JPH03282514A - Pockels cell driving circuit - Google Patents

Pockels cell driving circuit

Info

Publication number
JPH03282514A
JPH03282514A JP8403490A JP8403490A JPH03282514A JP H03282514 A JPH03282514 A JP H03282514A JP 8403490 A JP8403490 A JP 8403490A JP 8403490 A JP8403490 A JP 8403490A JP H03282514 A JPH03282514 A JP H03282514A
Authority
JP
Japan
Prior art keywords
pockels cell
capacitor
voltage
cell
switching element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8403490A
Other languages
Japanese (ja)
Inventor
Yoshikazu Suzuki
良和 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP8403490A priority Critical patent/JPH03282514A/en
Publication of JPH03282514A publication Critical patent/JPH03282514A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/03Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect
    • G02F1/0327Operation of the cell; Circuit arrangements

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)

Abstract

PURPOSE:To reduce the deterioration of a Pockels cell by providing a passive element between the connection part between the Pockels cell and a capacitor and the ground so as to prevent a potential difference from being generated across the Pockels cell in the state wherein a switching element is open. CONSTITUTION:When the switching element 13 is open, a capacitor 14 is charged with the output voltage of a high voltage power source 11 through a charging resistance 12. At this time, the voltage applied across the Pockels cell 15 is 0V because it is small enough to ignore the inductance of an inductor 16 provided in parallel, so that no potential difference is generated. Then when the element 13 is closed, a current corresponding to charges accumulated in the capacitor 14 flows to the ground through the element 13, so the terminal voltage of the capacitor 14 on the side of the cell 15 becomes nearly equal to the output voltage of the power source 11 and is only inverted in polarity. Further, the terminal polarity of the cell 15 on the side of the capacitor 14 is the polarity obtained further inverting the polarity of the terminal voltage of the capacitor 14 and its level is determined according to the electrostatic capacity of the capacitor 14 and cell 15.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明のレーザ共振器の内部や外部に設置され、レーザ
光のスイッチングに使用される電気光学室w4素子であ
るポッケルスセルの駆動回路に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a drive circuit for a Pockels cell, which is an electro-optical chamber W4 element installed inside or outside a laser resonator and used for laser light switching.

〔従来の技術] 第3図は従来のポッケルスセル駆動回路の構成を示す等
価回路図である。
[Prior Art] FIG. 3 is an equivalent circuit diagram showing the configuration of a conventional Pockels cell drive circuit.

高圧電#i31が発生する高電圧(3,2Kv)は充電
抵抗32を介してポッケルスセル34に印加される。該
ポッケルスセル34の高電圧が印加される一端はスイッ
チング素子33を介して接地されており、このスイッチ
ング素子をオン、オフすることによりポッケルスセル3
4に対する高電圧の印加が1111されている。
The high voltage (3.2 Kv) generated by the high-voltage electricity #i31 is applied to the Pockels cell 34 via the charging resistor 32. One end of the Pockels cell 34 to which a high voltage is applied is grounded via a switching element 33, and by turning this switching element on and off, the Pockels cell 3
A high voltage is applied 1111 to 4.

ポッケルスセル34は、ポッケルスセル効果が生じる結
晶で、通常KD*Pが用いられる。この結晶は、中下電
圧OVのときには直線偏光の入射光をそのまま出射し、
印下電圧約3.2 K vで円偏光のものとし、また、
印下電圧約6.4Kvで90°偏光方向が異なった直線
偏光のものとして出射する。このため、ポッケルスセル
15の前後に偏光板を設け、ポッケルスセル34に印加
される電圧をスイッチング素子33により高速に切替え
ることにより、直線偏光の光を瞬間的にスイッチングす
ることができる。高電圧を高速に印加することのできる
素子は無く、また、このような回路を構成することも難
かしいため、従来はスイッチング素子33としてアバラ
ンシェトランジスタ。
The Pockels cell 34 is a crystal in which the Pockels cell effect occurs, and KD*P is usually used. This crystal emits linearly polarized incident light as it is when the middle and lower voltages are OV,
Circularly polarized light with an applied voltage of approximately 3.2 Kv, and
The applied voltage is approximately 6.4 Kv, and the light is emitted as linearly polarized light with a 90° polarization direction. Therefore, by providing polarizing plates before and after the Pockels cell 15 and rapidly switching the voltage applied to the Pockels cell 34 using the switching element 33, linearly polarized light can be instantaneously switched. Conventionally, an avalanche transistor was used as the switching element 33 because there is no element that can apply a high voltage at high speed and it is difficult to configure such a circuit.

タライトロンまたはサイライトロンなどを用い、図示す
るようにポッケルスセル34には定常的に高電圧を印加
し、スイッチング時には印加′:4Ithを高速にOv
に短絡していた。
As shown in the figure, a high voltage is constantly applied to the Pockels cell 34 using a Talaitron or Thyraitron, and during switching, the voltage applied ': 4Ith is rapidly applied to Ov.
There was a short circuit.

このほかの駆動回路例としては、高速立ち上り特性を有
する高耐圧のパルストランスを用いて瞬間的に高電圧を
印加するものがあるが、この場合には回路構成が複雑な
ものとなっていた。
Other examples of drive circuits include those that instantaneously apply a high voltage using a high-voltage pulse transformer with a high-speed rise characteristic, but in this case, the circuit configuration is complicated.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述した従来のポッケルスセル駆動回路のうち、第3図
に示したものにおいてはポッケルスセルに定常的に高電
圧が印加されるため、ポッケルスセルが劣化しやすく、
静電気によるゴミの付着が発生しやすいという欠点があ
る。また、高耐圧のパルストランスを用いるものにおい
ては、回路構成が複雑となり、高価なものになってしま
うという欠点がある。
Among the conventional Pockels cell drive circuits mentioned above, in the one shown in FIG. 3, a high voltage is constantly applied to the Pockels cell, so the Pockels cell easily deteriorates.
It has the disadvantage that dust tends to adhere to it due to static electricity. Further, in the case of using a high voltage pulse transformer, there is a drawback that the circuit structure becomes complicated and expensive.

本発明はポッケルスセルの劣化を最小限のものとし、安
価に作製することができるポッケルスセル駆動回路を実
現することを目的とする。
An object of the present invention is to minimize the deterioration of the Pockels cell and to realize a Pockels cell drive circuit that can be manufactured at low cost.

〔課題を解決するための手段〕[Means to solve the problem]

本発明のポッケルスセル駆動回路は、 ポッケルスセルに対して高電圧をスイッチングして印加
するポッケルスセル駆動回路において、高電圧を出力す
る高圧電源の出力端と接地との間に順に直列に設けられ
た充電抵抗器、コンデンサおよびポッケルスセルと、 充電抵抗器とコンデンサの接続部と接地との間に設けら
れたスイッチング素子と、 スイッチング素子が開いた状態のときに、ポッケルスセ
ルの両端に電位差を生じさせないために、ポッケルセル
とコンデンサの接続部と接地との間に設けられた受動素
子とを有する。
The Pockels cell drive circuit of the present invention is a Pockels cell drive circuit that switches and applies a high voltage to a Pockels cell. A charging resistor, a capacitor, a Pockels cell, a switching element provided between the charging resistor and capacitor connection and ground, and a switching element that does not create a potential difference across the Pockels cell when the switching element is open. For this purpose, a passive element is provided between the Pockel cell and the connection part of the capacitor and ground.

〔作用〕[Effect]

スイッチング素子が開いた状態のときにはコンデンサが
充電され、ポッケルスセルには電圧は叩上されない。ス
イッチング素子が閉じられるとコンデンサに蓄えれられ
た電荷が接地に流れ、コンデンジのポッケルスセル側の
端部は、極性が反転した高電圧状態におかれる。このた
め、ポッケルスセルの]ンデンシ側の端部には、さらに
極性が反転し、高圧電源と同様の塚性の電圧が印加され
ることになる。
When the switching element is open, the capacitor is charged and no voltage is applied to the Pockels cell. When the switching element is closed, the charge stored in the capacitor flows to ground, and the end of the capacitor on the Pockels cell side is placed in a high voltage state with reversed polarity. For this reason, the polarity is further reversed to the end of the Pockels cell on the power supply side, and a voltage of the same magnitude as that of the high-voltage power supply is applied.

〔実施例〕〔Example〕

次に、本発明の実施例について図面参照して説明する。 Next, embodiments of the present invention will be described with reference to the drawings.

第1図は本発明のポッケルスセル駆動回路の第1の実施
例の構成を示す等価回路図である。
FIG. 1 is an equivalent circuit diagram showing the configuration of a first embodiment of the Pockels cell driving circuit of the present invention.

本実施例は高圧電源11.充電抵抗12.スイッチング
素子13.コンデンサ14.ポッケルスセル15および
受動素子であるインダクタンス16により構成されてい
る。^圧電源11.充填抵抗12.スイッチング素子1
3およびポッケルスセル15の各々は、第3図に示した
高圧電源31、充電抵抗32.スイッチング素子33.
ポッケルスセル34と同様のものである。
In this embodiment, the high voltage power supply 11. Charging resistance 12. Switching element 13. Capacitor 14. It is composed of a Pockels cell 15 and an inductance 16 which is a passive element. ^Volume power supply 11. Filling resistance 12. Switching element 1
3 and Pockels cell 15 are each connected to a high voltage power source 31, a charging resistor 32, . Switching element 33.
This is similar to the Pockels cell 34.

充電抵抗12.コンテン4ノ14およびポッケルスセル
15は高圧電源11の出力端と接地との間に直列に設け
られている。充電抵抗12とコンデンサ14の接続部分
はスイッチング素子33を介して接地され、また、イン
ダクタンス16は、ポッケルスセル15のコンデンサ1
4に接続する接続端と接地との間に並列に設けられてい
る。
Charging resistance 12. The content 4 and the Pockels cell 15 are provided in series between the output end of the high voltage power supply 11 and ground. The connecting portion between the charging resistor 12 and the capacitor 14 is grounded via the switching element 33, and the inductance 16 is connected to the capacitor 1 of the Pockels cell 15.
4 and the ground.

次に、本実施例の動作について説明する。Next, the operation of this embodiment will be explained.

スイッチング素子13が図示のように開いた状態のとき
には、コンデンサ14は充電抵抗12を介して供給され
る高圧電源11の出力電圧により充電される。このとき
にポッケルスセル15の両端にかかる電圧は、並列に設
けられたインダクタンス16のインダクタンスが無視で
きるほど小さな(数pH)ものであるため、Ovとなり
電位差は生じない。次に、アバランシェトランジスタあ
るいはクライト[1ン等が用いられるスイッチング素子
13が閉じられると、コンデンサ14に蓄えられた電荷
に相当する電illがスイッチング素子13を通って接
地に短時間のうちに流れるため」ンテン4,114のポ
ッケルスセル15側の端部電圧は充電電圧である高圧電
源11の出力電圧とほぼ同電圧のものとなり、極性のみ
が反転したものとなる。また、ポッケルスセル15のコ
ンデンサ14側の端部電圧の極性は上記コンデンサ14
の端部電圧の極性がざらに反転したものとなり、その大
きさはコンデンサ14およびポッケルスセル15の静電
容量に応じて決定される。通常、ポッケルスセル静電容
110〜20pH程度のものであるが、本実施例のもの
においては途中のケーブルあるいは構造のストレートキ
ャパシタンスを考慮してコンデンサ14の容量を50〜
100PFとすることで高圧電源11の出力電圧と同程
度のものにすることができた。
When the switching element 13 is in the open state as shown, the capacitor 14 is charged by the output voltage of the high voltage power supply 11 supplied via the charging resistor 12. At this time, the voltage applied across the Pockels cell 15 is Ov, and no potential difference occurs because the inductance of the inductance 16 provided in parallel is so small (several pH) that it can be ignored. Next, when the switching element 13, such as an avalanche transistor or a cryotype, is closed, an electric charge corresponding to the charge stored in the capacitor 14 flows through the switching element 13 to ground in a short time. The voltage at the end of the antenna 4, 114 on the Pockels cell 15 side is approximately the same voltage as the charging voltage, which is the output voltage of the high-voltage power supply 11, and only the polarity is reversed. Furthermore, the polarity of the voltage at the end of the Pockels cell 15 on the capacitor 14 side is
The polarity of the terminal voltage is roughly inverted, and its magnitude is determined according to the capacitance of the capacitor 14 and the Pockels cell 15. Normally, the Pockels cell capacitance is about 110 to 20 pH, but in this example, the capacitance of the capacitor 14 is set to 50 to 20 pH, taking into consideration the straight capacitance of the intermediate cable or structure.
By setting it to 100PF, it was possible to make the output voltage comparable to the output voltage of the high voltage power supply 11.

この後、スイッチング素子13が再度開状態となると、
コンデンサ14は充電されるが、このときの充電時間は
インダクタンス16は無視でき、初めのものと同じであ
る。
After this, when the switching element 13 becomes open again,
The capacitor 14 is charged, but the charging time at this time is the same as the initial one, since the inductance 16 can be ignored.

このように、本実施例のものにおいては、ポッケルスセ
ルは定常的にOVに置かれるため、素子の劣化かやゴミ
の付着等が低減された。
As described above, in this example, since the Pockels cell is constantly placed in the OV, deterioration of the element and adhesion of dust are reduced.

第2図は本発明の第2の実施例の構成を示す等価回路図
である。
FIG. 2 is an equivalent circuit diagram showing the configuration of a second embodiment of the present invention.

本実施例は第1図中の受動素子であるインダクタンス1
6を抵抗26に置き換えたものである。
In this embodiment, the inductance 1, which is a passive element in FIG.
6 is replaced with a resistor 26.

この他の構成は第1図の実施例と同様であるため、第1
図と同じ番号を付し、説明は省略する。
Since the other configuration is the same as that of the embodiment shown in FIG.
The same numbers as in the figure are given, and the explanation is omitted.

本実施例におけるスイッチング動作は第1の実施例のも
のと同様に行なわれる。インダクタンス16が抵抗26
に置換されているため、スイッチング素子13が一度閉
じた後に開かれたとぎのコンデンサ14の充電時間は第
1図に示したものよりも長くなるが、外形を小さくする
ことができた。
The switching operation in this embodiment is performed in the same manner as in the first embodiment. Inductance 16 is resistance 26
1, the charging time of the capacitor 14 when the switching element 13 is once closed and then opened is longer than that shown in FIG. 1, but the external size can be reduced.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、コンデンサを介して電圧
を印加することにより、ポッケルスセルに対して従来と
同様なスイッチング素子を用いてOVから瞬間的に高電
圧を印加することができ、ポッケルスセルに対する印加
電圧を定常的にO■とすることができる。このため、ポ
ッケルスセルの劣化が低減され、ゴミ薄の付着も改@さ
れたポッケルスセル駆動回路を安価に大川することがで
きる効果がある。
As explained above, the present invention makes it possible to instantaneously apply a high voltage from OV to the Pockels cell using a conventional switching element by applying a voltage through a capacitor. The applied voltage can be constantly set to O■. Therefore, the Pockels cell deterioration is reduced, and the Pockels cell drive circuit, which is improved in terms of dust adhesion, can be manufactured at a low cost.

【図面の簡単な説明】 第1図は本発明の第1の実施例の構成を示す等価回路図
、第2図は本発明の第2の実施例の構成を示す等価回路
図、第3図は従来例の構成を示す等価回路図である。 11・・・高圧電源、    12・・・充電抵抗、1
3・・・スイッチング素子、 14・・・コンデンサ、   15・・・ポッケルスセ
ル、16・・・インダクタ、   26・・・抵抗。
[Brief Description of the Drawings] Fig. 1 is an equivalent circuit diagram showing the configuration of the first embodiment of the present invention, Fig. 2 is an equivalent circuit diagram showing the configuration of the second embodiment of the invention, and Fig. 3 is an equivalent circuit diagram showing the configuration of the second embodiment of the present invention. 1 is an equivalent circuit diagram showing the configuration of a conventional example. 11... High voltage power supply, 12... Charging resistor, 1
3... Switching element, 14... Capacitor, 15... Pockels cell, 16... Inductor, 26... Resistor.

Claims (1)

【特許請求の範囲】 1、ポッケルスセルに対して高電圧をスイッチングして
印加するポッケルスセル駆動回路において、前記高電圧
を出力する高圧電源の出力端と接地との間に順に直列に
設けられた充電抵抗器、コンデンサおよびポッケルスセ
ルと、 前記充電抵抗器と前記コンデンサの接続部と接地との間
に設けられたスイッチング素子と、前記スイッチング素
子が開いた状態のときに、前記ポッケルスセルの両端に
電位差を生じさせないために、前記ポッケルセルと前記
コンデンサの接続部と接地との間に設けられた受動素子
とを有することを特徴とするポッケルスセル駆動回路。
[Claims] 1. In a Pockels cell drive circuit that switches and applies a high voltage to a Pockels cell, a plurality of circuits are provided in series in order between the output end of a high voltage power supply that outputs the high voltage and the ground. a charging resistor, a capacitor, and a Pockels cell; a switching element provided between a connection between the charging resistor and the capacitor and ground; A Pockels cell drive circuit comprising a passive element provided between the connection portion of the Pockels cell and the capacitor and ground in order to prevent a potential difference from occurring.
JP8403490A 1990-03-30 1990-03-30 Pockels cell driving circuit Pending JPH03282514A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8403490A JPH03282514A (en) 1990-03-30 1990-03-30 Pockels cell driving circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8403490A JPH03282514A (en) 1990-03-30 1990-03-30 Pockels cell driving circuit

Publications (1)

Publication Number Publication Date
JPH03282514A true JPH03282514A (en) 1991-12-12

Family

ID=13819248

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8403490A Pending JPH03282514A (en) 1990-03-30 1990-03-30 Pockels cell driving circuit

Country Status (1)

Country Link
JP (1) JPH03282514A (en)

Similar Documents

Publication Publication Date Title
TW507179B (en) Display device having current-addressed pixels
US5306954A (en) Charge pump with symmetrical +V and -V outputs
JP3518318B2 (en) Stacked voltage measurement device
JPS6260311A (en) Voltage switching device
JP3226815B2 (en) Driving circuit and driving method for capacitive load
US5461532A (en) Electronic pulse transformer
US6094192A (en) Common electrode driving device in a liquid crystal display
US5329247A (en) Switchable MOS current mirror
JPH03282514A (en) Pockels cell driving circuit
US9927638B2 (en) Operating a pockels cell
US5805015A (en) Current generator stage used with integrated analog circuits
US3292091A (en) Energy conserving circuit for capacitive load
CN106571121B (en) Common electrode voltage generation circuit
JPS584848B2 (en) A/D conversion circuit
CN1320391C (en) Power supply circuit
EP1433252A2 (en) High speed output buffers using voltage followers
JPH10247073A (en) Method of driving plasma display
JPS61191192A (en) Autonomous power source for observation unit having stereoscopic effect
EP2546988B1 (en) Circuit for controlling an electric power circuit according to control pulses
JPH0438164B2 (en)
CN1324357C (en) Power supply circuit
EP1186897B1 (en) Method and apparatus for the simulation of the electrical behavior of piezoelectric elements
JP3087824B2 (en) Charge / discharge device
JPH0287818A (en) Semiconductor device
JPH04165922A (en) Power supply voltage compensation circuit