JPH03281958A - Fuel injection device for internal combustion engine - Google Patents

Fuel injection device for internal combustion engine

Info

Publication number
JPH03281958A
JPH03281958A JP8109190A JP8109190A JPH03281958A JP H03281958 A JPH03281958 A JP H03281958A JP 8109190 A JP8109190 A JP 8109190A JP 8109190 A JP8109190 A JP 8109190A JP H03281958 A JPH03281958 A JP H03281958A
Authority
JP
Japan
Prior art keywords
intake air
pressure
combustion engine
internal combustion
crank chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8109190A
Other languages
Japanese (ja)
Other versions
JP3007374B2 (en
Inventor
Kimihiro Nonaka
野中 公裕
Yukio Matsushita
松下 行男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamaha Marine Co Ltd
Original Assignee
Sanshin Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanshin Kogyo KK filed Critical Sanshin Kogyo KK
Priority to JP2081091A priority Critical patent/JP3007374B2/en
Publication of JPH03281958A publication Critical patent/JPH03281958A/en
Application granted granted Critical
Publication of JP3007374B2 publication Critical patent/JP3007374B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/02Engines characterised by their cycles, e.g. six-stroke
    • F02B2075/022Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle
    • F02B2075/025Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle two

Abstract

PURPOSE:To form an optimum concentration of air fuel mixture in response to operating conditions by detecting the quantity of intake air with high accuracy based on crank case inner pressure, intake air temperature and the like in accordance with a specified formula in the fuel injection device of a crank case pressurizing 2 cycle internal combustion engine. CONSTITUTION:When an internal combustion engine 10 is in operation, detected signals from a pressure detecting device 52, a crank angle detecting device 54 and an intake air temperature detecting device 56 are inputted into an air quantity operating device 58, the quantity of intake air G is obtained based on a formula I by the use of crank case inner pressure P1 at the time when a scavenge port is almost opened, crank case inner pressure P2 when the scavenge port is almost opened, and intake air temperature T0. An optimum fuel supply for operating conditions is then computed by an injection control device 60 based on the operation result G of the air quantity operation device 58, the rotating angle theta of a crank shaft 20 and various control signals indicating the operating conditions so that the signal for the optimum fuel supply is thereby outputted to an injection valve 46.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、クランク室予圧式2サイクル内燃機関の燃料
噴射装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a fuel injection device for a two-stroke internal combustion engine with crank chamber preload.

[従来の技術] 内燃機関に使用される燃料噴射装置では、吸入空気量に
応じて燃料噴射量を制御し、運転状態に対応した最適な
混合気濃度を得ることが必要である。
[Prior Art] In a fuel injection device used in an internal combustion engine, it is necessary to control the amount of fuel injection according to the amount of intake air to obtain the optimum air-fuel mixture concentration corresponding to the operating state.

然るに、従来の燃料噴射装置として、特開昭59−58
75号公報に記載のものが提案されている。この燃料噴
射装置は、クランク室予圧式2サイクル内燃機関におい
て、掃気口開口付近時のクランク室内圧P1と、掃気口
閉口付近時のクランク室内圧P2との差PI−P2に基
づいて、吸入空気量を求め、この吸入空気量を用いて燃
料噴射量を決定するものである。
However, as a conventional fuel injection device,
The method described in Publication No. 75 has been proposed. This fuel injection device, in a two-stroke internal combustion engine with a preloaded crank chamber, uses intake air to This intake air amount is used to determine the fuel injection amount.

即ち、吸入空気量は掃気行程開始時にクランク室内にあ
る空気重量から、掃気行程終了時にクランク室内に残っ
ている空気重量を減じたものに等しい、そして、特開昭
59−5875号にあっては、挿気行程開始時にクラン
ク室内にある空気重量の代表値として上述のP1、掃気
行程終了時にクランク室内に残っている空気重量の代表
値として上述のP2を採用し、PI−P2により吸入空
気量を求めたものである。
In other words, the amount of intake air is equal to the weight of air in the crank chamber at the start of the scavenging stroke minus the weight of air remaining in the crank chamber at the end of the scavenging stroke, and according to Japanese Patent Application Laid-Open No. 59-5875, , the above-mentioned P1 is adopted as the representative value of the air weight in the crank chamber at the beginning of the injection stroke, and the above-mentioned P2 is adopted as the representative value of the air weight remaining in the crank chamber at the end of the scavenging stroke, and the intake air amount is determined by PI-P2. This is what we sought.

[発明が解決しようとする課題] 黙しながら、実際の内燃機関においては、吸入された空
気はポリトロープ変化するため、単にPi−P2から吸
入空気量を求める従来技術では吸入空気量の検出精度が
低い、このことは、燃料噴射量を実際の吸入空気量に応
じて制御することの制御精度が低く、運転状態に対応し
た混合気濃度の形成を困難にすることを意味する。
[Problems to be Solved by the Invention] Silently, in an actual internal combustion engine, the intake air changes polytropically, so the conventional technology that simply calculates the intake air amount from Pi-P2 has low accuracy in detecting the intake air amount. This means that the control accuracy of controlling the fuel injection amount in accordance with the actual intake air amount is low, making it difficult to form a mixture concentration that corresponds to the operating state.

本発明は、クランク室予圧式2サイクル内燃機関の燃料
噴射装置において、吸入空気量を高精度に検出し、結果
として燃料噴射量を実際の吸入空気量に応じて制御する
ことの制御精度を向上し、運転状態に対応した最適な混
合気濃度を形成することを目的とする。
The present invention detects the amount of intake air with high accuracy in a fuel injection device for a two-stroke internal combustion engine with crank chamber preloading, and as a result improves the control accuracy of controlling the amount of fuel injection according to the actual amount of intake air. The purpose is to form the optimum mixture concentration corresponding to the operating conditions.

[課題を解決するための手段] 本発明は、吸入空気をクランク室で予圧し、予圧した吸
入空気な掃気口から燃焼室へ供給するクランク室予圧式
2サイクル内燃機関において、クランク室内圧を検出す
る圧力検出装置と、吸気温度を検出する吸気温度検出装
置と、圧力検出装置と吸気温度検出装置の検出信号を得
て、掃気口開口付近時のクランク室内圧Pl、掃気口閉
口付近時のクランク室内圧P2.吸気温度TOを用いて
、下記の式或いは、下記の式を簡素化した数式・数表に
基づき吸入空気量Gを求める空気量演算装置と、空気量
演算装置の演算結果に基づき燃料噴射量を決定する噴射
制御装置とを有して構成されるようにしたものである。
[Means for Solving the Problems] The present invention provides a crank chamber pre-pressure type two-stroke internal combustion engine in which intake air is pre-pressurized in a crank chamber and the pre-pressurized intake air is supplied to a combustion chamber from a scavenging port. A pressure detection device that detects the intake air temperature, an intake air temperature detection device that detects the intake air temperature, and detecting signals from the pressure detection device and the intake air temperature detection device are obtained to determine the crank room pressure Pl when the scavenging port is near the opening, and the crankshaft when the scavenging port is near the closing. Indoor pressure P2. Using the intake air temperature TO, an air amount calculation device calculates the intake air amount G based on the following formula or a simplified formula/table of the following formula, and calculates the fuel injection amount based on the calculation result of the air amount calculation device. The injection control device is configured to include an injection control device that makes a decision.

G=h [f(P1、 P2)、 T0]但し、f (
P1、 P2)= P2 [(Pl/P2)’/”−1
]n:ボリトローブ指数 [作用] 吸入空気重量は掃気行程時にクランク室内から燃焼室内
へ流出した空気重量と等しい、換言すれば、掃気行程開
始時(掃気口開日付近時)クランク室内にある空気重量
から掃気行程終了11e(掃気口閉口付近時)クランク
室内に残っている空気重量を減したものか吸入空気重量
である。これを式で表わすと下記(1)式の如くである
G=h [f(P1, P2), T0] However, f (
P1, P2) = P2 [(Pl/P2)'/”-1
] n: Volitrobe index [effect] The weight of intake air is equal to the weight of the air flowing out from the crank chamber into the combustion chamber during the scavenging stroke.In other words, the weight of the air in the crank chamber at the start of the scavenging stroke (near the opening of the scavenging port) This is the weight of the air remaining in the crank chamber at the end of the scavenging stroke 11e (near the closing of the scavenging port) or the weight of the intake air. This can be expressed as the following equation (1).

GAir = G 1− G2         、、
、 (1)GAir:吸入空気重量 G1 :掃気行程開始時の空気重量 G2 :掃気行程終了時の空気重量 前述の特開昭59−5875号ではG1を示す値として
掃気口開口付近時のクランク室内圧P1、G2を示す値
として掃気口m口付近時のクランク室内圧P2を利用し
た。このため、吸入空気重量を求めるためのパラメータ
としてP 1−P 2を用いたのである。
GAir=G1-G2,,
, (1) GAir: Intake air weight G1: Air weight at the start of the scavenging stroke G2: Air weight at the end of the scavenging stroke In the aforementioned Japanese Patent Application Laid-open No. 59-5875, the value indicating G1 is the value in the crank chamber near the scavenging port opening. The crank chamber pressure P2 near the scavenging port m was used as the value indicating the pressures P1 and G2. For this reason, P 1 - P 2 was used as a parameter for determining the intake air weight.

ところが、実際の内燃機関においては、吸入された空気
がポリトロープ変化するため、空気重量Gを示す値はク
ランク室内圧Pとともにクランク室内湯度Tが影響しP
/Tとなる。即ち、吸入空気重量を求めるためのパラメ
ータは下記(2)式の如くになる。
However, in an actual internal combustion engine, the intake air changes polytropically, so the value indicating the air weight G is influenced by the crank chamber pressure P and the crank chamber hot water temperature T.
/T. That is, the parameters for determining the intake air weight are as shown in equation (2) below.

TI      T2 Tl:掃気口開口付近時のクランク室内温度 T 2 : 掃気口閉口付近時のクランク室内温度 Tl =72であれば特開昭59−5875号で示した
PI−P2をパラメータとすれば良いのであるが実際の
内燃機関ではTI=T2とはならないためPI−P2を
パラメータとして求めた吸入空気重置の精度は低下する
のである。
TI T2 Tl: Temperature inside the crankshaft near the opening of the scavenging port T2: Temperature inside the crankshaft near the closing of the scavenging port Tl = 72, then PI-P2 shown in JP-A No. 59-5875 may be used as a parameter. However, in an actual internal combustion engine, TI=T2 does not hold, so the accuracy of intake air superimposition determined using PI-P2 as a parameter decreases.

従って、上記(2)式をパラメータとして吸入空気重量
を求めれば精度は向上する。
Therefore, accuracy can be improved by determining the intake air weight using the above equation (2) as a parameter.

黙しながら、クランク角度とともに刻々と変化するクラ
ンク室内温度を反応良く、又精度良く測定することは困
難である。
However, it is difficult to accurately and responsively measure the temperature inside the crankshaft, which constantly changes with the crank angle.

そこで上記(2)式を次のように変形する。Therefore, the above equation (2) is modified as follows.

ここで、内燃機関に吸入された空気はポリトロープ変化
するため、T1とT2の関係は下記(3)式の如くにな
る。
Here, since the air taken into the internal combustion engine undergoes a polytropic change, the relationship between T1 and T2 is as shown in equation (3) below.

n:ポリトロープ指数 又、T2は吸気温度TOとほぼ等しいことから前記(2
)式は下記(4)式の如くになる。
n: Polytropic index Also, since T2 is almost equal to the intake air temperature TO, the above (2
) is as shown in equation (4) below.

・・・(4) これにより吸入空気重量Gは下記(5)式の如く、吸気
温度TO及びPl、P2の関数f (P1、 P2)を
パラメータとした関数りで求められる。
(4) As a result, the intake air weight G can be determined by a function using the intake air temperature TO and the function f (P1, P2) of Pl and P2 as parameters, as shown in equation (5) below.

(3=)1 [f(P1、 P2)、 T0]    
  ・・・(5)h:実験から求められる実験式 尚、本発明の実施において、上記Gは内燃機関の運転制
御に用いるため、処理速度を高める必要がある。このた
め、上述の関数f、hは複雑な指数を含まない簡素化し
た式、例えば多項式に変換して用いたり、或いは広範に
変化する各種のTOlP1、P2に対応する各種のf 
(P1、 P2)、Gを予め数表、グラフ等にて用意し
たマツプを用いることもできる。
(3=)1 [f(P1, P2), T0]
(5) h: Experimental formula determined from experiments In the implementation of the present invention, since the above G is used to control the operation of the internal combustion engine, it is necessary to increase the processing speed. For this reason, the functions f and h described above may be converted into simplified expressions that do not include complex exponents, such as polynomials, or may be used by converting them into various types of f corresponding to the various types of TOlP1 and P2 that vary widely.
It is also possible to use a map in which (P1, P2) and G are prepared in advance in the form of a numerical table, graph, or the like.

[実施例] 第1図は本発明の一実施例を示す制御系統図である。[Example] FIG. 1 is a control system diagram showing one embodiment of the present invention.

第1図で符号10はクランク室予圧式2サイクル内燃機
関、12はシリンダ、12Aは燃焼室、14はピストン
、16は点火栓、18はクランクケース、20はクラン
ク軸、又22はコンロッドである。クランクケース18
内にクランク室24が形成される。
In FIG. 1, reference numeral 10 is a two-stroke internal combustion engine with preloaded crank chamber, 12 is a cylinder, 12A is a combustion chamber, 14 is a piston, 16 is a spark plug, 18 is a crankcase, 20 is a crankshaft, or 22 is a connecting rod. . crank case 18
A crank chamber 24 is formed therein.

26は吸気管であり、この吸気管26はリード弁28を
介して吸気ボート30に接続されている。
26 is an intake pipe, and this intake pipe 26 is connected to the intake boat 30 via a reed valve 28.

32は排気ボート、34は排気管である。尚、シリンダ
12には掃気ボート36が開口し、この掃気ボート36
は掃気通路38によりクランク室24へ連通している。
32 is an exhaust boat, and 34 is an exhaust pipe. Incidentally, a scavenging boat 36 is opened in the cylinder 12, and this scavenging boat 36
communicates with the crank chamber 24 through a scavenging passage 38.

40は燃料タンク、42は燃料中のごみを除去するため
のストレーナ、44は電磁式燃料ポンプである。46は
電磁式燃料噴射弁であり、この噴射弁46へは燃料ポン
プ44より圧送された燃料が供給されている。48は圧
力調整器であって、燃料ポンプ44より噴射弁46へ圧
送される燃料圧を一定に保つ。即ち、燃料ポンプ44よ
り噴射弁46へ供給される燃料圧か、所定の圧力以上に
なると圧力調整器48が開き燃料の一部をパイプ50を
介して前記燃料タンク40へ還流させる。
40 is a fuel tank, 42 is a strainer for removing dust from the fuel, and 44 is an electromagnetic fuel pump. Reference numeral 46 denotes an electromagnetic fuel injection valve, and fuel pumped from the fuel pump 44 is supplied to this injection valve 46. Reference numeral 48 denotes a pressure regulator that keeps the pressure of the fuel fed from the fuel pump 44 to the injection valve 46 constant. That is, when the fuel pressure supplied from the fuel pump 44 to the injection valve 46 exceeds a predetermined pressure, the pressure regulator 48 opens and a portion of the fuel is returned to the fuel tank 40 via the pipe 50.

52はクランクケース18に取付けられた圧力検出装置
であり、クランク室内圧Pを検出する。
52 is a pressure detection device attached to the crankcase 18, which detects the crank chamber internal pressure P.

54はクランク軸20に取付けられたクランク角度検出
装置であり、クランク軸20の回転角度θを検出する。
54 is a crank angle detection device attached to the crankshaft 20, which detects the rotation angle θ of the crankshaft 20.

このクランク角度検出装置54は、本発明の実施におい
て、掃気ボート36の開口付近時タイミング(θPI)
と閏日付近時タイミンク(θP2)を検出するタイミン
グ検出手段として機能する。
In the implementation of the present invention, this crank angle detection device 54 detects the timing (θPI) near the opening of the scavenging boat 36.
It functions as a timing detection means for detecting timing (θP2) near a leap day.

56は吸気管26に取付けられた吸気温度検出装置であ
り、吸気温度Tを検出する。
56 is an intake air temperature detection device attached to the intake pipe 26, which detects the intake air temperature T.

58は空気量演算装置である。空気量演算装置58は圧
力検出装置52とクランク角度検出装置54と吸気温度
検出装置56の検出信号を得て、掃気口開口付近時(θ
PI)のクランク室内圧P 1 、 il気口閉日付近
時(θP2)のクランク室内圧P2、吸気温度TOを用
いて、前述の(5)式に基づき吸入空気量Gを求める。
58 is an air amount calculation device. The air amount calculation device 58 obtains the detection signals of the pressure detection device 52, the crank angle detection device 54, and the intake air temperature detection device 56, and detects the detection signal when near the scavenging port opening (θ
Using the crank chamber pressure P 1 of PI), the crank chamber pressure P 2 near the time when the il air port is closed (θP2), and the intake air temperature TO, the intake air amount G is determined based on the above-mentioned equation (5).

60は噴射制御装置である。噴射制御装置6゜は、空気
量演算装置58の演算結果G、クランク軸20の回転角
度θ、その他吸気温度、機関温度、加減速等、運転状況
を示す種々の制御信号が入力される。噴射制御装置60
は運転状況に最適な燃料供給量を、噴射制御装置60内
に予め記憶された演算プログラムに従って算出し、噴射
信号工を前記噴射弁46へ出力する。この噴射信号Iは
、クランク軸20の回転角度θに同期した間欠的に所定
時間幅の電気信号であり、噴射弁46内の電磁ソレノイ
ドがこの噴射信号■によって作動し噴射弁46を開く、
噴射制御袋W60は、この噴射信号Iの時間幅を運転状
況に対応して最適となるように決定するものである。
60 is an injection control device. The injection control device 6° receives the calculation result G of the air amount calculation device 58, the rotation angle θ of the crankshaft 20, and various control signals indicating operating conditions such as intake air temperature, engine temperature, acceleration/deceleration, etc. Injection control device 60
calculates the optimal fuel supply amount for the operating conditions according to a calculation program stored in advance in the injection control device 60, and outputs an injection signal to the injection valve 46. This injection signal I is an electric signal of a predetermined time width intermittently synchronized with the rotation angle θ of the crankshaft 20, and the electromagnetic solenoid in the injection valve 46 is actuated by this injection signal ■ to open the injection valve 46.
The injection control bag W60 determines the time width of the injection signal I to be optimal in accordance with the driving situation.

この噴射制御袋j180はデジタル計算器で構成できる
ことは勿論であるが、アナログ回路で構成しても良い。
Of course, this injection control bag j180 can be constructed from a digital calculator, but it may also be constructed from an analog circuit.

次に、この実施例の動作を説明する。Next, the operation of this embodiment will be explained.

ピストン14の上昇によりクランク室24内圧が降下し
、ピストン14が吸気ボート3oを開くと、吸入空気が
リード弁28を介してクランク室24内へ流入する。
As the piston 14 rises, the internal pressure of the crank chamber 24 decreases, and when the piston 14 opens the intake boat 3o, intake air flows into the crank chamber 24 via the reed valve 28.

ピストン14が降下するとクランク室24内で吸入空気
が予圧され、掃気ボート36が開くとこの予圧された吸
入空気が掃気通路38を通って燃焼室12Aへ流入し既
燃焼ガスを排気ボート32へ押出す。
When the piston 14 descends, intake air is pre-pressurized within the crank chamber 24, and when the scavenging boat 36 opens, this pre-pressurized intake air flows into the combustion chamber 12A through the scavenging passage 38 and pushes the burned gas into the exhaust boat 32. put out.

この間において、空気量演算装置58は圧力検出装置5
2とクランク角度検出装置54と吸気温度検出装置56
の検出信号を得て、前述の(5)式により、吸入吸気1
Gを求める。そして、噴射制御袋fi60は、空気量演
算装置58の演算結果G、クランク軸20の回転角度θ
、その他の種々の制御信号に基づき、最適燃料供給量に
見合った噴射信号Iの時間幅を算出する。噴射弁46に
は圧力調整器48により一定圧に保たれた燃料が供給さ
れ、噴射信号工が入力されるとその時間幅たけこの噴射
弁46か開いて適量の燃料を燃焼室12A内へ噴射する
。このため燃焼室12A内で生成される混合気は最適な
濃度となる。
During this time, the air amount calculation device 58 is operated by the pressure detection device 5.
2, crank angle detection device 54, and intake air temperature detection device 56
Obtaining the detection signal of
Find G. The injection control bag fi60 calculates the calculation result G of the air amount calculation device 58 and the rotation angle θ of the crankshaft 20.
, and other various control signals, calculates the time width of the injection signal I that matches the optimum fuel supply amount. Fuel maintained at a constant pressure by a pressure regulator 48 is supplied to the injection valve 46, and when an injection signal is input, the injection valve 46 is opened for a certain period of time and an appropriate amount of fuel is injected into the combustion chamber 12A. do. Therefore, the air-fuel mixture generated within the combustion chamber 12A has an optimal concentration.

上記実施例によれば、空気量演算装置58による吸入空
気量Gの演算に際し、吸入空気のポリトロープ変化を考
慮した前記(5)式或いは(5)式を簡素化した数式・
数表を用いることとしたから、吸入空気量を高精度に検
出し、結果として燃料噴射量を実際の吸入空気量に応じ
て制御することの制御精度を向上し、運転状態に対応し
た最適な混合気濃度を形成することができる。
According to the above embodiment, when calculating the intake air amount G by the air amount calculating device 58, the above-mentioned equation (5) or a simplified equation
By using a numerical table, the amount of intake air can be detected with high precision, and as a result, the control accuracy of controlling the fuel injection amount according to the actual amount of intake air can be improved. A mixture concentration can be formed.

尚、本発明の実施において、噴射弁は吸気管(26)に
取付けられ、燃料を吸気管内へ噴射し、クランク室では
混合気を予圧縮するものであっても良い。
Incidentally, in implementing the present invention, the injection valve may be attached to the intake pipe (26), inject fuel into the intake pipe, and precompress the air-fuel mixture in the crank chamber.

又、本発明の実施において、掃気口開口付近時のクラン
ク室内圧Pl、及び掃気口閉口付近時のクランク室内圧
P2を検出するに際し、掃気口の開閉タイミングは必ず
しも上記実施例の如くのクランク角度検出装置の検出信
号に基づいて検出することを要さない0例えば特開昭5
9−(i875号公報に記載の如くの圧力検出装置の設
置構造により、掃気・口の開口付近時及び閉口付近時の
クランク室内圧を検出することとしても良い。
Furthermore, in implementing the present invention, when detecting the crank chamber pressure Pl near the opening of the scavenging port and the crank chamber pressure P2 near the closing of the scavenging port, the opening/closing timing of the scavenging port does not necessarily depend on the crank angle as in the above embodiment. 0, which does not require detection based on the detection signal of the detection device
9-(By using the installation structure of the pressure detection device as described in the I875 publication, the pressure inside the crank chamber may be detected near the opening of the scavenging/port and near the closing of the port.

[発明の効果] 以上のように本発明によれば、クランク室予圧式2サイ
クル内燃機関の燃料噴射装置において、吸入空気量を高
精度に検出し、結果として燃料噴射量を実際の吸入空気
量に応じて制御することの制御精度を向上し、運転状態
に対応した最適な混合気濃度を形成することができる。
[Effects of the Invention] As described above, according to the present invention, in a fuel injection device for a two-stroke internal combustion engine with crank chamber preloading, the amount of intake air is detected with high precision, and as a result, the amount of fuel injection is adjusted to the actual amount of intake air. It is possible to improve the control accuracy of control according to the operating conditions and form the optimum mixture concentration corresponding to the operating state.

【図面の簡単な説明】[Brief explanation of drawings]

図は本発明の一実施例を示す制御系統図で第1 ある。 10・・・内燃機関、 12A・・・燃焼室、 24・・・クランク室、 36・・・掃気ボート、 52・・・圧力検出装置、 54・・・クランク角度検出装置、 56・・・吸気温度検出装置、 58・・・空気量演算装置、 60・・・噴射制御装置。 The figure is a control system diagram showing one embodiment of the present invention. be. 10... Internal combustion engine, 12A... combustion chamber, 24...crank chamber, 36...Scavenging boat, 52...pressure detection device, 54...Crank angle detection device, 56...Intake air temperature detection device, 58... Air amount calculation device, 60... Injection control device.

Claims (1)

【特許請求の範囲】[Claims] (1)吸入空気をクランク室で予圧し、予圧した吸入空
気を掃気口から燃焼室へ供給するクランク室予圧式2サ
イクル内燃機関において、クランク室内圧を検出する圧
力検出装置と、吸気温度を検出する吸気温度検出装置と
、圧力検出装置と吸気温度検出装置の検出信号を得て、
掃気口開口付近時のクランク室内圧P1、掃気口閉口付
近時のクランク室内圧P2、吸気温度T0を用いて、下
記の式に基づき吸入空気量Gを求める空気量演算装置と
、空気量演算装置の演算結果に基づき燃料噴射量を決定
する噴射制御装置とを有して構成されることを特徴とす
る内燃機関の燃料噴射装置。 G=h[f(P1、P2)、T0] 但し、f(P1、P2)=P2[(P1/P2)^1^
/^n−1]n:ポリトロープ指数
(1) In a crank chamber preload type two-stroke internal combustion engine that prepressurizes intake air in the crank chamber and supplies the prepressurized intake air to the combustion chamber from the scavenging port, a pressure detection device that detects the pressure in the crank chamber and a pressure detection device that detects the intake air temperature are used. Obtain the detection signals of the intake air temperature detection device, the pressure detection device, and the intake air temperature detection device,
An air amount calculation device that calculates the intake air amount G based on the following formula using the crank chamber pressure P1 near the scavenging port opening, the crank indoor pressure P2 near the scavenging port closing, and the intake air temperature T0, and the air amount calculation device 1. A fuel injection device for an internal combustion engine, comprising: an injection control device that determines a fuel injection amount based on a calculation result. G=h[f(P1, P2), T0] However, f(P1, P2)=P2[(P1/P2)^1^
/^n-1]n: polytropic index
JP2081091A 1990-03-30 1990-03-30 Fuel injection device for internal combustion engine Expired - Lifetime JP3007374B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2081091A JP3007374B2 (en) 1990-03-30 1990-03-30 Fuel injection device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2081091A JP3007374B2 (en) 1990-03-30 1990-03-30 Fuel injection device for internal combustion engine

Publications (2)

Publication Number Publication Date
JPH03281958A true JPH03281958A (en) 1991-12-12
JP3007374B2 JP3007374B2 (en) 2000-02-07

Family

ID=13736719

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2081091A Expired - Lifetime JP3007374B2 (en) 1990-03-30 1990-03-30 Fuel injection device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP3007374B2 (en)

Also Published As

Publication number Publication date
JP3007374B2 (en) 2000-02-07

Similar Documents

Publication Publication Date Title
US4424568A (en) Method of controlling internal combustion engine
JPS6340257B2 (en)
EP0478120A2 (en) Method and apparatus for inferring barometric pressure surrounding an internal combustion engine
JPS595875A (en) Fuel injection device for two-cycle internal-combustion engine
JPH0240054A (en) Air-fuel ratio control device for internal combustion engine for vehicle
EP0476811A2 (en) Method and apparatus for controlling an internal combustion engine
CN106468210A (en) The control device of the internal combustion engine with supercharger
EP1437498B1 (en) 4−STROKE ENGINE CONTROL DEVICE AND CONTROL METHOD
KR940001682Y1 (en) Fuel injection device
JPH04101041A (en) Fuel injection device for internal combustion engine
ATE508269T1 (en) ENGINE CONTROL DEVICE
JPH0610741A (en) Fuel injection controller of two-cycle internal combustion engine
US6985806B2 (en) Method for determining an estimated value of a mass flow in the intake channel of an internal combustion engine
JPWO2003038262A1 (en) Apparatus and method for detecting atmospheric pressure of 4-stroke engine
JPH03281958A (en) Fuel injection device for internal combustion engine
JP3964347B2 (en) Intake device for internal combustion engine
US7231909B2 (en) Air intake apparatus and control apparatus for an internal combustion engine
JPS6318766Y2 (en)
GB2333159A (en) Method and system for estimating cylinder air flow
JPS6146409A (en) Lubricant supplying device of engine
GB2222004A (en) Fuel injection control for a two-stroke engine
JPS6487847A (en) Fuel injection timing control for internal combustion engine
JPS61182438A (en) Control method of internal-combustion engine
JPS6035153A (en) Control method of fuel injection in internal-conbustion engine
JPS6453032A (en) Fuel injection quantity controller for internal combustion engine with exhaust gas recirculation system