memory device using refresh-request- signal generator for executing refresh operation in response to temperature of element
JPH0685564A (en) Amplifier circuit
KR20030047074A (en) Refresh control circuit and Refresh control method with no external refresh command at memory device
JP2000057772A (en) Semiconductor memory device
US5260901A (en) Output circuit of semiconductor memory device
KR100230372B1 (en) Internal voltage converter for semiconductor memory device
US5771198A (en) Source voltage generating circuit in semiconductor memory
KR960025776A (en) Semiconductor Memory Reduces Power Consumption with a Shared Sense Amplifier Sense Lamp
KR20000009108A (en) High voltage generator for semiconductor memory device reducing standby current
US5966045A (en) Semiconductor device having a first stage input unit to which a potential is supplied from external and internal power supplies
JPH03283181A (en) Semiconductor storage device
JPH11110968A (en) Semiconductor memory
KR100235967B1 (en) Semiconductor device of noise reduction type
KR940026964A (en) Semiconductor memory device
JP4031546B2 (en) Semiconductor device
US20020001218A1 (en) Semiconductor memory device enabling selective production of different semiconductor memory devices operating at different external power-supply voltages
KR200162272Y1 (en) Moving control circuit of memory cell