JPH03281929A - Exhaust system of engine - Google Patents

Exhaust system of engine

Info

Publication number
JPH03281929A
JPH03281929A JP2086334A JP8633490A JPH03281929A JP H03281929 A JPH03281929 A JP H03281929A JP 2086334 A JP2086334 A JP 2086334A JP 8633490 A JP8633490 A JP 8633490A JP H03281929 A JPH03281929 A JP H03281929A
Authority
JP
Japan
Prior art keywords
exhaust
exhaust passage
catalyst
exhaust passages
intake air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2086334A
Other languages
Japanese (ja)
Inventor
Mitsuo Hitomi
光夫 人見
Kenji Kashiyama
謙二 樫山
Takeshi Umehara
健 梅原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP2086334A priority Critical patent/JPH03281929A/en
Publication of JPH03281929A publication Critical patent/JPH03281929A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2006Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating
    • F01N3/2046Periodically cooling catalytic reactors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/011Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more purifying devices arranged in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2006Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Characterised By The Charging Evacuation (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

PURPOSE:To control temperature of a catalyst in all driving ranges and improve scavenge efficiency by connecting cylinders of an engine with a catalyst device through plural exhaust passages in various length in parallel, for example, guiding exhaust gas into a short exhaust passage in a small intake air amount range. CONSTITUTION:Exhaust passages 3 are connected to respective cylinders 1 formed in respective banks L, R respectively, and there are provided catalysts 4 in the exhaust passages 3 as a catalyst device in an engine. With this constitution, there are provided the first exhaust passages 6 and the second exhaust passages 7 whose one end is connected to a collecting exhaust passage 5 and the other end is connected to the catalyst 4 in the exhaust passages 3. Besides, the first exhaust passages 6 are set short in a straight shape, and the second exhaust passages 7 are set into long in a U-shape. Moreover, collecting parts of collecting exhaust passages 5, the first exhaust passages 6, and the second exhaust passages 7 are provided with switch valves 9. Then the switch valves 9 are operated so that exhaust gas may be guided into the first short exhaust passages 6 in a small intake air amount range, and exhaust gas may be guided into the second long exhaust passages 7 in a large intake air amount range.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、排気通路に触媒装置を備えたエンジンの排気
装置の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an improvement in an exhaust system for an engine equipped with a catalyst device in an exhaust passage.

(従来の技術) 従来、エンジンの排気装置として、例えば特公昭54−
10052号公報に開示されるように、エンジンのシリ
ンダの排気ポートに排気通路を接続すると共に、この排
気通路に触媒装置を設け、触媒装置によって排気ガスを
浄化するようにしたものが知られている。
(Prior Art) Conventionally, as an engine exhaust system, for example, the
As disclosed in Japanese Patent No. 10052, there is known an engine in which an exhaust passage is connected to an exhaust port of an engine cylinder, and a catalyst device is provided in this exhaust passage, so that the catalyst device purifies exhaust gas. .

(発明が解決しようとする課題) このようなエンジンでは、低吸入空気量域では排気ガス
の流量か少ないので、触媒装置の温度が充分に上昇せず
に活性化か不十分になり、排気ガスの浄化が良好に行え
ない嫌いがある。一方、高吸入空気量域では排気ガスの
流量が多いので、触媒装置が抵抗になってエンジンの掃
気効率が低下すると共に、触媒装置の温度が上昇し過ぎ
てその劣化を招き易い。
(Problem to be solved by the invention) In such an engine, the flow rate of exhaust gas is small in the low intake air amount range, so the temperature of the catalyst device does not rise sufficiently and activation is insufficient, resulting in exhaust gas There is a dislike that purification cannot be carried out properly. On the other hand, in a high intake air amount region, the flow rate of exhaust gas is large, so the catalyst device becomes a resistance, reducing the scavenging efficiency of the engine, and the temperature of the catalyst device increases too much, which tends to cause its deterioration.

本発明はこのような点に着目してなされたものであり、
その目的とするところは、排気通路の長さを可変にして
エンジンの全運転域において触媒装置の温度管理および
掃気効率を向上させることにある。
The present invention has been made with attention to these points,
The purpose is to make the length of the exhaust passage variable to improve temperature control of the catalyst device and scavenging efficiency over the entire operating range of the engine.

(課題を解決するための手段) 上記目的を達成するため、本発明の解決手段は、エンジ
ンのシリンダと触媒装置とを長さが異なる複数の排気通
路で並列に接続し、低吸入空気量域では排気ガスを短い
排気通路に導き、高吸入空気置載では排気ガスを長い排
気通路に導く切換手段を設ける構成としたものである。
(Means for Solving the Problems) In order to achieve the above object, the solving means of the present invention connects the cylinders of the engine and the catalyst device in parallel through a plurality of exhaust passages having different lengths. In this case, the exhaust gas is guided to a short exhaust passage, and in the case of a high intake air installation, a switching means is provided to guide the exhaust gas to a long exhaust passage.

(作用) 上記の構成により、本発明では、低吸入空気量域ではシ
リンダから排気ガスが短い排気通路を介して触媒装置に
導かれるので、シリンダからの排気ガスがさほど温度低
下していない状態で触媒装置に入ることになり、触媒装
置の温度が充分に上昇して十分に活性化され、排気ガス
の浄化が良好に行われる。
(Function) With the above configuration, in the present invention, exhaust gas from the cylinder is guided to the catalyst device through a short exhaust passage in a low intake air amount region, so that the temperature of the exhaust gas from the cylinder is not significantly reduced. The exhaust gas enters the catalyst device, and the temperature of the catalyst device rises sufficiently to be fully activated, thereby effectively purifying the exhaust gas.

一方、高吸入空気量域ではシリンダから排気ガスか長い
排気通路を介]7て触媒装置に導かれるので、触媒装置
をボリューム室として排気通路長さに応じた共鳴効果が
得られてエンジンの掃気効率が向上する。またシリンダ
から触媒装置までの距離が長く、この間で排気ガスの温
度か低下するので、触媒装置の温度上昇が抑制されてそ
の劣化が防止される。
On the other hand, in a high intake air amount region, the exhaust gas from the cylinder is guided to the catalyst device via a long exhaust passage, so the catalyst device is used as a volume chamber to create a resonance effect according to the length of the exhaust passage, and scavenge the engine. Increased efficiency. Furthermore, since the distance from the cylinder to the catalyst device is long and the temperature of the exhaust gas decreases during this distance, the temperature rise of the catalyst device is suppressed and its deterioration is prevented.

(第1実施例) 以下、本発明の実施例を図面に基づいて説明する。(First example) Embodiments of the present invention will be described below based on the drawings.

第1図〜第3図は本発明の第1一実施例に係る排気装置
を備えた■形6気筒エンジンを示す。第1図に示すよう
に、このエンジンは左バンクLと右バンクRとを備え、
各バンクL、Hに3本のシリンダコ−がそれぞれ形成さ
れている。バンクL、 Rの間には吸気通路2か設けら
れている。この吸気通路2は一端が大気に開放され、他
端が各シリンダ1に接続されていて、各シリンダ1に新
気を供給するようにしている。
1 to 3 show a six-cylinder engine equipped with an exhaust system according to an eleventh embodiment of the present invention. As shown in FIG. 1, this engine has a left bank L and a right bank R.
Three cylinder cores are formed in each bank L and H, respectively. An intake passage 2 is provided between banks L and R. The intake passage 2 has one end open to the atmosphere and the other end connected to each cylinder 1 to supply fresh air to each cylinder 1.

また、上記各シリンダ1にはバンクごとに排気通路3が
接続されている。この排気通路3には触媒装置としての
キャタリスト4が設けられ、排気ガスを浄化するように
している。
Further, an exhaust passage 3 is connected to each cylinder 1 for each bank. A catalyst 4 as a catalyst device is provided in the exhaust passage 3 to purify the exhaust gas.

上記排気通路3は、一端が各シリンダ1に接続され他端
が一本に集合された集合排気通路5と、一端が集合排気
通路5に接続され他端がキャタリスト4に接続された第
1排気通路6および第2排気通路7と、一端かキャタリ
スト4に接続され他端が左右のバンクで集合された下流
側排気通路8とからなる。そして、上記第1排気通路6
は直線状に短く設定され、第2排気通路7はU字状に長
く設定されている。具体的には、上記キャタリスト4を
ボリューム室として集合排気通路5および第2排気通路
7によって得られる共鳴効果の同調回転数をN1とし、
集合排気通路5および第1排気通路6によって得られる
共鳴効果の同調回転数をN2とし、許容最高回転数をN
maxとした場合、 Nmax< (3/2)N1.Nmax<N2が満足さ
れるように設定されている。また、第1排気通路6と第
2排気通路7とのキャタリスト側集合部は所定の容積を
有する容積室に形成されている。
The exhaust passage 3 includes a collective exhaust passage 5 whose one end is connected to each cylinder 1 and whose other end is collected into one, and a first exhaust passage 5 whose one end is connected to the collective exhaust passage 5 and the other end is connected to the catalyst 4. It consists of an exhaust passage 6, a second exhaust passage 7, and a downstream exhaust passage 8 whose one end is connected to the catalyst 4 and whose other end is gathered at left and right banks. And the first exhaust passage 6
is set in a short straight line, and the second exhaust passage 7 is set in a long U-shape. Specifically, the catalyst 4 is used as a volume chamber, and the tuned rotational speed of the resonance effect obtained by the collective exhaust passage 5 and the second exhaust passage 7 is set as N1,
Let N2 be the tuned rotation speed of the resonance effect obtained by the collective exhaust passage 5 and the first exhaust passage 6, and let N2 be the maximum allowable rotation speed.
max, Nmax< (3/2)N1. It is set so that Nmax<N2 is satisfied. Further, the catalyst side gathering portion of the first exhaust passage 6 and the second exhaust passage 7 is formed in a volume chamber having a predetermined volume.

さらに、集合排気通路5と第1排気通路6と第2排気通
路7との集合部には切換弁9が設けられている。この切
換弁9はコントロールユニット(図示省略)によって制
御される。このコントロールユニットには吸入空気流量
、エンジン回転数などのデータか入力されており、低吸
入空気量域ては第2図に示すように排気ガスを短い第1
排気通路6に導き、高吸入空気量域では第3図に示すよ
うに排気ガスを長い第2排気通路7に導くように切換弁
9を操作するようにしている。
Further, a switching valve 9 is provided at a meeting point of the collective exhaust passage 5, the first exhaust passage 6, and the second exhaust passage 7. This switching valve 9 is controlled by a control unit (not shown). Data such as intake air flow rate and engine speed are input to this control unit.
The switching valve 9 is operated so as to guide the exhaust gas to the exhaust passage 6, and in the high intake air amount region, to guide the exhaust gas to the long second exhaust passage 7 as shown in FIG.

したがって、上記実施例においては、低吸入空気量域で
はシリンダ1から排気ガスが短い第1排気通路6を介し
てキャタリスト4に導かれるので、シリンダ1からの排
気ガスがさほど温度低下し、ていない状態でキャタリス
ト4に入ることになり、キャタリスト4の温度が充分に
上昇して十分に活性化され、排気ガスの浄化が良好に行
われる。
Therefore, in the above embodiment, in the low intake air amount region, the exhaust gas from the cylinder 1 is guided to the catalyst 4 via the short first exhaust passage 6, so the temperature of the exhaust gas from the cylinder 1 is not much lowered and Therefore, the temperature of the catalyst 4 rises sufficiently and becomes sufficiently activated, and the exhaust gas is effectively purified.

一方、高吸入空気量域ではシリンダ1から排気ガスか長
い第2排気通路7を介してキャタリスト4に導かれるの
で、キャタリスト4をボリューム室として排気通路長さ
に応じた共鳴効果が得られてエンジンの掃気効率が向上
する。またシリンダからキャタリスト4まての距離か長
く、この間で排気ガスの温度が低下するのて、キャタリ
スト4の温度上昇が抑制されてその劣化を防止すること
ができる。
On the other hand, in a high intake air amount region, the exhaust gas from the cylinder 1 is guided to the catalyst 4 via the long second exhaust passage 7, so that the catalyst 4 is used as a volume chamber and a resonance effect corresponding to the length of the exhaust passage is obtained. This improves engine scavenging efficiency. In addition, the distance from the cylinder to the catalyst 4 is long, and the temperature of the exhaust gas decreases during this time, so the temperature rise of the catalyst 4 is suppressed and its deterioration can be prevented.

(第2実施例) 第4図は第2実施例を示す。この第2実施例では長い第
2排気通路7を他のバンクL、Rのキャタリスト4に接
続している。このことにより、第2排気通路7の曲がり
を小さくできて排気抵抗を低減することができる。
(Second Embodiment) FIG. 4 shows a second embodiment. In this second embodiment, a long second exhaust passage 7 is connected to the catalysts 4 of the other banks L and R. This makes it possible to reduce the bending of the second exhaust passage 7 and reduce exhaust resistance.

(第3実施例) 第5図は第3実施例を示す。この第3実施例では上記第
2実施例のように構成した第2排気通路同士をその中途
部において連通路20により連通し、この連通路20に
開閉弁21を設けたものである。すなわち、この開閉弁
21を開くことで共鳴効果の同調回転数が変わり、エン
ジン回転数に応じて掃気効果を一層効果的に引き出すこ
とができる。
(Third Embodiment) FIG. 5 shows a third embodiment. In this third embodiment, the second exhaust passages configured as in the second embodiment are communicated with each other by a communication passage 20 at a midway portion thereof, and an on-off valve 21 is provided in this communication passage 20. That is, by opening the on-off valve 21, the tuned rotational speed of the resonance effect changes, and the scavenging effect can be brought out even more effectively in accordance with the engine rotational speed.

(第4実施例) 第6図〜第8図は第4実施例を示す。この第4実施例で
は上記第2実施例のように構成した排気装置において、
右バンクRの第1排気通路6および切換弁9を設けず、
右バンクRについては常に長い第2排気通路7を介して
キャタリスト4に接続されている。すなわち、低吸入空
気量域および冷間時では第7図に示すように、切換弁9
により左バンクLの第1排気通路6を開き且つ第2排気
通路7を閉じることで全シリンダ1の排気ガスを左バン
クLのキャタリスト4に導き、高吸入空気量域では第8
図に示すように、切換弁9により左バンクLの第1排気
通路6を閉じ且つ第2排気通路7を開くことで各バンク
L、 Rの排気ガスを各バンクL、 Rのキャタリスト
4にそれぞれ導くようにしている。
(Fourth Embodiment) FIGS. 6 to 8 show a fourth embodiment. In this fourth embodiment, in an exhaust system configured as in the second embodiment,
The first exhaust passage 6 and the switching valve 9 of the right bank R are not provided,
The right bank R is always connected to the catalyst 4 via the long second exhaust passage 7. That is, in the low intake air amount region and during cold conditions, the switching valve 9 is closed as shown in FIG.
By opening the first exhaust passage 6 of the left bank L and closing the second exhaust passage 7, exhaust gas from all cylinders 1 is guided to the catalyst 4 of the left bank L.
As shown in the figure, by closing the first exhaust passage 6 of the left bank L and opening the second exhaust passage 7 using the switching valve 9, exhaust gas from each bank L and R is directed to the catalyst 4 of each bank L and R. I am trying to guide each of them.

したがって、この第4実施例においては、低吸入空気量
域および冷間時では全シリンダ1の排気ガスが左バンク
Lのキャタリスト4に集中して導かれるので、キャタリ
スト4の温度が充分に上昇して十分に活性化され、排気
ガスの浄化か良好に行われる。
Therefore, in this fourth embodiment, in the low intake air amount range and during cold conditions, the exhaust gas from all cylinders 1 is concentrated and guided to the catalyst 4 in the left bank L, so that the temperature of the catalyst 4 is maintained at a sufficient temperature. It rises and becomes fully activated, and exhaust gas purification is performed well.

一方、高吸入空気量域では排気ガスが二つのキャタリス
ト4に分散され且つ長い第2排気通路7を介してキャタ
リスト4に導かれるので、共鳴効果によるエンジン掃気
効率の向上と、キャタリスト劣化防止との実効を高める
ことができる。
On the other hand, in the high intake air amount region, the exhaust gas is dispersed to the two catalysts 4 and guided to the catalyst 4 via the long second exhaust passage 7, so that the engine scavenging efficiency is improved due to the resonance effect and the catalyst deteriorates. Prevention and effectiveness can be increased.

また、この第4実施例においては、排気ガス中の酸素濃
度を検出して空燃比を検出するための02センサ22が
三箇所に設けられている。一つは左バンクLのキャタリ
スト4上流であり、もう一つは下流側排気通路8におけ
る集合部よりも下流側である。このように配置すること
によって低吸入空気量域または高吸入空気量域のいずれ
においても空燃比の検出を精度良く行える。
Furthermore, in this fourth embodiment, 02 sensors 22 are provided at three locations to detect the oxygen concentration in the exhaust gas and to detect the air-fuel ratio. One is upstream of the catalyst 4 in the left bank L, and the other is downstream of the gathering part in the downstream exhaust passage 8. With this arrangement, the air-fuel ratio can be detected with high accuracy in either the low intake air amount region or the high intake air amount region.

(第5実施例) 第9図および第10図は第5実施例を示す。この第5実
施例では上記第2実施例のように構成した排気装置にお
いて、左バンクLの第1排気通路6および切換弁9を設
けず、左バンクしについては常に長い第2排気通路7を
介してキャタリスト4に接続されている。さらに、左バ
ンクLのキャタリスト直上流の第2排気通路7には第3
排気通路23が接続され、この第3排気通路23は下流
側排気通路8における集合部よりも下流側に接続されて
いる。そして、この下流側排気通路8と第3排気通路2
3との接続部には第2切換弁24が設けられている。す
なわち、低吸入空気量域および冷間時では第9図に示す
ように、切換弁9により右バンクRの第1排気通路6を
開き且つ第2排気通路7を閉じると共に、第2切換弁2
4により下流側排気通路8における集合部よりも下流側
を閉じ且つ第3排気通路23を開くことで、全シリンダ
1の排気ガスを、まず右バンクRのキャタリスト4に導
いてから左バンクLのキャタリスト4に導き、高吸入空
気量域では第10図に示すように、切換弁9により右バ
ンクRの第1排気通路6を閉じ且つ第2排気通路7を開
くと共に、第2切換弁24により下流側排気通路8にお
ける集合部よりも下流側を開き且つ第3排気通路23を
閉じることで、各バンクL、Hの排気ガスを各バンクL
、Rのキャタリスト4にそれぞれ導くようにしている。
(Fifth Example) FIGS. 9 and 10 show a fifth example. In this fifth embodiment, in the exhaust system configured as in the second embodiment, the first exhaust passage 6 and the switching valve 9 of the left bank L are not provided, and the long second exhaust passage 7 is always provided for the left bank. It is connected to the catalyst 4 via. Furthermore, a third exhaust passage 7 is located directly upstream of the catalyst in the left bank L.
An exhaust passage 23 is connected thereto, and the third exhaust passage 23 is connected to the downstream side of the gathering portion of the downstream exhaust passage 8 . This downstream exhaust passage 8 and the third exhaust passage 2
A second switching valve 24 is provided at the connection portion with 3. That is, in the low intake air amount region and during cold conditions, as shown in FIG.
4 closes the downstream side of the collecting part in the downstream exhaust passage 8 and opens the third exhaust passage 23, so that exhaust gas from all cylinders 1 is first guided to the catalyst 4 in the right bank R and then to the left bank L. In the high intake air amount region, as shown in FIG. 10, the switching valve 9 closes the first exhaust passage 6 of the right bank R and opens the second exhaust passage 7, and the second switching valve 24 opens the downstream side of the collecting part in the downstream side exhaust passage 8 and closes the third exhaust passage 23, thereby transferring exhaust gas from each bank L and H to each bank L.
, R's Catalyst 4.

この第5実施例によっても上記第4実施例と同様の作用
、効果が得られる。
This fifth embodiment also provides the same functions and effects as the fourth embodiment.

(第6実施例) 第11図〜第13図は第6実施例を示す。この第6実施
例では上記第4実施例のように構成した排気装置におい
て、右バンクRのキャタリスト4に対応する位置に共鳴
容器25を設けるとともに下流側排気通路8における集
合部よりも下流側にキャタリスト4を設けている。すな
わち、従前の各実施例ではキャタリスト4をボリューム
室と[7て機能させ、このキャタリスト4で排気の圧力
波を反転させていたが、この第6実施例では共鳴容器2
5で排気の圧力波を反転させている。このように構成す
ることで、低吸入空気量域および冷間時では第12図に
示すように、第4実施例と同様に全シリンダ1の排気ガ
スを左バンクLのキャタリスト4に導き、高吸入空気量
域では第13図に示すように、右バンクRの排気ガスを
左バンクLのキャタリスト4に導くと共に左バンクLの
排気ガスを下流側排気通路8における集合部よりも下流
側のキャタリスト4に導くようにしている。
(Sixth Embodiment) FIGS. 11 to 13 show a sixth embodiment. In this sixth embodiment, in the exhaust system configured as in the fourth embodiment, a resonance container 25 is provided at a position corresponding to the catalyst 4 in the right bank R, and further downstream of the gathering part in the downstream exhaust passage 8. Catalyst 4 is installed in That is, in each of the previous embodiments, the catalyst 4 was made to function as a volume chamber, and the pressure wave of the exhaust gas was reversed by the catalyst 4, but in this sixth embodiment, the resonance vessel 2
5 inverts the exhaust pressure wave. With this configuration, in the low intake air amount range and during cold conditions, as shown in FIG. 12, the exhaust gas from all cylinders 1 is guided to the catalyst 4 in the left bank L, as in the fourth embodiment In the high intake air amount region, as shown in FIG. I am trying to lead to Catalyst 4.

この第6実施例によっても上記第4実施例と同様の作用
、効果が得られる。しかも高吸入空気量域では左バンク
Lの排気ガスがシリンダから遠く離れたキャタリスト4
に導かれるので、排気ガス温度が下がってキャタリスト
4の劣化防止の効果が上がる。
This sixth embodiment also provides the same functions and effects as those of the fourth embodiment. Moreover, in the high intake air amount range, the exhaust gas in the left bank L is far away from the cylinder
Since the exhaust gas temperature is lowered, the effect of preventing deterioration of the catalyst 4 is increased.

なお、この第6実施例では各キャタリスト上流の排気通
路に02センサ22がそれぞれ設けられている。
In this sixth embodiment, 02 sensors 22 are provided in the exhaust passages upstream of each catalyst.

(第7実施例) 第コー4図は第7実施例を示す。この第7実施例では上
記第1実施例のように構成した排気装置において、左バ
ンクLの第1排気通路6、切換弁9およびキャタリスト
4を設けず、下流側排気通路8における集合部よりも下
流側にキャタリスト4を設け、且つ右バンクRの第2排
気通路7を左バンクLの下流側排気通路8に接続してい
る。この場合、右バンクRについては第1実施例と同様
の作用、効果が得られる。
(Seventh Embodiment) FIG. 4 shows a seventh embodiment. In this seventh embodiment, in the exhaust system configured as in the first embodiment, the first exhaust passage 6 of the left bank L, the switching valve 9 and the catalyst 4 are not provided, and the collecting part in the downstream exhaust passage 8 is A catalyst 4 is also provided on the downstream side, and the second exhaust passage 7 of the right bank R is connected to the downstream exhaust passage 8 of the left bank L. In this case, for the right bank R, the same operation and effect as in the first embodiment can be obtained.

(第8実施例) 第15図は第8実施例を示す。この第8実施例では上記
第1実施例のように構成した排気装置に較べて、左右バ
ンクL、 R共に第1排気通路6および切換弁9か設け
られず、左バンクLにはキャタリスト4が設けられず、
下流側排気通路8における集合部よりも下流側にキャタ
リスト4を設けている。すなわち、左バンクLのシリン
ダ1からの排気ガスは二つのキャタリスト4を通過し、
右バンクRのシリンダ1からの排気ガスは一つのキャタ
リスト4を通過する。その場合、左バンクLにおけるシ
リンダ1から上流側キャタリスト4までの距離は右バン
クRにおけるシリンダ1からキャタリスト4までの距離
よりも短く設定されている。しかもシリンダ1から下流
側キャタリスト4までの距離は左右のバンクL、Rで同
一に設定されている。さらにキャタリスト4が近い左バ
ンク■7では、高速高負荷時に空燃比をリッチに設定し
てキャタリス1−・4を保護するようにしている。
(Eighth Example) FIG. 15 shows an eighth example. In this eighth embodiment, compared to the exhaust system configured as in the first embodiment, both the left and right banks L and R are not provided with the first exhaust passage 6 and the switching valve 9, and the left bank L is equipped with a catalyst 4. is not provided,
A catalyst 4 is provided downstream of the gathering portion in the downstream exhaust passage 8. That is, the exhaust gas from cylinder 1 of left bank L passes through two catalysts 4,
Exhaust gas from the cylinder 1 of the right bank R passes through one catalyst 4. In that case, the distance from the cylinder 1 to the upstream catalyst 4 in the left bank L is set shorter than the distance from the cylinder 1 to the catalyst 4 in the right bank R. Furthermore, the distance from the cylinder 1 to the downstream catalyst 4 is set to be the same for the left and right banks L and R. Furthermore, in the left bank ■7 near the catalyst 4, the air-fuel ratio is set rich at high speed and high load to protect the catalysts 1-4.

この第8実施例では、第]実施例と同様の作用、効果を
得ながら、固定構造部材に対比し、て熱負荷に弱い切換
弁9か設けらていないので、熱負荷を受けても排気装置
の信頼性か高く維持される。
In the eighth embodiment, while obtaining the same functions and effects as in the eighth embodiment, unlike the fixed structural member, the switching valve 9, which is vulnerable to heat loads, is not provided, so even if the heat load is applied, the exhaust gas is removed. Equipment reliability is maintained high.

(第9実施例) 第16図〜第18図は第9実施例を示す。この第9実施
例ではコントロールユニットの制御に特徴かある。すな
わち、第16図に示すマツプは基本となる制御マツプで
あり、低速高負荷と高速低負荷とを結ぶ線を境に、これ
よりも低負荷側で第1排気通路6を連通させ、高負荷側
で第2排気通路7を連通させるように制御している。
(Ninth Embodiment) FIGS. 16 to 18 show a ninth embodiment. This ninth embodiment is characterized by the control of the control unit. In other words, the map shown in FIG. 16 is a basic control map, and the first exhaust passage 6 is connected to the lower load side of the line connecting low speed, high load and high speed, low load as a boundary, and the map shown in FIG. The second exhaust passage 7 is controlled to communicate with the second exhaust passage 7 on the side.

また、第17図に示すマツプは冷間時を考慮した制御マ
ツプであり、上記基本制御マツプに対して冷間時には温
間時よりも境界線を高速高負荷側にすらすようにしてい
る。このことにより、排気ガス温度の低い冷間時にキャ
タリスト4の温度か充分に上昇して十分に活性化され、
排気ガスの浄化が良好に行われる。
Furthermore, the map shown in FIG. 17 is a control map that takes cold times into consideration, and with respect to the above-mentioned basic control map, the boundary line is set closer to the high speed and high load side during cold times than during warm times. As a result, the temperature of the catalyst 4 rises sufficiently during cold periods when the exhaust gas temperature is low, and the catalyst 4 is sufficiently activated.
Exhaust gas is effectively purified.

さらに、第18図に示すマツプは、従前の各実施例のよ
うに第1排気通路6と第2排気通路7とを択一的に連通
させるのではなく、排気の共鳴効果の期待できない運転
領域(例えば中速中負荷領域)では第1排気通路6と第
2排気通路7との双方を連通させて排気抵抗を低減する
ようにしている。
Furthermore, the map shown in FIG. 18 does not selectively connect the first exhaust passage 6 and the second exhaust passage 7 as in the previous embodiments, but rather an operating region in which no resonance effect of exhaust gas is expected. (For example, in a medium speed and medium load region), both the first exhaust passage 6 and the second exhaust passage 7 are communicated with each other to reduce exhaust resistance.

(第10実施例) 第19図〜第20図は第10実施例を示す。この第10
実施例ではキャタリスト4への第1排気通路6と第2排
気通路7との接続構造に特徴がある。すなわち、第19
図に示すように、第1排気通路6の接続端の形状を、第
2排気通路7の接続端の形状よりも末拡がりで且つ滑ら
かな形状に形成する。このことによって、第1排気通路
6の連通時に排気ガスがキャタリスト全体に拡散して排
気ガスの浄化機能が高くなる。第20図は、その変形例
であって同一の作用、効果を有する。
(Tenth embodiment) Figures 19 and 20 show a tenth embodiment. This 10th
The embodiment is characterized by the connection structure between the first exhaust passage 6 and the second exhaust passage 7 to the catalyst 4. That is, the 19th
As shown in the figure, the shape of the connecting end of the first exhaust passage 6 is formed to be wider and smoother than the shape of the connecting end of the second exhaust passage 7. As a result, the exhaust gas is diffused throughout the catalyst when the first exhaust passage 6 is in communication, and the exhaust gas purification function is enhanced. FIG. 20 shows a modification thereof and has the same operation and effect.

(第11実施例) 第21図〜第22図は第11実施例を示す。この第11
実施例では第1排気通路6のみを保温カバー26で覆っ
ている。このことによって、第1排気通路6の連通時に
排気ガスが高温に保たれて排気ガスの浄化機能が高くな
る。第21図は第1実施例への適用例であり、第22図
は第2実施例への適用例である。
(Eleventh Embodiment) FIGS. 21 to 22 show an eleventh embodiment. This 11th
In the embodiment, only the first exhaust passage 6 is covered with a heat insulating cover 26. As a result, the exhaust gas is kept at a high temperature when the first exhaust passage 6 is in communication, and the purification function of the exhaust gas is enhanced. FIG. 21 shows an example of application to the first embodiment, and FIG. 22 shows an example of application to the second embodiment.

(発明の効果) 以上説明したように、本発明のエンジンの排気装置によ
れば、エンジンのシリンダと触媒装置とを長さが異なる
複数の排気通路で並列に接続し、低吸入空気量域では排
気ガスを短い排気通路に導き、高吸入空気量域では排気
ガスを長い排気通路に導く切換手段を設けたので、低吸
入空気量域で触媒装置の温度を充分に上昇させて排気ガ
ス浄化性能を向上できると共に、高吸入空気量域で共鳴
効果によるエンジン掃気効率の向上および触媒装置の劣
化防止を図ることができる。
(Effects of the Invention) As explained above, according to the engine exhaust system of the present invention, the engine cylinder and the catalyst device are connected in parallel through a plurality of exhaust passages having different lengths, and in the low intake air amount region, the engine cylinder and the catalyst device are connected in parallel. We have provided a switching means to guide exhaust gas to a short exhaust passage, and to guide exhaust gas to a long exhaust passage in a high intake air volume range, so that the temperature of the catalyst device can be sufficiently raised in a low intake air volume range to improve exhaust gas purification performance. In addition, it is possible to improve engine scavenging efficiency and prevent deterioration of the catalyst device due to the resonance effect in a high intake air amount region.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第3図は本発明の第1実施例を示し、第1図は
全体概略構成図、第2図は低吸入空気量域での作動説明
図、第3図は高吸入空気量域での作動説明図である。第
4図は本発明の第2実施例を示す第1図相当図である。 第5図は本発明の第3実施例を示す第1図相当図である
。第6図〜第8図は本発明の第4実施例を示し、第6図
は全体概略構成図、第7図は低吸入空気量域での作動説
明図、第8図は高吸入空気量域での作動説明図である。 第9図および第10図は本発明の第5実施例を示し、第
9図は低吸入空気量域での作動説明図、第10図は高吸
入空気量域での作動説明図である。第11図〜第13図
は本発明の第6実施例を示し、第11図は全体概略構成
図、第12図は低吸入空気量域での作動説明図、第13
図は高吸入空気量域での作動説明図である。第14図は
本発明の第7実施例を示す第1図相当図である。第15
図は本発明の第8実施例を示す第1図相当図である。第
16図〜第18図は本発明の第9実施例を示すマツプ図
である。第19図および第20図は本発明の第10実施
例を示す要部拡大断面図である。第21図および第22
図は本発明の第11実施例を示す第1図相当図である。 3・・・排気通路 4・・・キャタリスト 6・・・第1排気通路 7・・・第2排気通路 9・・・切換弁 第4 図 第 閃 第10 図 第9 図 第8 図 第6 図 第 図 第13 図 第11 図 第12 図 \L *14fi!ff 第15 図 工〉シ゛〉回転委に 第16図 エンシ゛ンロ転段 第17 図 工〉シ゛ン斥1申U交 第18 図 第19 図 第20 図 第21 図 第22 図
Figures 1 to 3 show a first embodiment of the present invention, with Figure 1 being a general schematic diagram, Figure 2 being an explanatory diagram of operation in a low intake air amount region, and Figure 3 being a high intake air amount. FIG. FIG. 4 is a diagram corresponding to FIG. 1 showing a second embodiment of the present invention. FIG. 5 is a diagram corresponding to FIG. 1 showing a third embodiment of the present invention. 6 to 8 show a fourth embodiment of the present invention, FIG. 6 is a general schematic diagram, FIG. 7 is an explanatory diagram of operation in a low intake air amount region, and FIG. 8 is a high intake air amount. FIG. 9 and 10 show a fifth embodiment of the present invention, FIG. 9 is an explanatory diagram of the operation in a low intake air amount region, and FIG. 10 is an explanatory diagram of the operation in a high intake air amount region. 11 to 13 show a sixth embodiment of the present invention, in which FIG. 11 is a general schematic diagram, FIG. 12 is an explanatory diagram of operation in a low intake air amount region, and FIG.
The figure is an explanatory diagram of operation in a high intake air amount region. FIG. 14 is a diagram corresponding to FIG. 1 showing a seventh embodiment of the present invention. 15th
The figure is a diagram corresponding to FIG. 1 showing an eighth embodiment of the present invention. 16 to 18 are map diagrams showing a ninth embodiment of the present invention. 19 and 20 are enlarged sectional views of essential parts showing a tenth embodiment of the present invention. Figures 21 and 22
The figure is a diagram corresponding to FIG. 1 showing an eleventh embodiment of the present invention. 3...Exhaust passage 4...Catalyst 6...First exhaust passage 7...Second exhaust passage 9...Switching valve Fig. 4 Fig. 10 Fig. 9 Fig. 8 Fig. 6 Figure Figure Figure 13 Figure 11 Figure 12 Figure \L *14fi! ff 15th Artwork〉Science〉〉〉〉〉〉〉〉〉〉〉〉〉〉〉〉〉〉〉〉〉〉〉〉〉〉〉〉Fig.

Claims (1)

【特許請求の範囲】[Claims] (1)エンジンのシリンダと触媒装置とを長さが異なる
複数の排気通路で並列に接続し、 低吸入空気量域では排気ガスを短い排気通路に導き、高
吸入空気量域では排気ガスを長い排気通路に導く切換手
段を設けたことを特徴とするエンジンの排気装置。
(1) Engine cylinders and catalytic converters are connected in parallel through multiple exhaust passages of different lengths, and in low intake air volume ranges, exhaust gas is led to short exhaust passages, and in high intake air volume ranges, exhaust gas is guided to long exhaust passages. An engine exhaust system characterized by being provided with a switching means leading to an exhaust passage.
JP2086334A 1990-03-29 1990-03-29 Exhaust system of engine Pending JPH03281929A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2086334A JPH03281929A (en) 1990-03-29 1990-03-29 Exhaust system of engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2086334A JPH03281929A (en) 1990-03-29 1990-03-29 Exhaust system of engine

Publications (1)

Publication Number Publication Date
JPH03281929A true JPH03281929A (en) 1991-12-12

Family

ID=13883945

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2086334A Pending JPH03281929A (en) 1990-03-29 1990-03-29 Exhaust system of engine

Country Status (1)

Country Link
JP (1) JPH03281929A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06101463A (en) * 1992-09-24 1994-04-12 Fuji Heavy Ind Ltd Exhaust gas purifying device for engine
WO2005098220A1 (en) 2004-03-31 2005-10-20 Kabushiki Kaisha Toyota Jidoshokki Exhaust gas purifying device and exhaust gas purifying method in internal combustion engine
JP2006336537A (en) * 2005-06-02 2006-12-14 Toyota Motor Corp Control device for internal combustion engine
WO2007012952A1 (en) * 2005-07-29 2007-02-01 Toyota Jidosha Kabushiki Kaisha Exhaust purification system for internal combustion engine
US7565798B2 (en) 2005-07-14 2009-07-28 Kabushiki Kaisha Toyota Jidoshokki Exhaust gas purifying apparatus and method in internal combustion engine

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06101463A (en) * 1992-09-24 1994-04-12 Fuji Heavy Ind Ltd Exhaust gas purifying device for engine
WO2005098220A1 (en) 2004-03-31 2005-10-20 Kabushiki Kaisha Toyota Jidoshokki Exhaust gas purifying device and exhaust gas purifying method in internal combustion engine
US7448205B2 (en) 2004-03-31 2008-11-11 Kabushiki Kaisha Toyota Jidoshokki Exhaust gas purifying device and exhaust gas purifying method in internal combustion engine
JP2006336537A (en) * 2005-06-02 2006-12-14 Toyota Motor Corp Control device for internal combustion engine
JP4552763B2 (en) * 2005-06-02 2010-09-29 トヨタ自動車株式会社 Control device for internal combustion engine
US7565798B2 (en) 2005-07-14 2009-07-28 Kabushiki Kaisha Toyota Jidoshokki Exhaust gas purifying apparatus and method in internal combustion engine
WO2007012952A1 (en) * 2005-07-29 2007-02-01 Toyota Jidosha Kabushiki Kaisha Exhaust purification system for internal combustion engine
US7856815B2 (en) 2005-07-29 2010-12-28 Toyota Jidosha Kabushiki Kaisha Exhaust purification system for internal combustion engine

Similar Documents

Publication Publication Date Title
JP2663720B2 (en) Diesel engine exhaust purification system
US5979159A (en) Exhaust after-treatment system for automotive vehicle
JPH0431615A (en) Exhaust gas purifying device for internal combustion engine
EP1963633B1 (en) Exhaust system of internal combustion engine
JPH03281929A (en) Exhaust system of engine
JPH0988568A (en) Exhaust device for internal combustion engine
JPH0374515A (en) Exhaust gas purification device for engine
JPS6157928B2 (en)
JP2850551B2 (en) Exhaust gas purification device for internal combustion engine
JPH0374560A (en) Exhaust gas purifying device for engine
JPH04194310A (en) Exhaust device for internal combustion engine
JP3248290B2 (en) Exhaust gas purification device for internal combustion engine
JPH11141331A (en) Emission control device of engine with turbo charger
JP3145167B2 (en) Engine exhaust system
JPH0472976B2 (en)
JP2004092413A (en) Exhaust aftertreatment system
JPH02199214A (en) Exhaust gas purifying device for engine
JP2004092591A (en) Exhaust emission control device for internal combustion engine
JPH0374514A (en) Exhaust gas purification device for engine
JPH0526245Y2 (en)
JP2950073B2 (en) Exhaust gas purification device for internal combustion engine
JPH0979043A (en) Exhaust emission control device for internal combustion engine with supercharger
JPH07224727A (en) Exhaust gas reflux device
JPH0424098Y2 (en)
JPH0511294Y2 (en)