JPH03281979A - Lubricating oil supply control unit - Google Patents

Lubricating oil supply control unit

Info

Publication number
JPH03281979A
JPH03281979A JP8124390A JP8124390A JPH03281979A JP H03281979 A JPH03281979 A JP H03281979A JP 8124390 A JP8124390 A JP 8124390A JP 8124390 A JP8124390 A JP 8124390A JP H03281979 A JPH03281979 A JP H03281979A
Authority
JP
Japan
Prior art keywords
lubricating oil
air compressor
injection valve
rotational speed
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8124390A
Other languages
Japanese (ja)
Inventor
Kazuo Yamamoto
一男 山本
Naotaka Shirabe
調 尚孝
Yuichi Takano
雄一 高野
Eiji Ono
大野 栄嗣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, NipponDenso Co Ltd filed Critical Toyota Motor Corp
Priority to JP8124390A priority Critical patent/JPH03281979A/en
Publication of JPH03281979A publication Critical patent/JPH03281979A/en
Pending legal-status Critical Current

Links

Landscapes

  • Fuel-Injection Apparatus (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

PURPOSE:To control the supply of lubricating oil for an optimum amount by correcting basic valve opening signals calculated from the rotational speed of a compressor with detected signals for the temperature and the pressure of the lubricating oil, and sending driving pulse signals instructing a proper valve opening to a lubricating oil injection valve. CONSTITUTION:A compressed air way 17 is connected to an air blast valve 16 injecting fuel into a combustion chamber 2 together with compressed air, the outlet 24 of a vane type air compressor 23 is connected to the compressed air way 17, and a lubricating oil supply unit 34 is provided on the intake 28 of the air compressor 23, and when an electromagnetic lubricating oil injection valve in the supply unit 34 is opened, the lubricating oil conveyed through a lubricating oil path 15 is supplied to the air compressor 23 as spray. Where, a temperature sensor to detect the temperature of the lubricating oil flowing in the lubricating oil injection valve, a pressure sensor to detect the pressure of the lubricating oil, and a rotational speed sensor to detect the rotational speed of the air compressor 23 are provided respectively. And an ECU 36 is made to send the lubricating oil injection valve driving signals to give proper valve opening for a specified amount of the lubricating oil flow corresponding to the rotational speed of the air compressor 23.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、例えば内燃機関の燃料噴射装置、その中でも
特に燃料を圧縮空気によって内燃機関の燃焼室内へ噴射
させるエアブラスト弁と呼ばレル型の燃料噴射弁を具備
する燃料噴射装置において、前記エアブラスト弁へ圧縮
空気を供給するための空気圧縮機の場合のように、空気
圧縮機へ潤滑油を計量して供給する潤滑油定量供給制御
装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a fuel injection device for, for example, an internal combustion engine, and particularly to a barrel-type fuel injection device called an air blast valve that injects fuel into a combustion chamber of an internal combustion engine using compressed air. In a fuel injection device equipped with a fuel injection valve, as in the case of an air compressor for supplying compressed air to the air blast valve, a lubricating oil constant supply control device that measures and supplies lubricating oil to the air compressor. Regarding.

〔従来の技術〕[Conventional technology]

特表昭60−501963号公報には、前記のようなエ
アブラスト弁を用い、圧縮空気によって燃料を霧化して
内燃機関の気筒内へ噴射する方法及び装置が記載されて
いる。
Japanese Patent Publication No. 60-501963 describes a method and apparatus for atomizing fuel with compressed air and injecting it into the cylinders of an internal combustion engine using an air blast valve as described above.

一般にこのような燃料噴射装置においては、燃料霧化用
の圧縮空気を供給するためにベーン型等の空気圧縮機が
使用されるが、ベーン型の空気圧縮機を使用する場合は
、空気の吸入口に潤滑油の噴射弁を設けて機関の潤滑油
の一部をこれに供給し、潤滑油を噴霧状にして空気圧縮
機内へ送り込むと共に、その吐出口からエアブラスト弁
に連通ずる圧縮空気通路には冷却器と油分離器を設けて
、圧縮空気中から潤滑油を分離回収するようにしている
Generally, in such fuel injection devices, a vane type air compressor is used to supply compressed air for fuel atomization, but when using a vane type air compressor, air intake is A compressed air passage that has a lubricating oil injection valve at its mouth, supplies some of the engine's lubricating oil to it, sends the lubricating oil in the form of a spray into the air compressor, and communicates from its discharge port to the air blast valve. A cooler and oil separator are installed to separate and recover lubricating oil from compressed air.

従来は、このような場合に空気圧縮機へ供給する潤滑油
量について細かな配慮はなされてふらず、潤滑油ポンプ
が機関自体によって駆動されることから、他の条件はと
にか(、一応は機関及び潤滑油ポンプの回転数が高い程
多くの量の潤滑油が空気圧縮機へ供給されるようになっ
ていた。
Conventionally, no careful consideration was given to the amount of lubricating oil supplied to the air compressor in such cases, and since the lubricating oil pump was driven by the engine itself, other conditions were ignored (for the time being, The higher the rotational speed of the engine and lubricating oil pump, the more lubricating oil is supplied to the air compressor.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

潤滑油の噴射弁の開口面積が一定であれば、単位時間内
に噴射される潤滑油の量は潤滑油の粘度と圧力によって
決まる。潤滑油の粘度はその温度によって変わるもので
あり、潤滑油の温度は機関の暖機の進み方によって太き
(変化する。潤滑油の量は回転数が高くなるほど増加さ
せるのがよいが、回転数は潤滑油の圧力に反映する要因
ではあっても、温度(粘度)や噴射時間等、圧力以外の
条件の数値が大きく変わると、同じ弁開度がもたらす潤
滑油の噴射量が大幅に変わってくる。
If the opening area of the lubricating oil injection valve is constant, the amount of lubricating oil injected within a unit time is determined by the viscosity and pressure of the lubricating oil. The viscosity of lubricating oil changes depending on its temperature, and the temperature of lubricating oil increases (changes) depending on how the engine warms up.It is better to increase the amount of lubricating oil as the rotation speed increases, but Although the number is a factor that reflects the lubricating oil pressure, if the numerical values of conditions other than pressure, such as temperature (viscosity) and injection time, change significantly, the amount of lubricating oil injected for the same valve opening will change significantly. It's coming.

そして、潤滑油の供給量が過剰になり油分離器の分離回
収能力を越えてしまうと、回収されなかった潤滑油は圧
縮空気と共にエアブラスト弁に入るから、精密な構造を
有するエアブラスト弁にオイルデポジットが発生し、そ
の特性が変化したり、故障の原因となることが懸念され
る。
If the supply of lubricating oil becomes excessive and exceeds the separation and recovery capacity of the oil separator, the unrecovered lubricating oil will enter the air blast valve together with the compressed air. There is concern that oil deposits may occur, which may change the characteristics or cause failures.

逆に潤滑油の供給量が少ない時は、空気圧縮機が焼付い
たり、圧縮空気の温度が過度に上昇し、エアブラスト弁
に熱的劣化を生じたり、燃料が加熱されて蒸発し、燃料
噴射量を正確に制御することができなくなるというよう
な問題も生じる。
Conversely, when the supply of lubricating oil is low, the air compressor may seize, the temperature of the compressed air may rise excessively, causing thermal deterioration of the air blast valve, or the fuel may heat up and evaporate, causing fuel injection problems. Problems also arise, such as the inability to accurately control the amount.

本発明はこれらの問題に対処し、空気圧縮機へ供給され
る潤滑油の量を最適値に制御することを解決課題とする
ものである。
The present invention addresses these problems and aims to solve the problem by controlling the amount of lubricating oil supplied to the air compressor to an optimum value.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は前記の課題を解決するために、空気圧縮機に付
設された潤滑油噴射弁と、前記潤滑油噴射弁に入る潤滑
油の温度を検出する温度センサと、同じく圧力を検出す
る圧力センサと、実質的に前記空気圧縮機の回転数を検
出する回転数センサと、前記温度センサ、前記圧力セン
サ及び前言己回転数センサが検出した潤滑油の温度及び
圧力と前記空気圧縮機の回転数の各信号を受入れ前記潤
滑油噴射弁に対して前記空気圧縮機の回転数に見合う所
定量の潤滑油流量をもたらす開度を与える駆動パルス信
号を送る電子式制御装置とを備えていることを特徴とす
る潤滑油定量供給制御装置を提供する。
In order to solve the above problems, the present invention includes a lubricating oil injection valve attached to an air compressor, a temperature sensor that detects the temperature of the lubricating oil entering the lubricating oil injection valve, and a pressure sensor that also detects the pressure. and a rotation speed sensor that substantially detects the rotation speed of the air compressor, the temperature and pressure of the lubricating oil detected by the temperature sensor, the pressure sensor, and the rotation speed sensor, and the rotation speed of the air compressor. and an electronic control device that receives each signal and sends a drive pulse signal to the lubricating oil injection valve to give an opening degree that brings about a predetermined amount of lubricating oil flow rate corresponding to the rotational speed of the air compressor. The present invention provides a lubricating oil quantitative supply control device with features.

〔作 用〕[For production]

空気圧縮機に付設された潤滑油噴射弁は、空気圧縮機の
回転数に見合う流量の潤滑油を空気圧縮機に供給すべき
であるが、回転数に対して噴射弁の開度を単に比例的に
制御しただけでは、所望の流量が得られず、潤滑油量の
過不足が生じる。
The lubricating oil injection valve attached to the air compressor should supply lubricating oil to the air compressor at a flow rate commensurate with the rotational speed of the air compressor. If only the lubricating oil is controlled, the desired flow rate cannot be obtained, and the amount of lubricating oil will be too much or too little.

その原因は、潤滑油の温度変化による粘度の変化により
、同じ弁開度でも潤滑油流量が大きく変化するためであ
るから、本発明においては、空気圧縮機の回転数から算
出される弁開度に対して、潤滑油の粘度を決定する温度
と、やはり噴射弁の潤滑油流量を決定する直接の要因と
なる潤滑油の圧力とを各センサによって検出し、それら
の信号によって回転数から算出された基本弁開度信号に
補正を加え、回転数に見合う過不足のない流量の潤滑油
が空気圧縮機に供給されるように、適正な弁開度を指令
する駆動パルス信号が電子式制御装置から潤滑油噴射弁
に送られる。
The reason for this is that the lubricating oil flow rate changes greatly even with the same valve opening due to changes in viscosity caused by temperature changes in the lubricating oil. Therefore, in the present invention, the valve opening calculated from the rotation speed of the air compressor is In contrast, the temperature, which determines the viscosity of the lubricating oil, and the pressure of the lubricating oil, which is also a direct factor determining the lubricant flow rate of the injection valve, are detected by each sensor, and these signals are used to calculate the rotation speed. The electronic controller uses a drive pulse signal that commands the appropriate valve opening so that the air compressor is supplied with lubricating oil at just the right flow rate commensurate with the rotational speed. is sent to the lubricating oil injection valve.

〔実施例〕〔Example〕

第1図に本発明の潤滑油定量供給制御装置の実施例を含
む内燃機関の全体構成が示されている。
FIG. 1 shows the overall configuration of an internal combustion engine including an embodiment of the lubricating oil constant supply control device of the present invention.

図中1は内燃機関本体、2は燃焼室、3はピストン、4
は吸気通路、5は吸気弁、6は排気弁、7は吸気のサー
ジタンク、8はシリンダヘッド、9はPCV通路、10
はシリンダブロック、11はオイルパン、12は潤滑油
溜り、13はオイルストレーナ、14はオイルフィルタ
エレメント、15は潤滑油吐出管で、図示されない潤滑
油ポンプによって加圧された潤滑油の一部が、該吐出管
15を通って空気圧縮機の方へ送出される。
In the figure, 1 is the internal combustion engine body, 2 is the combustion chamber, 3 is the piston, 4
is the intake passage, 5 is the intake valve, 6 is the exhaust valve, 7 is the intake surge tank, 8 is the cylinder head, 9 is the PCV passage, 10
1 is a cylinder block, 11 is an oil pan, 12 is a lubricating oil reservoir, 13 is an oil strainer, 14 is an oil filter element, and 15 is a lubricating oil discharge pipe, through which part of the lubricating oil pressurized by a lubricating oil pump (not shown) is supplied. , through the discharge pipe 15 towards the air compressor.

16は燃料を圧縮空気と共に燃焼室2内へ噴射させるエ
アブラスト弁、17は圧縮空気通路、18及び19は圧
縮空気通路17の途中に2段階に設けられた油分離器で
、分離した潤滑油は、弁20.21が開弁した時(機関
停止時などに、後述の制御装置により開弁作動する。)
、潤滑油戻り通路22を通って潤滑油溜り12へ戻るよ
うになっている。
16 is an air blast valve that injects fuel into the combustion chamber 2 together with compressed air, 17 is a compressed air passage, and 18 and 19 are oil separators installed in two stages in the middle of the compressed air passage 17 to separate lubricating oil. is when the valves 20 and 21 are opened (when the engine is stopped, etc., the valves are opened by the control device described later).
, the lubricating oil returns to the lubricating oil reservoir 12 through a lubricating oil return passage 22 .

23はベーン型の空気圧縮機で、その吐出口24が圧縮
空気通路17に接続され、油分離器18の前段において
冷却器25が設けられている。圧縮空気はここで冷却器
25のフィンによって冷却され、その中に含まれる潤滑
油の微粒(オイルミスト)が凝集して分離されやすくな
り、たとえばサイクロン型の油分離器18及び19にお
いて空気から分離して弁20.21が開弁するまで分離
器の下部に溜っている。
Reference numeral 23 denotes a vane type air compressor, the discharge port 24 of which is connected to the compressed air passage 17, and a cooler 25 is provided upstream of the oil separator 18. The compressed air is cooled by the fins of the cooler 25, and the lubricating oil particles (oil mist) contained therein are easily aggregated and separated from the air in, for example, cyclone-type oil separators 18 and 19. and remains at the bottom of the separator until valves 20 and 21 open.

なお、26は圧縮機23の偏心したロータ、27はベー
ン、28は吸込口を示す。
Note that 26 is an eccentric rotor of the compressor 23, 27 is a vane, and 28 is a suction port.

29はエアクリーナで、そこを通って吸入された空気の
大部分は、エアフローメータ30、スロットル弁31、
スーパーチャージャ32を経て、機関本体lの吸気とし
て前述のサージタンク7へ送られ、吸気通路4を通って
吸気弁5が開いた時に燃焼室2へ入る。
29 is an air cleaner, and most of the air taken in through there is passed through the air flow meter 30, throttle valve 31,
It passes through the supercharger 32, is sent to the surge tank 7 as the intake air of the engine body 1, passes through the intake passage 4, and enters the combustion chamber 2 when the intake valve 5 is opened.

エアクリーナ29から吸入された空気の一部は空気通路
33へ分流し、吸入口28から空気圧縮機23へ吸込ま
れる。吸込口28には潤滑油供給装置34が設けられて
おり、それに含まれる電磁式の潤滑油噴射弁が開弁した
時は、開弁時間に応じた量の潤滑油(機関本体1から潤
滑油通路15を経て送られて来た加圧された潤滑油)が
空気圧縮機23内へ噴霧状に供給される。この潤滑油は
圧縮機23のベーン27とケーシング35の摺動面など
を潤滑する。空気圧縮機23において圧縮された空気は
、圧縮空気通路17を通って前述のように冷却器25に
より冷却され、油回収器18及び19で潤滑油を取り除
かれてからエアブラスト弁16に入り、その空気噴射弁
が開いた時は、図示されない通路からエアブラスト弁1
6に送られて所要量だけ噴射された燃料を混入させて弁
口を押し開き、内燃機関本体1の燃焼室2内へ噴出する
。燃料噴霧は圧縮空気の膨張によって微粒化され、吸気
通路4から吸気弁5を経て燃焼室2内へ吸入された吸気
の中へ混入し、形成された混合気はピストン3の上昇に
よって圧縮され、図示されない点火栓によって着火され
て燃焼する。
A part of the air sucked from the air cleaner 29 is diverted to the air passage 33 and sucked into the air compressor 23 from the suction port 28. A lubricating oil supply device 34 is provided at the suction port 28, and when the electromagnetic lubricating oil injection valve included therein is opened, an amount of lubricating oil (lubricating oil from the engine body 1) corresponding to the valve opening time is supplied. The pressurized lubricating oil sent through the passage 15 is supplied into the air compressor 23 in the form of a spray. This lubricating oil lubricates the sliding surfaces of the vanes 27 of the compressor 23 and the casing 35, and the like. The air compressed in the air compressor 23 passes through the compressed air passage 17, is cooled by the cooler 25 as described above, is stripped of lubricating oil by the oil recoverers 18 and 19, and then enters the air blast valve 16. When the air injection valve opens, the air blast valve 1 is
6 and injected in a required amount, the valve port is pushed open and the fuel is injected into the combustion chamber 2 of the internal combustion engine main body 1. The fuel spray is atomized by the expansion of the compressed air and mixed into the intake air drawn into the combustion chamber 2 from the intake passage 4 through the intake valve 5, and the formed air-fuel mixture is compressed by the rise of the piston 3. It is ignited by a spark plug (not shown) and combusts.

エアブラスト弁16の空気噴射弁や燃料噴射弁は電磁式
の弁であって、電子式制御装置(ECU)36によって
開閉制御される。ECU 36は、本発明の第1図の実
施例では、潤滑油供給装置34の噴射弁をも開閉制御す
るようになっている。そのために、EICo 36には
機関本体1の回転数センサ(図示しない)からの機関回
転数信号N1バッテリ電圧Eのほか、第2図に拡大して
示されているように潤滑油供給装置34に設けられた潤
滑油の温度センサ37が発信する温度信号T1及び潤滑
油の圧力センサ38が発信する圧力信号Pを入力してい
る。
The air injection valve and fuel injection valve of the air blast valve 16 are electromagnetic valves, and opening and closing are controlled by an electronic control unit (ECU) 36. In the embodiment of the present invention shown in FIG. 1, the ECU 36 also controls the opening and closing of the injection valve of the lubricating oil supply device 34. For this purpose, in addition to the engine speed signal N1 from the engine speed sensor (not shown) in the engine body 1 and the battery voltage E, the EICo 36 also receives signals from the lubricating oil supply device 34 as shown in an enlarged view in FIG. A temperature signal T1 transmitted by a lubricating oil temperature sensor 37 and a pressure signal P transmitted by a lubricating oil pressure sensor 38 are input.

第2図において、潤滑油供給装置34は、機関本体10
図示されない潤滑油ポンプから潤滑油吐出管15を通し
て加圧された潤滑油を受入れる潤滑油人口39と、潤滑
油を噴射する電磁式の潤滑油噴射弁40と、噴射された
潤滑油を空気圧縮器23の吸込口28へ導びく出口41
を有する。人口39から噴射弁40に至る通路42に入
った潤滑油は、温度センサ37及び圧力センサ38に接
触して温度及び圧力を測定されたのち、潤滑油噴射弁4
0に入る。潤滑油噴射弁40が端子43を介してECU
 36からパルス状の駆動信号を受けた時、そのパルス
信号が継続している時間だけソレノイド44によって引
き上げられるニードル45によって開口する弁口46か
ら、潤滑油が出口41へ噴霧状に噴出し、吸込口28か
ら空気と共に空気圧縮機23内に入って内部を潤滑する
In FIG. 2, the lubricating oil supply device 34 is connected to the engine main body 10.
A lubricating oil pump 39 that receives pressurized lubricating oil from a lubricating oil pump (not shown) through a lubricating oil discharge pipe 15, an electromagnetic lubricating oil injection valve 40 that injects lubricating oil, and an air compressor that injects the injected lubricating oil. An outlet 41 leading to the suction port 28 of 23
has. The lubricating oil that has entered the passage 42 from the population 39 to the injection valve 40 comes into contact with a temperature sensor 37 and a pressure sensor 38 to have its temperature and pressure measured.
Enters 0. The lubricating oil injection valve 40 is connected to the ECU via the terminal 43.
When a pulsed drive signal is received from 36, lubricating oil is sprayed into the outlet 41 from the valve port 46, which is opened by the needle 45 which is pulled up by the solenoid 44 for the duration of the pulse signal, and is sucked. It enters the air compressor 23 together with air through the port 28 to lubricate the inside.

ところで、潤滑油供給装置34がら空気圧縮機23へ単
位時間内に供給される潤滑油量、すなわち潤滑油流量Q
は、第3図に示すように、機関本体lの回転数Nと比例
するように増減させるべきである。何故なら、空気圧縮
機23は機関本体1によって駆動されており、その回転
数は機関本体1の回転数Nと同じか、又は一定の割合で
比例しているので、圧縮機23の回転数の増減に応じて
潤滑油の流量Qを増減することは、機関本体1の回転数
Nの増減に合わせて制御するのと同じであるためである
。この場合、第3図のように厳密に比例的制御を行なわ
ないで、階段的に第4図に示すような制御を行なっても
、実際上はなんら支障はない。
By the way, the amount of lubricating oil supplied from the lubricating oil supply device 34 to the air compressor 23 within a unit time, that is, the lubricating oil flow rate Q
should be increased or decreased in proportion to the rotational speed N of the engine body l, as shown in FIG. This is because the air compressor 23 is driven by the engine body 1, and its rotation speed is the same as the rotation speed N of the engine body 1, or is proportional to the rotation speed N of the engine body 1, so the rotation speed of the compressor 23 is This is because increasing or decreasing the flow rate Q of lubricating oil in accordance with the increase or decrease is the same as controlling it in accordance with the increase or decrease in the rotation speed N of the engine body 1. In this case, there is no problem in practice even if the control shown in FIG. 4 is performed in a stepwise manner without performing the strictly proportional control as shown in FIG. 3.

しかし、先にも述べたように、機関回転数Nの変化に対
して、第3図や第4図に示すように一定の割合で潤滑油
流量Qを増減させる場合、潤滑油の粘度が温度Tと共に
大きく変化するため、一定の粘度のときに潤滑油ポンプ
の吐出圧力が回転数と比例するという性質があっても、
それだけでは全ての条件において機関回転数Nと潤滑油
流量Qの関係を一定に保つことはできない。しかも、B
CU 36が同じ時間だけ潤滑油噴射弁40に駆動パル
スを送っても、パルスの高さ(電圧値)すなわちバッテ
リ電圧Eが大小変化すると、噴射弁40の応答の速さが
変化するので、それが実際の潤滑油流量Qに差を生じさ
せるという問題もある。
However, as mentioned earlier, when the lubricating oil flow rate Q is increased or decreased at a constant rate as shown in Figures 3 and 4 in response to changes in the engine speed N, the viscosity of the lubricating oil is Because it changes greatly with T, even though the lubricating oil pump's discharge pressure is proportional to the rotation speed when the viscosity is constant,
This alone cannot keep the relationship between the engine speed N and the lubricating oil flow rate Q constant under all conditions. Moreover, B
Even if the CU 36 sends a drive pulse to the lubricating oil injection valve 40 for the same amount of time, if the height (voltage value) of the pulse, that is, the battery voltage E, changes in magnitude, the response speed of the injection valve 40 will change. There is also the problem that this causes a difference in the actual lubricating oil flow rate Q.

そこで、本発明の実施例では第5図のフローチャートに
示すような制御の手順によって、潤滑油流量Qの制御を
行なう。まず101で、圧縮機23の回転数の代りに機
関本体1の回転数Nの信号が、図示されない回転数セン
サからECU 36のコンピュータ(CPU)に読み込
まれ、102でROMに設定されている第3図又は第4
図のようなマツプと照合して、その時の回転数Nに対応
する必要な潤滑油流量Qが決定される。そして103に
進んで、そのような潤滑油流量Qをもたらす圧力(油圧
)Pと温度(油温)Tとの関係を予め測定してεCal
 36内のROMに設定しである第6図のような特定の
マツプを、多くのマツプの中から選び出してそれをRA
Mに記憶させる。
Therefore, in the embodiment of the present invention, the lubricating oil flow rate Q is controlled by the control procedure shown in the flowchart of FIG. First, in 101, a signal of the rotation speed N of the engine main body 1 instead of the rotation speed of the compressor 23 is read from a rotation speed sensor (not shown) into the computer (CPU) of the ECU 36, and in 102, a signal of the rotation speed N of the engine main body 1 instead of the rotation speed of the compressor 23 is read into the computer (CPU) of the ECU 36, and in 102, a signal of the rotation speed N of the engine main body 1 instead of the rotation speed of the compressor 23 is read into the computer (CPU) of the ECU 36. Figure 3 or 4
The required lubricating oil flow rate Q corresponding to the rotational speed N at that time is determined by comparing with the map shown in the figure. Then, proceeding to step 103, the relationship between the pressure (hydraulic pressure) P and temperature (oil temperature) T that causes such a lubricating oil flow rate Q is measured in advance, and εCal is calculated.
Select a specific map like the one shown in Figure 6, which is set in the ROM in the 36, from among the many maps, and use it as an RA.
Let M memorize it.

次に、温度センサ37と圧力センサ3Bが発信する油温
Tと油圧Pの信号が104及び105においてCPUに
読み込まれ、103で採択したマツプ(第6図)と照合
して、その時に潤滑油噴射弁40のソレノイド44に送
るべき駆動パルス信号の周波数T、を計算する(106
)。第6図の拡大図に示すように、マツプは油圧Pと油
温Tに対応する周波数Tfを記録したものである。基本
的には、このようにして算出された周波数T、のパルス
によって潤滑油噴射弁40をデユーティ制御すれば、第
7図に示すようにして、回転数Nが低い時(上段)と高
い時(下段)とでは噴射40の合計開弁時間が変わり、
潤滑油流量Qを要求量にほぼ合致させることができる。
Next, the oil temperature T and oil pressure P signals sent by the temperature sensor 37 and the pressure sensor 3B are read into the CPU at 104 and 105, compared with the map adopted at 103 (Fig. 6), and the lubricating oil is then Calculate the frequency T of the drive pulse signal to be sent to the solenoid 44 of the injection valve 40 (106
). As shown in the enlarged view of FIG. 6, the map records frequencies Tf corresponding to oil pressure P and oil temperature T. Basically, if the lubricating oil injection valve 40 is duty-controlled by the pulse of the frequency T calculated in this way, as shown in FIG. (lower row), the total valve opening time of injection 40 changes,
The lubricating oil flow rate Q can be made to almost match the required amount.

この実施例の場合は更に進んで、バッテリ電圧Eの変動
による噴射弁40の応答性の変化に対する補正をも行な
っており、第5図の107においてバッテリ電圧の信号
EがCPUに読み込まれ、ROMに設定されている第8
図のようなマツプから、その時のバッテリ電圧Eに対応
するパルス幅(長さ)tiが108で読み取られる。こ
のマツプには、たとえば電圧Eが14Vであるときパル
ス幅tiが5msというように、対応する数値が予め測
定して言己録されている。
In the case of this embodiment, correction is also made for changes in the responsiveness of the injection valve 40 due to fluctuations in the battery voltage E. At 107 in FIG. 5, the battery voltage signal E is read into the CPU and stored in the ROM. The 8th set to
From the map shown in the figure, the pulse width (length) ti corresponding to the battery voltage E at that time is read at 108. In this map, corresponding numerical values are measured and recorded in advance, such as, for example, when the voltage E is 14V, the pulse width ti is 5ms.

このようにして決定された周波数T、と幅t1をもつ第
7図のような駆動パルスを、110でECU36から端
子43を経て潤滑油噴射弁40のソレノイド44に印加
し、弁口46を開弁させれば、その時の油温T1油圧P
1及びバッテリ電圧Eを勘案した上での噴射弁40の作
動が得られ、その時の回転数Nに対して正確に目標とす
る流量Qの潤滑油が噴射されて、過不足なく空気圧縮機
23を潤滑をすることができ、従来のような問題が解消
する。
A driving pulse having the frequency T and width t1 thus determined as shown in FIG. If the valve is turned on, the oil temperature T1 oil pressure P at that time
1 and the battery voltage E are taken into consideration, the lubricating oil is injected at an accurate target flow rate Q for the rotational speed N at that time, and the air compressor 23 is injected without excess or deficiency. can be lubricated, eliminating the conventional problems.

本発明は第7図に示したようなデユーティ制御に限らず
、第9図に示したようにパルスの周波数を一定とし、パ
ルスの幅τだけを可変として潤滑油噴射弁40を開閉制
御することによっても同様の効果を得ることができる。
The present invention is not limited to the duty control as shown in FIG. 7, but also controls the opening and closing of the lubricating oil injection valve 40 by keeping the pulse frequency constant and changing only the pulse width τ as shown in FIG. A similar effect can also be obtained.

この場合の制御の手順は、第5図に示すフローチャート
の103において決定されるマツプとして、第6図のよ
うなものではなく、油圧Pと油温Tから基本となるパル
ス幅τ。を読み取ることができるものを用いる。そして
108におけるバッテリ電圧Eによる補正は、基本のパ
ルス幅すなわち基本噴射量τ。に対して別にマツプに記
録されているバッテリ電圧Eに対する補正値を乗算する
演算を行ない、その時の回転数Nに適合するパルス幅T
1あるいはτ3等を算出し、それによって潤滑油噴射弁
40を開閉駆動することになる。
The control procedure in this case is based on the pulse width τ based on the oil pressure P and oil temperature T, rather than the map shown in FIG. 6, which is determined in step 103 of the flowchart shown in FIG. Use something that can be read. Then, the correction based on the battery voltage E at 108 is the basic pulse width, that is, the basic injection amount τ. A calculation is performed to multiply the battery voltage E by a correction value for the battery voltage E recorded separately in the map, and a pulse width T that matches the rotational speed N at that time is calculated.
1 or τ3, etc., and the lubricating oil injection valve 40 is driven to open and close accordingly.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、空気圧縮機にはその回転数に見合う流
量の潤滑油が正確に計量され”ご供給されるから、潤滑
油の過不足が生じることがなく、これを例えば内燃機関
の燃料噴射装置に使用した場合には、燃料噴射装置の上
流に設けられる油分離装置の分離能力を越えて潤滑油が
供給されて燃料噴射装置に害を及ぼしたり、潤滑油が不
足して空気圧縮機が焼付いたり、また圧縮空気の温度が
過度に上昇し、種々の障害を生じたりするようなことも
ない。
According to the present invention, lubricating oil is accurately measured and supplied to the air compressor at a flow rate commensurate with its rotational speed, so there is no excess or shortage of lubricating oil, and this can be used, for example, as fuel for internal combustion engines. When used in an injection device, lubricant oil may be supplied in excess of the separation capacity of the oil separator installed upstream of the fuel injection device, causing damage to the fuel injection device, or the air compressor may be damaged due to lack of lubricant oil. There is no risk of burning or excessive rise in the temperature of the compressed air, causing various problems.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例の全体構成を示す断面図、第2
図は実施例の要部を拡大して示す断面図、第3図及び第
4図は目標とする潤滑油流量を示す線図、第5図は本発
明の制御装置における制御の手順を例示するフローチャ
ート、第6図は本発明の制御装置に内蔵される制御用の
マツプを例示する線図、第7図は本発明の潤滑油噴射弁
へ送られる駆動パルス信号の一例を示す線図、第8図は
本発明の実施例において制御装置に内蔵される制御用マ
ツプの一つを示す線図、第9図は本発明の潤滑油噴射弁
へ送られる駆動パルス信号の他の例を示す線図である。 1・・・内燃機関本体、 3・・・ピストン、 5・・・吸気弁、 7・・・サージタンク、 9・・・PCv通路、 11・・・オイルパン、 13・・・オイルストレーナ、 14・・・オイルフィルタエレメント、15・・・潤滑
油吐出管、  16・・・エアブラスト弁、17・・・
圧縮空気通路、  18.19・・・油分離器、20.
21・・・弁、     22・・・潤滑油戻り通路、
23・・・空気圧縮機、   24・・・吐出口、25
・・・冷却器、26・・・ロータ、27・・・ベーン、
28・・・吸込口、29・・・エアクリーナ、30・・
・エアフローメータ、31・・・スロットル弁、 2・・・燃焼室、 4・・・吸気通路、 6・・・排気弁、 8・・・シリンダヘッド、 10・・・シリンダブロック、 12・・・潤滑油溜り、 32・・・スーパーチャージャ、 33・・・空気通路、    34・・・潤滑油供給装
置、35・・・ケーシング、 36・・・電子式制御装置(ECU)、37・・・温度
センサ、38・・・圧力センサ、39・・・潤滑油入口
、   40・・・潤滑油噴射弁、41・・・出口、 
     42・・・通路、43・・・端子、44・・
・ソレノイド、45・・・ニードル、46・・・弁口。
FIG. 1 is a sectional view showing the overall configuration of an embodiment of the present invention, and FIG.
The figure is a sectional view showing an enlarged main part of the embodiment, FIGS. 3 and 4 are diagrams showing the target lubricating oil flow rate, and FIG. 5 is an example of the control procedure in the control device of the present invention. Flow chart, FIG. 6 is a diagram illustrating a control map built into the control device of the present invention, FIG. 7 is a diagram illustrating an example of a drive pulse signal sent to the lubricating oil injection valve of the present invention, FIG. FIG. 8 is a line diagram showing one of the control maps built into the control device in the embodiment of the present invention, and FIG. 9 is a line diagram showing another example of the drive pulse signal sent to the lubricating oil injection valve of the present invention. It is a diagram. DESCRIPTION OF SYMBOLS 1... Internal combustion engine body, 3... Piston, 5... Intake valve, 7... Surge tank, 9... PCv passage, 11... Oil pan, 13... Oil strainer, 14 ...Oil filter element, 15...Lubricating oil discharge pipe, 16...Air blast valve, 17...
compressed air passage, 18.19... oil separator, 20.
21... Valve, 22... Lubricating oil return passage,
23...Air compressor, 24...Discharge port, 25
...Cooler, 26...Rotor, 27...Vane,
28... Suction port, 29... Air cleaner, 30...
・Air flow meter, 31... Throttle valve, 2... Combustion chamber, 4... Intake passage, 6... Exhaust valve, 8... Cylinder head, 10... Cylinder block, 12... Lubricating oil reservoir, 32... Supercharger, 33... Air passage, 34... Lubricating oil supply device, 35... Casing, 36... Electronic control unit (ECU), 37... Temperature Sensor, 38... Pressure sensor, 39... Lubricating oil inlet, 40... Lubricating oil injection valve, 41... Outlet,
42... passage, 43... terminal, 44...
・Solenoid, 45...needle, 46...valve port.

Claims (1)

【特許請求の範囲】[Claims] 空気圧縮機に付設された潤滑油噴射弁と、前記潤滑油噴
射弁に入る潤滑油の温度を検出する温度センサと、同じ
く圧力を検出する圧力センサと、実質的に前記空気圧縮
機の回転数を検出する回転数センサと、前記温度センサ
、前記圧力センサ及び前記回転数センサが検出した潤滑
油の温度及び圧力と前記空気圧縮機の回転数の各信号を
受入れ前記潤滑油噴射弁に対して前記空気圧縮機の回転
数に見合う所定量の潤滑油流量をもたらす開度を与える
駆動パルス信号を送る電子式制御装置とを備えているこ
とを特徴とする潤滑油定量供給制御装置。
A lubricating oil injection valve attached to the air compressor, a temperature sensor that detects the temperature of the lubricating oil entering the lubricating oil injection valve, a pressure sensor that also detects the pressure, and substantially the rotation speed of the air compressor. a rotational speed sensor that detects the temperature and pressure of the lubricating oil detected by the temperature sensor, the pressure sensor, and the rotational speed sensor, and the rotational speed of the air compressor; A lubricating oil constant supply control device comprising: an electronic control device that sends a drive pulse signal that provides an opening degree that provides a predetermined amount of lubricant flow rate corresponding to the rotational speed of the air compressor.
JP8124390A 1990-03-30 1990-03-30 Lubricating oil supply control unit Pending JPH03281979A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8124390A JPH03281979A (en) 1990-03-30 1990-03-30 Lubricating oil supply control unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8124390A JPH03281979A (en) 1990-03-30 1990-03-30 Lubricating oil supply control unit

Publications (1)

Publication Number Publication Date
JPH03281979A true JPH03281979A (en) 1991-12-12

Family

ID=13740979

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8124390A Pending JPH03281979A (en) 1990-03-30 1990-03-30 Lubricating oil supply control unit

Country Status (1)

Country Link
JP (1) JPH03281979A (en)

Similar Documents

Publication Publication Date Title
US4962745A (en) Fuel supply device of an engine
US7163086B2 (en) Lubrication system
CN101629528B (en) System used for measuring pressure and temperature of air flow in internal combustion engine
CN102410098B (en) The fuel injection control system of internal-combustion engine and method
JP2671225B2 (en) 2 cycle engine
US20160010570A1 (en) Fuel supply system for an internal combustion engine
US5271358A (en) Fuel injection system for engine
JPH0996256A (en) Egr gas assist injection system
US20090228189A1 (en) Method for Operating a Two-Stroke Engine
JP4340470B2 (en) Two-cycle engine operation method and two-cycle engine
US4989555A (en) Lubricant supply for two cycle engine
EP2024628B1 (en) Method for controlling a fuel valve and/or an air valve for an internal combustion engine
US5353759A (en) Crank chamber compression type two cycle engine
JPH04132843A (en) Fuel injection controller of two-cycle engine
JPH03281979A (en) Lubricating oil supply control unit
JPH10318102A (en) Spark ignition type two-cycle internal combustion engine with subsidiary chamber
US5673667A (en) Engine knock control
JPS60252116A (en) Piston cooling device of internal-combustion engine
US5701856A (en) Separate oiling type two cycle engine
JP2600334B2 (en) Fuel injection device for internal combustion engine
JPH02271019A (en) Lubricating device of internal combustion engine
JPH02125961A (en) Fuel supply device for two-cycle internal combustion engine
JPH04292574A (en) Fuel injection device of two-cycle engine
JP2023139626A (en) Lubrication device for engine
JPH02146253A (en) Fuel injection device of internal combustion engine