JPH0328259B2 - - Google Patents
Info
- Publication number
- JPH0328259B2 JPH0328259B2 JP12685883A JP12685883A JPH0328259B2 JP H0328259 B2 JPH0328259 B2 JP H0328259B2 JP 12685883 A JP12685883 A JP 12685883A JP 12685883 A JP12685883 A JP 12685883A JP H0328259 B2 JPH0328259 B2 JP H0328259B2
- Authority
- JP
- Japan
- Prior art keywords
- welding
- electric resistance
- welded
- arc welding
- arc
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000003466 welding Methods 0.000 claims description 146
- 238000000034 method Methods 0.000 claims description 33
- 229910000831 Steel Inorganic materials 0.000 claims description 31
- 239000010959 steel Substances 0.000 claims description 31
- 238000004519 manufacturing process Methods 0.000 claims description 20
- 239000002131 composite material Substances 0.000 claims description 11
- 230000035515 penetration Effects 0.000 claims description 5
- 239000011324 bead Substances 0.000 description 16
- 238000010586 diagram Methods 0.000 description 8
- 230000000694 effects Effects 0.000 description 7
- 239000002184 metal Substances 0.000 description 7
- 238000007796 conventional method Methods 0.000 description 5
- 239000012467 final product Substances 0.000 description 4
- 238000007493 shaping process Methods 0.000 description 4
- 238000009826 distribution Methods 0.000 description 3
- 238000003825 pressing Methods 0.000 description 3
- 230000007547 defect Effects 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000002788 crimping Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 238000009863 impact test Methods 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 238000003303 reheating Methods 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 239000002893 slag Substances 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K9/00—Arc welding or cutting
- B23K9/02—Seam welding; Backing means; Inserts
- B23K9/032—Seam welding; Backing means; Inserts for three-dimensional seams
- B23K9/0325—Seam welding; Backing means; Inserts for three-dimensional seams helicoidal seams
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Mechanical Engineering (AREA)
- Butt Welding And Welding Of Specific Article (AREA)
Description
【発明の詳細な説明】
本発明は熱延コイルまたは帯状厚板の素材をら
せん状に巻き溶接してつくるスパイラル鋼管の製
造において、高品質、高能率な鋼管を製造する極
めて有効な溶接法に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an extremely effective welding method for producing high-quality, highly efficient steel pipes in the production of spiral steel pipes made by spirally winding and welding hot-rolled coils or strip-shaped thick plate materials. .
従来スパイラル鋼管の溶接法は潜弧溶接法によ
る内外面溶接が主流であり、一部でCO2アーク溶
接による仮付後別工程で潜弧溶接を行なう方法、
あるいは電気抵抗溶接を行なう方法がある。スパ
イラル鋼管の生産性を向上させることは、製管能
率すなわち溶接速度を向上させることであり、従
来からの潜弧溶接では溶接電極の多電極化、高速
溶接用フラツクスの開発が行なわれてきたが、飛
躍的な向上は期待できないのが現状である。 Traditionally, the mainstream method for welding spiral steel pipes is to weld the inner and outer surfaces using submerged arc welding, and in some cases submerged arc welding is performed in a separate process after tack welding using CO 2 arc welding.
Alternatively, there is a method of performing electric resistance welding. Improving the productivity of spiral steel pipes means improving pipe manufacturing efficiency, or welding speed, and in conventional submerged arc welding, efforts have been made to use multiple welding electrodes and develop fluxes for high-speed welding. Currently, we cannot expect a dramatic improvement.
電気抵抗溶接法は潜弧溶接法に比べて高速溶接
が可能であるが、スパイラル鋼管に適用されてい
る例は極めて少なく、板厚6mm以下の薄板かつ小
径で実施されているのみである。一方、スパイラ
ル鋼管の比較的厚板を対称とした電気抵抗溶接法
としては、特公昭38−17373号、特開昭52−72353
号がある。特に後者は電気抵抗溶接部に均一な圧
力を連続的にかけるためにストレートシーム鋼管
とは異なる圧着プロセスとして、ルートギヤツプ
をマイナスの状態で導き(第1図a参照)、高周
波加熱によつて半溶融ないし溶融状態となつた鋼
板の相対面部を板厚方向に押圧し、自動的に圧接
する考え方が示されているが、実施された例はな
い。 Although electric resistance welding allows for faster welding than submerged arc welding, it has rarely been applied to spiral steel pipes, and has only been applied to thin plates with a thickness of 6 mm or less and small diameters. On the other hand, as an electric resistance welding method for relatively thick plates of spiral steel pipes, there are
There is a number. In particular, the latter uses a crimping process that is different from straight seam steel pipes in order to continuously apply uniform pressure to the electric resistance welded part.The root gap is guided in a negative state (see Figure 1a), and semi-molten by high-frequency heating. Although the concept of automatically pressing the opposing surfaces of molten steel plates in the thickness direction and welding them together has been proposed, there is no example of this being implemented.
その主な理由は、マイナスギヤツプでは押圧す
る際のスクイズ力が充分得られ難いため、特に厚
肉側では継手部で溶融メタルが十分にスクイズア
ウトされず、板厚に対して完全な溶接断面積
(100%板厚以上ののど厚)が得られ難く、最終製
品となり難いためである。 The main reason for this is that with a minus gap, it is difficult to obtain sufficient squeezing force when pressing, so the molten metal is not squeezed out sufficiently at the joint, especially on the thick side, and the complete weld cross-sectional area ( This is because it is difficult to obtain a throat thickness of 100% or more, making it difficult to use as a final product.
そのため電気抵抗溶接部は仮付としてのみ有効
で、同一工程内または他工程で従来通りのアーク
溶接を行なうことが必要となるため、製管能率と
しての向上は期待できなかつた。 Therefore, electric resistance welding is only effective for temporary attachment, and conventional arc welding must be performed within the same process or in another process, so no improvement in pipe manufacturing efficiency could be expected.
本発明は前述したスパイラル鋼管の製造に関す
る問題点を解消し、超高能率かつ高品質にスパイ
ラル鋼管の製造を可能とするものであり、帯状鋼
板の両側縁を電気抵抗加熱してあらかじめ形成さ
れた突起部をマイナスギヤツプで押圧して自動的
に圧接し、後に内面、外面のアーク溶接を行なう
方法において電気抵抗溶接部ののど厚を大きくと
り、本ビード化して十分に融合しきれない内外表
面部のみを整形した後で、アーク溶接による化粧
盛溶接を行なうことによつてアーク溶接の溶着
量、溶込み量を軽減できること、内面アーク溶接
点がシーム突合せ部で行なわれないため、オフセ
ンター(パイプ中心からの偏心方向の溶接位置)
を有利な位置に自由に選探できること、さらに電
気抵抗溶接による加熱が後続のアーク溶接に対す
る予熱の役割りを果たすことにより、電気抵抗溶
接の高速性とアーク溶接による化粧盛り溶接を組
合せて従来のアーク溶接の2倍以上の速度で造管
できる超高速かつ高品質の複合溶接鋼管の製造が
可能となる。さらに、要求される強度、靭性等の
品質によつて、電気抵抗溶接部とアーク溶接部の
板厚に占める割合いを変えて複合度を変えること
ができる。また板厚に対して100%の電気抵抗溶
接部ののど厚が得られる場合でも、電気抵抗溶接
部の曲げ性が劣る等の欠点をアーク溶接によつて
補うこと、その必要がない場合には電気抵抗溶接
後、内外面の溶接部を整形するだけで、最終製品
にすることを特徴としている。 The present invention solves the above-mentioned problems associated with manufacturing spiral steel pipes, and makes it possible to manufacture spiral steel pipes with ultra-high efficiency and high quality. In this method, the protrusions are pressed with a minus gap to automatically pressure-weld them, and then arc welding is performed on the inner and outer surfaces.The throat thickness of the electric resistance weld is made large, and only the inner and outer surfaces that are not fully fused are made into beads. By performing decorative welding by arc welding after shaping, the amount of welding and penetration of arc welding can be reduced. Also, since the internal arc welding point is not performed at the seam butt part, it is possible to reduce the amount of welding and penetration by arc welding. welding position in eccentric direction from )
By combining the high speed of electric resistance welding with decorative welding by arc welding, we can combine the high speed of electric resistance welding with the decorative welding of arc welding. This makes it possible to manufacture ultra-high-speed, high-quality composite welded steel pipes that are more than twice as fast as arc welding. Further, depending on the required qualities such as strength and toughness, the composite degree can be changed by changing the ratio of the electric resistance welded part and the arc welded part to the plate thickness. In addition, even if the throat thickness of the electric resistance welded part is 100% of the plate thickness, it is necessary to compensate for the disadvantages such as poor bendability of the electric resistance welded part by arc welding, and if this is not necessary, After electrical resistance welding, the final product can be made by simply shaping the welded parts on the inner and outer surfaces.
電気抵抗溶接後の内外面溶接部の整形方法は、
電気抵抗溶接で生じた高温状態の軟かい余盛りを
圧接兼用ロールで押し潰して整形するか、あるい
はバイト等で切削除去してもよい。ただし、余盛
りが欠陥のない一定の形状で形成されるならば、
強いて整形する必要はなく、そのままで次のアー
ク溶接が可能である。また電気抵抗溶接後、他工
程で継続して内外面溶接する場合は電気抵抗溶接
による余盛りは硬化しており、余盛りが欠陥のな
い一定形状のビードでない場合は切削除去してや
ることが好ましい。 The method for shaping the inner and outer welds after electric resistance welding is as follows:
The soft excess under high temperature generated by electric resistance welding may be crushed and shaped using a pressure welding roll, or may be cut and removed using a cutting tool or the like. However, if the excess is formed in a constant shape without defects,
There is no need to force the shape, and the next arc welding can be performed as is. Further, when welding the inner and outer surfaces in another process after electric resistance welding, the excess buildup from electric resistance welding is hardened, and if the excess buildup is not a defect-free bead of constant shape, it is preferable to cut and remove it.
すなわち、本発明は、スパイラル鋼管の押圧型
電気抵抗溶接では厚肉で完全なのど厚が得られ難
い等の欠点を克服し、薄肉側から厚肉側、小径か
ら大径まで、通常のスパイラル鋼管の全サイズに
ついて、電気抵抗溶接鋼管を最終製品とし得る技
術である。 In other words, the present invention overcomes the drawbacks such as difficulty in obtaining a perfect throat thickness with thick walls by press-type electric resistance welding of spiral steel pipes, and can be used to weld ordinary spiral steel pipes from thin to thick sides and from small diameters to large diameters. This technology enables the final product to be electrical resistance welded steel pipes of all sizes.
このような方法は、従来全く実用されてない漸
新なプロセスであり、特に電気抵抗溶接とアーク
溶接を同一工程で行なう場合には、1ミルで高能
率かつ高品質なスパイラル鋼管が製造できる画期
的な高生産性ミルとなる。 This method is a completely new process that has never been put into practical use, and especially when electric resistance welding and arc welding are performed in the same process, it is unlikely that high-efficiency and high-quality spiral steel pipes can be manufactured in 1 mil. It became a high-productivity mill for a long time.
本発明は、前記した従来のスパイラル鋼管の製
造に関する課題を解消し、極めて画期的な高品
質、高能率な溶接方法を提供したもので、帯鋼の
一方の側縁と他方の側縁が、ルートギヤツプをマ
イナスの状態で出合う位置において、電気抵抗溶
接機により両側突き合わせ部を連続的に電気抵抗
溶接し、連続または継続してアーク溶接法による
外面溶接と内面溶接を行ない、溶融圧接した溶接
部とアーク溶接部が複合的に形成されることを特
徴とし、さらに電気抵抗溶接により溶融圧接した
溶接部ののど厚を、板厚の50%〜100%と大きく
とることによつて、続いて行なう外面内面のアー
ク溶接を溶着量、溶込み量を軽減し、前記溶融圧
接した溶接部ののど厚が、一部または全部が残る
ようにして溶接することを特徴とした溶接方法で
ある。 The present invention solves the problems associated with the conventional manufacturing of spiral steel pipes and provides an extremely innovative, high-quality, highly efficient welding method. , At the position where the root gap meets in a negative state, the butt parts on both sides are continuously electrically resistance welded using an electric resistance welding machine, and the outer and inner surfaces are welded continuously or continuously using the arc welding method, and the welded parts are melted and pressure welded. It is characterized by the formation of a composite arc welded part, and the throat thickness of the welded part melted and pressure-welded by electric resistance welding is increased to 50% to 100% of the plate thickness. This welding method is characterized in that arc welding of the outer and inner surfaces is performed by reducing the amount of welding and the amount of penetration, so that part or all of the throat thickness of the melt-welded weld remains.
次に本発明方法を図に従つて詳細に説明する。 Next, the method of the present invention will be explained in detail with reference to the drawings.
第1図は従来のアーク溶接法について説明した
ものである。3にて突き合わされた側縁の内側か
ら潜弧溶接を行ない、半周後に4にて外面の潜弧
溶接を行ない、その結果として内外面潜弧溶接ビ
ードが十分にメタルタツチした継手を形成する。
潜弧溶接法における溶接位置は第1図bに示すよ
うに、3位置において内面溶接トーチをl1だけ偏
心させ、4位置においても外面溶接トーチ6をl2
だけ偏心させている。その理由はビード形状を良
く保ちより高速で溶接するのに、有利に溶鋼を凝
固させるためであるが、傾斜溶接の場合溶鋼が流
れ落ちないための量と、3位置でのl1の長さに限
界があるため、溶接速度の大きな向上は望めない
のが現状である。 FIG. 1 illustrates a conventional arc welding method. At 3, latent arc welding is performed from the inside of the butted side edges, and after half a turn, latent arc welding is performed at 4 on the outer surface, resulting in a joint in which the inner and outer surfaces are fully metal-touched by latent arc welding beads.
As shown in Figure 1b, the welding positions in the submerged arc welding method are as follows: In the 3rd position, the inner welding torch is eccentric by l 1 , and in the 4th position, the outer welding torch 6 is also eccentric by l 2 .
It's only eccentric. The reason for this is to solidify the molten steel advantageously while maintaining a good bead shape and welding at a higher speed, but in the case of inclined welding, the amount of molten steel that does not flow down and the length of l 1 at the 3 positions are required. Due to limitations, it is currently difficult to expect a significant increase in welding speed.
それに対するものとして第2図aは、本発明に
おける溶接プロセスを説明したものである。 In contrast, FIG. 2a illustrates the welding process according to the invention.
第2図cに示すようにあらかじめ突起部を形成
した帯状鋼板1をらせん状に巻き、一方の側縁と
他方の側縁がマイナスギヤツプで会合する直前7
で、高周波加熱により側縁を溶融状態又は半溶融
状態にし、8において上下から押圧ロールで加圧
し同時にスクイズアウトされた溶融金属を突起形
の押圧ロールにて整形した後、半周後に9にて外
面のアーク溶接を行ない、次に10において内面
のアーク溶接を行なう方法である。第2図aの
タイプは電気抵抗溶接部を仮付け溶接として用い
た場合で、アーク溶接にて従来通り外面溶着金属
と内面溶着金属が会合するようにして溶接を行な
う。この場合、従来溶接法と比べて品質は格段に
向上するが、ライン速度はほとんど向上しない。
タイプは7,8における電気抵抗溶接部ののど
厚Scを板厚の50%〜100%とできる限り大きくと
り、内外表面部に生じた不完全溶着部及び電気抵
抗溶接によつてスクイズアウトされた酸化物を多
く含んだビードを9において外面側から、10に
おいて内面側からアーク溶接して再溶融させて、
板厚中央部の電気抵抗溶接部を本ビードとして、
継手中に残したもので、タイプと比較してもア
ーク溶接の溶着量、溶け込み量は極めて少量で良
く、化粧盛りのみを役割とすることによつて、従
来の倍以上の速度の高速アーク溶接が可能とな
る。タイプは電気抵抗溶接のみで板厚の100%
ののど厚が得られた場合であり、マイナスギヤツ
プを大きくとることにより十分なスクイズをかけ
た後、内表面、外表面のスクイズアウトされたビ
ードを整形するだけで最終製品にするものであ
り、タイプよりもさらに大巾な高速溶接が可能
となる。 As shown in Fig. 2c, a strip steel plate 1 on which protrusions have been formed in advance is wound spirally, and immediately before one side edge and the other side edge meet with a negative gap 7
Then, the side edges are made into a molten or semi-molten state by high-frequency heating, and pressure is applied from above and below with pressure rolls at 8. At the same time, the squeezed out molten metal is shaped using protruding pressure rolls, and after half a turn, the outer surface is heated at 9. In this method, arc welding is performed on the inner surface in step 10, and then arc welding is performed on the inner surface in step 10. The type shown in FIG. 2a is a case where an electric resistance weld is used as tack welding, and welding is performed by arc welding in a conventional manner so that the outer surface weld metal and the inner surface weld metal meet. In this case, the quality is significantly improved compared to conventional welding methods, but the line speed is hardly improved.
For types 7 and 8, the throat thickness Sc of the electric resistance welded part is made as large as possible, 50% to 100% of the plate thickness, and incomplete welded parts that occur on the inner and outer surfaces are squeezed out by electric resistance welding. The bead containing a large amount of oxide is remelted by arc welding from the outer surface at 9 and from the inner surface at 10,
The electrical resistance weld at the center of the plate thickness is used as the main bead.
This remains in the joint, and compared to other types, the amount of welding and penetration required by arc welding is extremely small, and by serving only as a decorative layer, high-speed arc welding can be performed at more than twice the speed of conventional methods. becomes possible. The type is electric resistance welding only and 100% of the plate thickness.
This is the case when the throat thickness is obtained, and after applying sufficient squeezing by setting a large negative gap, the final product is made by simply shaping the squeezed out beads on the inner and outer surfaces. This makes it possible to weld a wider area at high speed.
次に本発明方法の実施例を示す。 Next, examples of the method of the present invention will be shown.
第2図bの写真において、、タイプで実際
に造管された時の溶接継手部の断面マクロ写真を
示している。は板厚12mm、溶接速度6.0m/
minで造管された場合であり、従来の造管溶接速
度の約2倍の速度である。また、上記スパイラル
鋼管の製造に用いられた電気抵抗溶接機を第3,
4図に示す。周波数は1KHz〜200KHzで使用でき
る。第3図は溶接機の側面図で、パイプ2及び鋼
板1の下面に設置された高周波発信器19からブ
スバー20、溶接ヘツド21を経てコンタクトチ
ツプ22によつてパイプ側、鋼板側に給電され、
溶接点7で通電させる。電気抵抗溶接ヘツド21
は、給電する位置、角度及びコンタクトチツプの
押し付け力が可変になつており、パイプ側鋼板側
は各々独立調整方式となつている。第4図は平面
図を示すもので、鋼板の側縁に沿つて電気抵抗溶
接装置が配置されており、かつ前処理フレーム2
3上に装置全体を乗せているため、いかなる成形
角度においても全てのサイズの造管に適用でき
る。さらに、板厚12mmで実際に造管した例を用い
て本発明の特徴を説明する。 The photograph in Fig. 2b shows a cross-sectional macro photograph of the welded joint when the pipe was actually manufactured using the type. The plate thickness is 12mm, welding speed is 6.0m/
This is the case when the pipe is manufactured at a speed of 100 min, which is approximately twice the conventional pipe manufacturing and welding speed. In addition, the electric resistance welding machine used to manufacture the above spiral steel pipe was installed at the third
Shown in Figure 4. The frequency can be used from 1KHz to 200KHz. FIG. 3 is a side view of the welding machine, in which power is supplied from a high frequency oscillator 19 installed on the lower surface of the pipe 2 and the steel plate 1 to the pipe side and the steel plate side via the bus bar 20, the welding head 21, and the contact chip 22.
Apply current at welding point 7. Electric resistance welding head 21
The position and angle of power supply and the pressing force of the contact chip are variable, and the steel plate side of the pipe side can be adjusted independently. FIG. 4 shows a plan view, in which electric resistance welding equipment is arranged along the side edge of the steel plate, and the pretreatment frame 2
Since the entire device is placed on the top of the 3rd floor, it can be applied to pipes of all sizes at any forming angle. Furthermore, the features of the present invention will be explained using an example in which a pipe was actually produced with a plate thickness of 12 mm.
第2図bのは既に説明したが、実際に造管さ
れた電気抵抗溶接とアーク溶接の複合溶接継手で
ある。この複合溶接継手中の電気抵抗溶接部分と
アーク溶接部分の比率をコントロールするため
に、第5図、第6図のようなデータを必要とす
る。 As already explained, FIG. 2b shows a composite welded joint of electric resistance welding and arc welding that was actually made into a pipe. In order to control the ratio of the electric resistance welded part and the arc welded part in this composite welded joint, data such as those shown in FIGS. 5 and 6 are required.
まず、電気抵抗溶接部ののど厚Scをコントロ
ールするためには、マイナスギヤツプ量λ(ラツ
プ代)とのど厚Scの関係を知る必要がある。第
6図によれば、ラツプさせる量を大きくとるほ
ど、のど厚も大きくなる関係を示しており、ラツ
プ量を選択することによつて狙いののど厚を決め
ることができる。さらに、第5図において溶接速
度に合わせた適正な入熱量を決定することができ
る。最も高速化できるのは、のど厚をできる限り
大きくとることによりアーク溶接により再溶融さ
せる部分を極めて小さくした場合である。第7図
と第8図は板厚に対するのど厚Scと開先深さG
の関係及び溶接速度との関係を示す図であり、実
際に造管した結果をもとに高速溶接が可能となる
理由が簡単に示してある。つまり、板厚に対して
電気抵抗溶接で得られるのど厚Scを大きくとる
ことにより、後で再溶融されるべき開先の深さG
は極めて小さくなり、それに伴つてアーク溶接は
化粧盛ビードとして大巾に高速化されることが示
されている。電気抵抗溶接とアーク溶接が同一工
程で行なわれる場合も、他工程で行なわれる場合
も、造管能率としてはアーク溶接の速度によつて
律速されているため、この化粧盛りによる高速化
の効果は著しく大きい。 First, in order to control the throat thickness Sc of an electric resistance weld, it is necessary to know the relationship between the negative gap amount λ (lap margin) and the throat thickness Sc. According to FIG. 6, the relationship is shown that the larger the amount of wrapping, the larger the throat thickness, and by selecting the amount of wrapping, the desired throat thickness can be determined. Furthermore, in FIG. 5, an appropriate amount of heat input can be determined in accordance with the welding speed. The highest speed can be achieved by making the throat thickness as large as possible to minimize the area to be remelted by arc welding. Figures 7 and 8 show throat thickness Sc and groove depth G relative to plate thickness.
FIG. 3 is a diagram showing the relationship between the above and the welding speed, and simply shows the reason why high-speed welding is possible based on the results of actual pipe manufacturing. In other words, by increasing the throat thickness Sc obtained by electric resistance welding relative to the plate thickness, the groove depth G to be remelted later can be increased.
It has been shown that the arc welding becomes extremely small, and that the speed of arc welding as a decorative bead is greatly increased accordingly. Whether electric resistance welding and arc welding are performed in the same process or in different processes, pipe manufacturing efficiency is determined by the speed of arc welding, so the speed-up effect of this decorative coating is significantly larger.
次に、電気抵抗溶接部とアーク溶接部の複合溶
接継手の品質効果について述べる。第1の効果と
して内外面アーク溶接に先立つて電気抵抗溶接さ
れるため、CO2仮付溶接を行つた場合と同様にブ
ローホール、スラグ巻込み等の内質欠陥が激減す
る。次の効果として継手性能調査結果を第9,1
0,11図に示す。一般的に溶接継手の性能評価
は溶接部の引張試験、衝撃試験、硬度で行なわれ
ている。第9図に複合継手中に残る電気抵抗を溶
接部の長さと継手強度(余盛削除)の関係を示
す。複号継手の継手強度は従来の両面一層アーク
溶接の継手強度と同等であり、複合度(アーク溶
接部の長さと電気抵抗溶接部の長さの比率)を変
えても、継手強度は変わらない。第10図に電気
抵抗溶接部の速度別の衝撃値が示してある。電気
抵抗溶接部の衝撃値は溶接速度に依存しており、
高速度の時ほど良い値を示す。電気抵抗溶接とア
ーク溶接を同一工程で行なう場合、溶接速度は
4.0m/min〜10m/minの間と考えられるが、電
気抵抗溶接に不利な低速側で造管する場合でも、
衝撃値は十分な値を示していることがわる。第1
1図では電気抵抗溶接のみを行なつた後の硬度分
布とさらにアーク溶接を行なつた後の電気抵抗溶
接部の硬度分布の比率を示している(ビツカース
硬度、荷重10Kg)。最高硬さはHv=220程度で良
好な値を示しており、さらにアーク溶接された後
は再熱効果により最高硬さはさらに低い値を示
す。 Next, we will discuss the quality effects of composite welded joints of electric resistance welds and arc welds. The first effect is that since electric resistance welding is performed prior to arc welding of the inner and outer surfaces, internal defects such as blowholes and slag entrainment are drastically reduced, similar to when CO 2 tack welding is performed. As the next effect, the results of the joint performance investigation were
Shown in Figures 0 and 11. Generally, performance evaluation of welded joints is performed by tensile test, impact test, and hardness of the welded part. Figure 9 shows the relationship between the electrical resistance remaining in the composite joint, the length of the welded part, and the joint strength (removal of excess metal). The joint strength of a compound joint is equivalent to the joint strength of conventional double-sided single-layer arc welding, and the joint strength does not change even if the composite degree (ratio of the length of the arc weld to the length of the electric resistance weld) is changed. . FIG. 10 shows the impact values of electric resistance welds at different speeds. The impact value of electric resistance welds depends on the welding speed,
The higher the speed, the better the value. When electric resistance welding and arc welding are performed in the same process, the welding speed is
It is thought to be between 4.0m/min and 10m/min, but even when making pipes at low speeds, which are disadvantageous for electric resistance welding,
It can be seen that the impact value shows a sufficient value. 1st
Figure 1 shows the ratio of the hardness distribution after electric resistance welding alone to the hardness distribution of the electric resistance weld after arc welding (Bitzkers hardness, load 10 kg). The maximum hardness is approximately Hv=220, which is a good value, and after arc welding, the maximum hardness shows an even lower value due to the reheating effect.
すなわち、電気抵抗溶接とアーク溶接の複合溶
接継手の品質は、従来のアーク溶接継手と比較し
て何ら劣るところは無く、優れた継手性能を有し
ていることがわかる。 That is, it can be seen that the quality of the composite welded joint of electric resistance welding and arc welding is not inferior in any way compared to the conventional arc welded joint, and has excellent joint performance.
以上のごとく、本発明はスパイラル鋼管の製造
に適用する溶接方法であり、電気抵抗溶接部を仮
付けでなく本ビード化し、内外面での化粧盛アー
ク溶接を行なうことにより、最終製品として従来
の方法より高品位であり、かつ造管能率が2倍以
上に向上させることが可能となる。また、目的に
応じて電気抵抗溶接部とアーク溶接部の比率を変
えた継手の製造が可能となり、最終的には電気抵
抗溶接のみで製品にすることが可能となり、著し
い効果を得ることができる。特に電気抵抗溶接と
アーク溶接を同一工程内で行なう方法は、従来の
方法に対して工程設備要員を増やすことなく高能
率かつ高品質にスパイラル鋼管の製造を可能にし
た事実において産業上の効果は著しく大きく、他
に例を見ない。 As described above, the present invention is a welding method applied to the manufacture of spiral steel pipes, in which the electric resistance weld is made into a regular bead instead of tack welding, and decorative arc welding is performed on the inner and outer surfaces. The quality is higher than that of the conventional method, and the efficiency of pipe production can be more than doubled. In addition, it becomes possible to manufacture joints with different ratios of electric resistance welding and arc welding according to the purpose, and ultimately it becomes possible to manufacture products using only electric resistance welding, which can yield significant effects. . In particular, the method of performing electric resistance welding and arc welding in the same process has no industrial effect in that it has made it possible to manufacture spiral steel pipes with high efficiency and quality without increasing the number of process equipment personnel compared to conventional methods. It is extremely large and unique.
第1図aはスパイラル鋼管の従来法による溶接
順序と各位置で形成される溶接ビードの断面図を
示す平面図、第1図bは従来法における内外面ア
ーク溶接の位置を示した図、第2図aは本発明に
よる溶接順序と各位置で形成される溶接ビードの
断面図、第2図bは実際に造管して得られた複合
溶接部の断面写真、第2図cはスパイラル鋼管の
電気抵抗圧接方法を示す図、第3図は本発明に係
る電気抵抗溶接機及び溶接位置の側面図、第4図
は本発明に係る電気抵抗溶接機及び溶接位置の平
面図、第5図はのど厚と入熱量の関係を示す図、
第6図はラツプ代とのど厚の関係を示す図、第7
図は板厚とのど厚、開先深さの関係を示す図、第
8図は板厚に対する溶接速度向上の例を示す図、
第9図はERW部の長さと継手強度の関係を示す
図、第10図は溶接速度と衝撃値の関係を示す
図、第11図はアーク溶接前後の硬度分布を示す
図である。
5……内面アーク溶接の電極、6……外面アー
ク溶接の電極、11……突き合せ部、12……ス
クイズアウトされたメタル、13……整形された
メタル、14……外面アーク溶接ビード、15…
…内面アーク溶接ビード、16……外面化粧盛ビ
ード、17……内面化粧盛ビード、18……電気
抵抗溶接による余盛ビード、23……前処理フレ
ーム。
Figure 1a is a plan view showing the welding order of spiral steel pipes according to the conventional method and a cross-sectional view of the weld bead formed at each position; Figure 1b is a diagram showing the positions of internal and external arc welding in the conventional method; Figure 2a is a cross-sectional view of the welding sequence and weld beads formed at each position according to the present invention, Figure 2b is a cross-sectional photograph of a composite welded part obtained by actual pipe manufacturing, and Figure 2c is a spiral steel pipe. FIG. 3 is a side view of the electric resistance welding machine and welding position according to the present invention, FIG. 4 is a plan view of the electric resistance welding machine and welding position according to the present invention, and FIG. 5 is a diagram showing the electric resistance welding method according to the present invention. Diagram showing the relationship between throat thickness and heat input,
Figure 6 is a diagram showing the relationship between lap width and throat thickness, Figure 7
The figure shows the relationship between plate thickness, throat thickness, and groove depth, and Figure 8 shows an example of welding speed improvement with respect to plate thickness.
FIG. 9 is a diagram showing the relationship between the length of the ERW part and joint strength, FIG. 10 is a diagram showing the relationship between welding speed and impact value, and FIG. 11 is a diagram showing the hardness distribution before and after arc welding. 5... Electrode for internal arc welding, 6... Electrode for external arc welding, 11... Butt portion, 12... Squeezed out metal, 13... Shaped metal, 14... External arc welding bead, 15...
...Inner surface arc welding bead, 16...Outer surface decorative bead, 17...Inner surface decorative bead, 18...Resistance welding bead by electric resistance welding, 23...Pretreatment frame.
Claims (1)
の側縁と他方の側縁がルートギヤツプをマイナス
の状態λにして出合う位置にて電気抵抗溶接法に
より両側突き合わせ部を連続的に電気抵抗溶接
し、連続又は継続してアーク溶接法による外面溶
接と内面溶接を行ない、溶融圧接した溶接部とア
ーク溶接部が複合的に形成されることを特徴とし
たスパイラル鋼管の製造における高品質、高能率
な溶接法。 2 電気抵抗溶接により溶融圧接した溶接部のの
ど厚を板厚の50%〜100%と大きくとることによ
つて、続いて行なう外面および内面のアーク溶接
の溶着量、溶込み量を軽減し、前記溶融圧接した
溶接部ののど厚の一部または全部が残るようにし
て溶接することを特徴とする特許請求の範囲第1
項記載の溶接法。[Claims] 1. In manufacturing spiral steel pipes, the butt portions on both sides are continuously welded by electric resistance welding at the position where one side edge and the other side edge of the steel strip meet with the root gap in a negative state λ. High quality in the manufacture of spiral steel pipes characterized by electric resistance welding and continuous or continuous arc welding on the outside and inside welds to form a composite of melt-welded welds and arc welds. , a highly efficient welding method. 2. By increasing the throat thickness of the welded part welded by electric resistance welding by 50% to 100% of the plate thickness, the amount of welding and penetration in the subsequent arc welding of the outer and inner surfaces is reduced, Claim 1, characterized in that welding is performed so that a part or all of the throat thickness of the welded part that has been molten and pressure-welded remains.
Welding method described in section.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12685883A JPS6021180A (en) | 1983-07-14 | 1983-07-14 | Welding method with high quality and high efficiency in production of spiral steel pipe |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12685883A JPS6021180A (en) | 1983-07-14 | 1983-07-14 | Welding method with high quality and high efficiency in production of spiral steel pipe |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6021180A JPS6021180A (en) | 1985-02-02 |
JPH0328259B2 true JPH0328259B2 (en) | 1991-04-18 |
Family
ID=14945580
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP12685883A Granted JPS6021180A (en) | 1983-07-14 | 1983-07-14 | Welding method with high quality and high efficiency in production of spiral steel pipe |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6021180A (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102922085B (en) * | 2012-11-21 | 2015-09-23 | 中国能源建设集团天津电力建设有限公司 | Manual electric arc welding prime coat is the application of arc extinguishing method in Q460 steel-pipe welding in a zigzag |
-
1983
- 1983-07-14 JP JP12685883A patent/JPS6021180A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS6021180A (en) | 1985-02-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2175169A1 (en) | Method for producing a steel pipe using a high density energy beam | |
JPH0592273A (en) | Method for seam welding together cut pieces of thin metal plate | |
JP3627603B2 (en) | Method for manufacturing a steel pipe having a flat height ratio of 0.1 or less | |
US3504427A (en) | Method of joining metal sheet and strip | |
JPH0328259B2 (en) | ||
JPS606273A (en) | Production of steel strip for continuous treatment | |
US4645893A (en) | Method for manufacturing spiral-welded steel pipe | |
JPS60184481A (en) | Joining method of thick walled steel material | |
JPH0639431A (en) | Manufacture of spiral steel tube | |
JPH0342994B2 (en) | ||
JPH02229671A (en) | Structure for connecting steel strips for manufacturing resistance welded steel tube | |
JPH0325275B2 (en) | ||
JPS6011594B2 (en) | Square steel pipe manufacturing equipment | |
JPH0248321B2 (en) | RENZOKUATSUENHOHO | |
JPS60213382A (en) | Continuous hot press-welding method of thick billets | |
JPH0370576B2 (en) | ||
JPS617079A (en) | Production of welded can body | |
JPS63265538A (en) | Manufacture of stator frame made of steel sheet for rotary electric machine | |
JPS59137106A (en) | Continuous hot rolling method | |
JPH0280180A (en) | Manufacture of resistance welded steel tube excellent in workability | |
JPS5933083A (en) | Welding method of electric welded steel pipe | |
JPS6152994A (en) | Continuous hot rolling | |
JPS606278A (en) | Production of spiral steel pipe | |
JPS594991A (en) | Production of spiral steel pipe | |
JPS6125462B2 (en) |