JPH03282605A - Follow-up control method between two servo systems - Google Patents

Follow-up control method between two servo systems

Info

Publication number
JPH03282605A
JPH03282605A JP8314190A JP8314190A JPH03282605A JP H03282605 A JPH03282605 A JP H03282605A JP 8314190 A JP8314190 A JP 8314190A JP 8314190 A JP8314190 A JP 8314190A JP H03282605 A JPH03282605 A JP H03282605A
Authority
JP
Japan
Prior art keywords
servo system
speed
signal
correction
servo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8314190A
Other languages
Japanese (ja)
Inventor
Junkichi Yamazaki
山崎 淳吉
Yasuhiko Kako
靖彦 加来
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP8314190A priority Critical patent/JPH03282605A/en
Publication of JPH03282605A publication Critical patent/JPH03282605A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Position Or Direction (AREA)

Abstract

PURPOSE:To attain the highly accurate synchronous control even in a transient state by applying a 3rd correction coefficient obtained from a follow-up deviation to the 1st and 2nd correction signals respectively. CONSTITUTION:A position command XS of a 2nd servo system obtained by sampling the position detection signal XS of a 1st servo system is applied by a correction coefficient K1 for acquisition of a 1st correction signal. Meanwhile a speed command (f) of the 1st servo system is applied by a correction coefficient K2 for acquisition of a 2nd correction signal. The follow-up deviation of the 2nd servo system set to the 1st servo system is inputted to a compensator H. A 3rd correction signal is obtained from the output of the compensator H. These 1st - 3rd correction signals are added together for correction of the speed deviation of the 2nd servo system. In such a constitution, the highly accurate synchronous control is attained even in a transient state.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、速度の閉回路制御系をマイナーループとして
持つ第1のサーボ系の位置検出信号をサンプリングして
デジタル演算処理をした信号を、速度の閉回路制御系を
マイナーループとして持つ第2のサーボ系の位置指令信
号とすることにより、第2のサーボ系の挙動を第1のサ
ーボ系の挙動に追従させる2つのサーボ系間の追従制御
方法に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention provides a signal obtained by sampling a position detection signal of a first servo system having a speed closed circuit control system as a minor loop and digitally processing the signal. Tracking between two servo systems that causes the behavior of the second servo system to follow the behavior of the first servo system by using the closed-circuit speed control system as a position command signal for the second servo system as a minor loop. Regarding control method.

〔従来の技術] 従来、この種の2つのサーボ系間の追従制御方法におい
て、応答特性の異なる2つの→ノーボ系の同期制御を可
能とする次の6通りの方法が特開昭63−268011
号に示されている。
[Prior Art] Conventionally, in this type of follow-up control method between two servo systems, the following six methods have been proposed in Japanese Patent Laid-Open No. 63-268011, which enable synchronized control of two →novo systems with different response characteristics.
No.

(1)第1のサーボ系の位置検出信号に応じた第1の補
正信号と、第1のサーボ系の速度の指令信号から得られ
た速度情報に応じた第2の補正信号を発生し、これら第
1、第2の補正信号で第2のサーボ系の速度制御系の速
度偏差を補正する。
(1) generating a first correction signal according to the position detection signal of the first servo system and a second correction signal according to the speed information obtained from the speed command signal of the first servo system; These first and second correction signals correct the speed deviation of the speed control system of the second servo system.

(2)第1のサーボ系の位置検出信号に応じた第1の補
正信号と、第1のサーボ系の位置の指令信号から得られ
た速度情報に応じた第2の補正信号を発生し、これら第
1、第2の補正信号で第2のサーボ系の速度制御系の速
度偏差を補正する。
(2) generating a first correction signal according to the position detection signal of the first servo system and a second correction signal according to the speed information obtained from the position command signal of the first servo system; These first and second correction signals correct the speed deviation of the speed control system of the second servo system.

(3)第1のサーボ系の位置検出信号に応じた第1の補
正信号と、第1のサーボ系の速度の指令信号と位置の指
令信号から得られた速度情報に応じた第2の補正信号を
発生し、これら第1、第2の補正信号で第2のサーボ系
の速度制御系の速度偏差を補正する。
(3) A first correction signal according to the position detection signal of the first servo system, and a second correction according to the speed information obtained from the speed command signal and position command signal of the first servo system. A signal is generated, and the speed deviation of the speed control system of the second servo system is corrected using these first and second correction signals.

(4)第1のサーボ系の位置検出信号から得られた速度
情報に応じた第1の補正信号と、第1のサーボ系の速度
の指令信号から得られた速度情報に応じた第2の補正信
号を発生し、これら第1、第2の補正信号で第2のサー
ボ系の速度制御系の速度偏差を補正する。
(4) A first correction signal according to the speed information obtained from the position detection signal of the first servo system, and a second correction signal according to the speed information obtained from the speed command signal of the first servo system. A correction signal is generated, and the speed deviation of the speed control system of the second servo system is corrected using these first and second correction signals.

(5)第1のサーボ系の位置検出信号から得られた速度
情報に応じた第1の補正信号と、第1のサーボ系の位置
の指令信号から得られた速度情報に応じた第?の補正信
号を発生し、これら第1、第2の補正信号で第1、第2
のサーボ系の速度偏差を補正する。
(5) A first correction signal corresponding to the speed information obtained from the position detection signal of the first servo system, and a first correction signal corresponding to the speed information obtained from the position command signal of the first servo system. The first and second correction signals are used to generate the first and second correction signals.
Correct the speed deviation of the servo system.

(6)第1のサーボ系の位置検出信号から得られた速度
情報に応じた第1の補正信号と、第1のサボ系の速度の
指令信号と位置の指令信号から得られた速度情報に応じ
た第2の補正信号を発生し、これら第1、第2の補正信
号で第2のサーボ系の速度制御系の速度偏差を補正する
(6) A first correction signal corresponding to the speed information obtained from the position detection signal of the first servo system and speed information obtained from the speed command signal and position command signal of the first servo system. A corresponding second correction signal is generated, and the speed deviation of the speed control system of the second servo system is corrected using these first and second correction signals.

以上の場合、これら2つの補正信号の影響力を示す、す
なわち位置検出信号、速度情報に乗じる補正係数は、2
つの勺−ボ系間が定常状態で完全な同期制御を行なうと
いう条件から求釣られてぃた。
In the above case, the correction coefficient indicating the influence of these two correction signals, that is, the correction coefficient by which the position detection signal and speed information are multiplied, is 2.
This was based on the condition that complete synchronous control be carried out between the two power systems in a steady state.

第6図は特開昭63−268011号の〔1)の方法を
示す制御系のブロック線図、第7図(a)、ら)は第6
図のシステムにランプ状の速度指令を与えたときのそれ
ぞれ過渡状態、定常状態における指令値とその応答波形
を示す図である。ここでは、速度指令を位置指令に換算
して示した。
Fig. 6 is a block diagram of the control system showing the method [1) of JP-A No. 63-268011, and Fig. 7 (a), et al.
FIG. 3 is a diagram showing command values and their response waveforms in a transient state and a steady state, respectively, when a ramp-like speed command is given to the system shown in the figure. Here, the speed command is converted into a position command.

第6図の上段のループが第1のサーボ系(応答の遅い系
)であり、下段のループが第2のサーボ系(応答の速い
系)である。K5、K2は位置ループの比例ゲイン、G
3、G2は伝達関数、f (t)は速度指令、 f(τ
) d(τ)は位置指令、Xs、Xzハ速度X、 、x
z ハ位i、kは定数、K、は応答に対する補正係数に
2は指令に対する補正係数、Dはサンプリング回路であ
る。
The loop in the upper row of FIG. 6 is the first servo system (a system with a slow response), and the loop in the lower row is a second servo system (a system with a fast response). K5 and K2 are the proportional gains of the position loop, G
3. G2 is the transfer function, f (t) is the speed command, f (τ
) d(τ) is the position command, Xs, Xz is the speed X, , x
z H position i, k are constants, K is a correction coefficient for the response, 2 is a correction coefficient for the command, and D is a sampling circuit.

第7図中、r@<If(τ)dτ)は第1のサーボ系の
位置指令、r2は第2のサーボ系の位置指令である。こ
の場合、速度指令に対し定常状態では同期制御が行われ
ているが(第7図ら))、過渡状態では約4.11. 
X 10−’、の偏差が発生しており厳密な同期が成り
立っていない(第7図(a))。
In FIG. 7, r@<If(τ)dτ) is a position command for the first servo system, and r2 is a position command for the second servo system. In this case, synchronous control is performed with respect to the speed command in the steady state (Fig. 7, etc.), but in the transient state, the speed command is approximately 4.11%.
A deviation of X 10-' occurs, and strict synchronization is not established (FIG. 7(a)).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述した従来の2つのサーボ間の追従制御方法は、定常
状態での同期制御を条件としているた緬過渡状態では速
度偏差が発生し、同期が成り立たなくなるという欠点が
ある。
The above-described conventional follow-up control method between two servos requires synchronous control in a steady state, but has the disadvantage that a speed deviation occurs in a transient state and synchronization is no longer established.

本発明の目的は、過渡状態においても精度の良い同期制
御を可能にする、2つのサーボ系間の同期制御方法を提
供することである。
An object of the present invention is to provide a synchronous control method between two servo systems that enables highly accurate synchronous control even in a transient state.

〔課題を解決するための手段〕[Means to solve the problem]

第1の発明は、速度の閉回路制御をマイナーループとし
て持つ第1のサーボ系の位置検出信号をサンプリングし
てデジタル演算処理をした信号を、速度の閉回路制御系
をマイナーループとして持つ第2のサーボ系の位置指令
信号とすることにより、第2のサーボ系の挙動を第1の
サーボ系の挙動に追従させ、その際第1のサーボ系の位
置検出信号に第1の補正係数を乗じて第1の補正信号を
発生し、第1のサーボ系の速度の指令信号から得られた
速度情報または第1のサーボ系の位置の指令値号から得
られた速度情報または第1のサーボ系の速度の指令信号
と位置の指令信号から得られた速度情報に第2の補正係
数を乗じて第2の補正信号を発生し、これら第1、第2
の補正信号で第2のサーボ系の速度制御系の速度偏差を
補正する、2つのサーボ系間の追従制御方法において、
2つのサーボ系間の追従偏差を補償器に入力し、この補
償器の出力を第2のサーボ系の速度偏差を補正する第3
の補正信号とすることによって、過渡状態での第2のサ
ーボ系の追従偏差を小さくするものである。
The first invention provides a signal obtained by sampling and digitally processing the position detection signal of a first servo system, which has a closed-circuit control system for speed as a minor loop, and a second system, which has a closed-circuit control system for speed as a minor loop. By setting the position command signal of the servo system to , the behavior of the second servo system is made to follow the behavior of the first servo system, and at this time, the position detection signal of the first servo system is multiplied by the first correction coefficient. generates a first correction signal, and the speed information obtained from the speed command signal of the first servo system or the speed information obtained from the position command value of the first servo system or the first servo system The speed information obtained from the speed command signal and position command signal is multiplied by a second correction coefficient to generate a second correction signal, and these first and second
In a follow-up control method between two servo systems, in which a speed deviation of a speed control system of a second servo system is corrected using a correction signal of
The following deviation between the two servo systems is input to a compensator, and the output of this compensator is used as a third servo system to correct the speed deviation of the second servo system.
This correction signal is used to reduce the following deviation of the second servo system in a transient state.

第2の発明は、速度の閉回路制御系をマイナーループと
して持つ第1のサーボ系の位置検出信号をサンプリング
してデジタル演算処理をした信号を、速度の閉回路制御
系をマイナーループとして持つ第2のサーボ系の位置指
令信号とすることにより、第2のサーボ系の挙動を第1
のサーボ系の挙動に追従させ、その際第1のサーボ系の
位置検出信号から得られた速度情報に第1の補正係数を
乗じて第1の補正信号を発生し、第1のサーボ系の速度
の指令信号から得られた速度情報または第1のサーボ系
の位置の指令信号から得られた速度情報または第1のサ
ーボ系の速度の指令信号と位置の指令信号から得られた
速度情報に第2の補正係数を乗じて第2の補正信号を発
生し、これら第1、第2の補正信号で第2のサーボ系の
速度制御系の速度偏差を補正する、2つのサーボ系の追
従制御方法において、2つのサーボ系間の追従偏差を補
正器に入力し、この補償器の出力を第2のサーボ系の速
度偏差を補正する第3の補正信号とすることによって過
渡状態での第2のサーボ系の追従偏差を小さ(するもの
である。
The second invention is a first servo system which has a speed closed circuit control system as a minor loop, and a signal obtained by sampling and digitally processing the position detection signal of the first servo system, which has a speed closed circuit control system as a minor loop. By using the position command signal for the second servo system, the behavior of the second servo system can be changed to the first position command signal.
A first correction signal is generated by multiplying the speed information obtained from the position detection signal of the first servo system by a first correction coefficient. Speed information obtained from a speed command signal, speed information obtained from a position command signal of the first servo system, or speed information obtained from a speed command signal and a position command signal of the first servo system. Follow-up control of two servo systems that generates a second correction signal by multiplying by a second correction coefficient, and corrects the speed deviation of the speed control system of the second servo system using these first and second correction signals. In the method, the following deviation between the two servo systems is input to a compensator, and the output of the compensator is used as a third correction signal for correcting the speed deviation of the second servo system. This is to reduce the following deviation of the servo system.

〔作用〕[Effect]

上記手段により、指令パターンの変化による過渡状態に
おいて、第1のサーボ系に対する第2のサーボ系の追従
偏差を補償器に人力し、この補償器の出力を第2のサー
ボ系の指令値に加えることによって過渡状態での第2の
サーボ系の指令値が増大し追従偏差を急速に0へ追い込
むことができる。
By the above means, in a transient state due to a change in the command pattern, the following deviation of the second servo system with respect to the first servo system is manually inputted to the compensator, and the output of this compensator is added to the command value of the second servo system. As a result, the command value of the second servo system increases in a transient state, and the follow-up deviation can be rapidly driven to zero.

〔実施例〕〔Example〕

次に本発明の実施例について図面を参照して説明する。 Next, embodiments of the present invention will be described with reference to the drawings.

第1図は本発明の第1の実施例を示す、2つのサーボ系
からなる制御系のブロック線図、第2図(a)、(b)
は第1の制御系にランプ状の速度指令を与えたときのそ
れぞれ過渡状態、定常状態における指令値とその応答波
形を示す図である。第6図と同符号は同じものを示す。
FIG. 1 is a block diagram of a control system consisting of two servo systems, showing the first embodiment of the present invention, and FIGS. 2(a) and (b)
1 is a diagram showing command values and their response waveforms in a transient state and a steady state, respectively, when a ramp-shaped speed command is given to the first control system. The same symbols as in FIG. 6 indicate the same things.

本実施例は特開昭63−268011号の(1)の方法
に対応し、第1のサーボ系の位置検出信号X、をサンプ
リングして得られた第2のサーボ系の位置指令X、に補
正係数に1を乗じて第1の補正信号を得、また第1のサ
ーボ系の速度指令f(λ)に補正係数に2を乗じて第2
の補正記号を得、第1のサーボ系に対する第2のサーボ
系の追従偏差を補償器Hに入力し、この補償器の出力か
ら第3の補正信号を得、これら第1、第2、第3の補正
信号を加算して第2のサーボ系の速度制御系の速度偏差
を補正するものである。
This embodiment corresponds to the method (1) of JP-A No. 63-268011, and uses the position command X of the second servo system obtained by sampling the position detection signal X of the first servo system. A first correction signal is obtained by multiplying the correction coefficient by 1, and a second correction signal is obtained by multiplying the correction coefficient by 2 for the speed command f(λ) of the first servo system.
, the following deviation of the second servo system with respect to the first servo system is input to the compensator H, a third correction signal is obtained from the output of this compensator, and these first, second, and The speed deviation of the speed control system of the second servo system is corrected by adding the three correction signals.

ここでに1、K2は従来(第6図)の補正係数、補償器
はK。(1+1/T is+Tds)で示されるPID
コントローラとしその定数はKc=100 Ti−20
Td=10としている。第2図〔1)よりわかるように
Kc、Ti、Tdを適当に選ぶことによって第2のサー
ボ系は、第1のサーボ系に過渡状態でも良好な追従を行
っていることがわかる。
Here, 1, K2 is the conventional correction coefficient (Fig. 6), and the compensator is K. PID expressed as (1+1/T is+Tds)
The controller and its constant are Kc=100 Ti-20
Td=10. As can be seen from FIG. 2 [1], by appropriately selecting Kc, Ti, and Td, the second servo system can follow the first servo system well even in a transient state.

特開昭63−268011号の〔2)、(4)、〔5)
の方法に対応する実施例を第3図、第4図、第5図にそ
れぞれ示す、これらの実施例でも同じ結果を得ることが
できる。なお特開昭63−268011号の(3〕、(
6)の方法に対する実施例は第2の補正信号を第1のサ
ーボ系の速度指令f(λ)と位置指令Sf(τ)drか
ら得るものであり、図示は省略する。
[2), (4), [5] of JP-A-63-268011
Examples corresponding to the method described above are shown in FIGS. 3, 4, and 5, respectively, and the same results can be obtained with these examples. In addition, (3) of JP-A-63-268011, (
In the embodiment of method 6), the second correction signal is obtained from the speed command f(λ) and position command Sf(τ)dr of the first servo system, and illustration thereof is omitted.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明は、第1、第2の補正信号
に追従偏差より作られる第3の補正係数を加えることに
よって過渡状態においても精度のよい同期制御が可能と
なる効果がある。
As described above, the present invention has the effect of enabling highly accurate synchronous control even in a transient state by adding the third correction coefficient created from the tracking deviation to the first and second correction signals.

【図面の簡単な説明】 第1図は本発明の第1の実施例を示す2つのサボ系から
なる制御系のブロック図、第2図は第1図の制御系にラ
ンプ状の速度指令を与えたときのそれぞれ過渡状態と定
常状態における指令値とその応答波形を示す図、第3図
、第4図、第5図は本発明の他の実施例の制御系のブロ
ック線図、第6図は従来例を示す制御系のブロック線図
、第7図は第6図の制御系にランプ状の速度指令を与え
たときのそれぞれ過渡応答定常状態における指令値とそ
の応答波形を示す図である。
[Brief Description of the Drawings] Fig. 1 is a block diagram of a control system consisting of two sabot systems showing a first embodiment of the present invention, and Fig. 2 shows a ramp-shaped speed command for the control system of Fig. 1. FIGS. 3, 4, and 5 are block diagrams of control systems according to other embodiments of the present invention. The figure is a block diagram of a control system showing a conventional example, and Figure 7 is a diagram showing the command value and its response waveform in a transient response steady state when a ramp-shaped speed command is given to the control system in Figure 6. be.

Claims (3)

【特許請求の範囲】[Claims] (1)速度の閉回路制御系をマイナーループとしてもつ
第1のサーボ系の位置検出信号をサンプリングしてデジ
タル演算処理をした信号を、速度の閉回路制御系をマイ
ナーループとして持つ第2のサーボ系の位置指令信号と
することにより、第2のサーボ系の挙動を第1のサーボ
系の挙動に追従させ、その際第1のサーボ系の位置検出
信号に第1の補正係数を乗じて第1の補正信号を発生し
、第1のサーボ系の速度の指令信号から得られた速度情
報または第1のサーボ系の位置の指令信号から得られた
速度情報または第1のサーボ系の速度の指令信号と位置
の指令信号から得られた速度情報に第2の補正係数を乗
じて第2の補正信号を発生し、これら第1、第2の補正
信号で第2のサーボ系の速度制御系の速度偏差を補正す
る、2つのサーボ系間の追従制御方法において、 2つのサーボ間の追従偏差を補償器に入力し、この補償
器の出力を第2のサーボ系の速度制御系の速度偏差を補
正する第3の補正信号とすることを特徴とする2つのサ
ーボ系間の追従制御方法。
(1) A signal obtained by sampling the position detection signal of the first servo system, which has a speed closed-circuit control system as a minor loop, and digitally processing the signal is sent to a second servo system, which has a speed closed-circuit control system as a minor loop. By using the position command signal of the system, the behavior of the second servo system is made to follow the behavior of the first servo system, and at this time, the position detection signal of the first servo system is multiplied by the first correction coefficient to obtain the first servo system. 1 correction signal, and generates speed information obtained from the speed command signal of the first servo system, speed information obtained from the position command signal of the first servo system, or speed information of the first servo system. A second correction signal is generated by multiplying the speed information obtained from the command signal and the position command signal by a second correction coefficient, and these first and second correction signals are used to control the speed control system of the second servo system. In a follow-up control method between two servo systems that corrects the speed deviation of the second servo system, the follow-up deviation between the two servos is input to a compensator, and the output of this compensator is used to correct the speed deviation of the speed control system of the second servo system. A follow-up control method between two servo systems, characterized in that a third correction signal for correcting is used as a third correction signal.
(2)速度の閉回路制御系をマイナーループとして持つ
第1のサーボ系の位置検出信号をサンプリングしてデジ
タル演算処理をした信号を、速度の閉回路制御系をマイ
ナーループとして持つ第2のサーボ系の位置指令信号と
することにより、第2のサーボ系の挙動を第1のサーボ
系の挙動に追従させ、その際第1のサーボ系の位置検出
信号から得られた速度情報に第1の補正係数を乗じて第
1の補正信号を発生し、第1のサーボ系の速度の指令信
号から得られた速度情報または第1のサーボ系の位置の
指令信号から得られた速度情報または第1のサーボ系の
速度の指令信号と位置の指令信号から得られた速度情報
に第2の補正係数を乗じて第2の補正信号を発生し、こ
れら第1、第2の補正信号で第2のサーボ系の速度制御
系の速度偏差を補正する、2つのサーボ系間の追従制御
方法において、2つのサーボ間の追従偏差を補償器に入
力し、 この補償器の出力を第2のサーボ系の速度偏差を補正す
る第3の補正信号とすることを特徴とする2つのサーボ
系間の追従制御方法。
(2) The position detection signal of the first servo system, which has a closed-circuit speed control system as a minor loop, is sampled and digitally processed. By using the system position command signal, the behavior of the second servo system is made to follow the behavior of the first servo system, and at this time, the speed information obtained from the position detection signal of the first servo system is combined with the first servo system. A first correction signal is generated by multiplying by a correction coefficient, and the speed information obtained from the command signal for the speed of the first servo system or the speed information obtained from the command signal for the position of the first servo system or the first A second correction signal is generated by multiplying the speed information obtained from the speed command signal and position command signal of the servo system by a second correction coefficient, and these first and second correction signals are used to generate a second correction signal. In a follow-up control method between two servo systems that corrects the speed deviation of the speed control system of the servo system, the follow-up deviation between the two servos is input to a compensator, and the output of this compensator is used as the output of the second servo system. A follow-up control method between two servo systems, characterized in that a third correction signal is used to correct a speed deviation.
(3)前記補償器をPIDコントローラで構成すること
を特徴とする請求項1または2記載の2つのサーボ系間
の追従制御方法。
(3) The follow-up control method between two servo systems according to claim 1 or 2, characterized in that the compensator is constituted by a PID controller.
JP8314190A 1990-03-29 1990-03-29 Follow-up control method between two servo systems Pending JPH03282605A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8314190A JPH03282605A (en) 1990-03-29 1990-03-29 Follow-up control method between two servo systems

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8314190A JPH03282605A (en) 1990-03-29 1990-03-29 Follow-up control method between two servo systems

Publications (1)

Publication Number Publication Date
JPH03282605A true JPH03282605A (en) 1991-12-12

Family

ID=13793933

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8314190A Pending JPH03282605A (en) 1990-03-29 1990-03-29 Follow-up control method between two servo systems

Country Status (1)

Country Link
JP (1) JPH03282605A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5900707A (en) * 1996-06-19 1999-05-04 Canon Kabushiki Kaisha Stage-drive control apparatus and method, and scan-projection type exposure apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5900707A (en) * 1996-06-19 1999-05-04 Canon Kabushiki Kaisha Stage-drive control apparatus and method, and scan-projection type exposure apparatus

Similar Documents

Publication Publication Date Title
KR900003121B1 (en) Complete follow-up servo system
JPH03207267A (en) Control method and device
JPH03282605A (en) Follow-up control method between two servo systems
KR960007510B1 (en) Tracking control method between two servo systems
JPS63262703A (en) Versatility time difference comparing and compensating method for control system
JPS6156880A (en) Line tracking control system
JPS58169212A (en) Position controller of servomotor
JPH03121507A (en) Tracking control method between two servo systems
CN108736785B (en) Servo motor control method and system based on fractional order iterative learning
ATE68296T1 (en) DIGITAL PHASE ROTATION OF A SIGNAL.
JPS62217304A (en) Automatic controller
JPH0285902A (en) Feedforward controller
Sira-Ramirez On the Generalized PI control of some nonlinear mechanical systems
JPH0776890B2 (en) Tracking control method between two servo systems
JP3435828B2 (en) Automatic lead angle determination method for phase controlled servo system
JPS5652408A (en) Automatic position control unit
JPH03108010A (en) Position controller
JPS61190602A (en) Regulator
SU714358A1 (en) Machine-tool programme-control follow-up system
JPH06276774A (en) Positioning control method for motor
JP2629758B2 (en) Trajectory correction method
SU1215084A2 (en) Control system
JPS62245401A (en) Learning control system
CN112332731A (en) Self-tuning motion control system and method
JPH05158545A (en) Servo-device using encoder