JPH032815Y2 - - Google Patents

Info

Publication number
JPH032815Y2
JPH032815Y2 JP18954782U JP18954782U JPH032815Y2 JP H032815 Y2 JPH032815 Y2 JP H032815Y2 JP 18954782 U JP18954782 U JP 18954782U JP 18954782 U JP18954782 U JP 18954782U JP H032815 Y2 JPH032815 Y2 JP H032815Y2
Authority
JP
Japan
Prior art keywords
fluid
measured
coil
magnetic flux
flow velocity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP18954782U
Other languages
Japanese (ja)
Other versions
JPS5992817U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP18954782U priority Critical patent/JPS5992817U/en
Publication of JPS5992817U publication Critical patent/JPS5992817U/en
Application granted granted Critical
Publication of JPH032815Y2 publication Critical patent/JPH032815Y2/ja
Granted legal-status Critical Current

Links

Description

【考案の詳細な説明】 本考案は、導電性を有する被測定流体の流速を
被測定流体中に発生する渦電流に基づいて測定す
る渦電流式流速計の改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in an eddy current type current meter that measures the flow velocity of a conductive fluid to be measured based on eddy currents generated in the fluid to be measured.

第1図は、この種の装置の検出部を構成する検
出ユニツトDETの一例を示す構成説明図であつ
てCBはコイルボビン、WEXはコイルボビンCBに
巻回された励磁コイル、WD1,WD2は励磁コイル
WEXを挾むようにしてコイルボビンCBに巻回さ
れた検出コイルである。
FIG. 1 is a configuration explanatory diagram showing an example of a detection unit DET constituting the detection section of this type of device, in which CB is a coil bobbin, W EX is an excitation coil wound around the coil bobbin CB, W D1 , W D2 is the excitation coil
This is a detection coil wound around a coil bobbin CB so as to sandwich W EX .

このように構成された検出ユニツトDETを、
コイルボビンCBの中心軸が導電性の被測定流体
の流れの方向Fと一致するように流体中に配置さ
れた案内管(図示せず)に挿入し、励磁コイル
WEXに交流信号を加えると、この流体中に渦電流
が発生する。なお、被測定流体によつては、案内
管に挿入することなく、直接被測定流体中に挿入
することもある。この渦電流は、励磁コイルWEX
によつてきる磁束φによるものと、磁束φと流体
の流速とのベクトル積に対応した起電力によるも
のとに大別できる。そして、流体がある流速で移
動すると、後者の渦電流にしたがつてできる新し
い磁束が励磁コイルWEXによつてできている主磁
束φと相互に干渉し合い、励磁コイルWEX付近の
磁束分布は第2実線φに示すような形状から点線
φ′に示すような形状に歪む。ここで、磁束分布が
歪む量Δφは被測定流体の流速に対応する。検出
コイルWD1,WD2には、これと鎖交する磁束に対
応した信号e1,e2が発生し、両信号e1,e2の差を
演算することによつて磁束分布の歪み量Δφ、す
なわち被測定流体の流速を求めることができる。
The detection unit DET configured in this way is
Insert the coil bobbin CB into a guide tube (not shown) placed in the fluid so that the center axis of the coil bobbin CB matches the flow direction F of the conductive fluid to be measured.
When an alternating current signal is applied to W EX , eddy currents are generated in this fluid. Note that depending on the fluid to be measured, the probe may be inserted directly into the fluid to be measured without being inserted into the guide tube. This eddy current is caused by the excitation coil W EX
It can be roughly divided into two types: one is due to the magnetic flux φ caused by the magnetic flux φ, and the other is due to the electromotive force corresponding to the vector product of the magnetic flux φ and the flow velocity of the fluid. When the fluid moves at a certain flow velocity, the new magnetic flux generated by the latter eddy current mutually interferes with the main magnetic flux φ created by the exciting coil W EX , and the magnetic flux distribution near the exciting coil W EX occurs. is distorted from the shape shown by the second solid line φ to the shape shown by the dotted line φ'. Here, the amount Δφ by which the magnetic flux distribution is distorted corresponds to the flow velocity of the fluid to be measured. Signals e 1 and e 2 corresponding to the magnetic flux interlinked with the detection coils W D1 and W D2 are generated, and the amount of distortion in the magnetic flux distribution can be determined by calculating the difference between the two signals e 1 and e 2 . Δφ, that is, the flow velocity of the fluid to be measured can be determined.

ところで、従来、このような検出ユニツトと外
部回路とを接続するのにあたつては、第3図に示
すように各コイル毎にツイスト線TWを用い、こ
れらツイスト線相互を固着することなくフレキシ
ブル管FTに挿入し、このフレキシブル管FTを案
内管WL内に挿入することが行われている。
By the way, conventionally, when connecting such a detection unit to an external circuit, a twisted wire TW is used for each coil, as shown in Fig. 3, and these twisted wires are connected in a flexible manner without being fixed to each other. The flexible tube FT is inserted into the guide tube WL, and the flexible tube FT is inserted into the guide tube WL.

しかし、このような構成によれば、ツイスト線
によりある程度の電磁誘導ノイズは低減できるも
のの、ツイスト線相互間の位置関係が被測定流体
の温度変化による構成部材の膨張、収縮や被測定
流体の流体振動による案内管WLへの押付力の経
時変化などによつて変化することから、完全に除
去することはできない。
However, with such a configuration, although the twisted wires can reduce electromagnetic induction noise to some extent, the positional relationship between the twisted wires may cause expansion or contraction of the constituent members due to temperature changes in the fluid to be measured, or the fluid flow of the fluid to be measured. It cannot be completely eliminated because it changes due to changes over time in the pressing force on the guide tube WL due to vibration.

本考案は、このような従来の欠点を解決したも
のであつて、検出部の各コイルへのリード線とし
て芯線の外周が磁性体で被覆されたものを用い、
リード線に電磁誘導ノイズが発生しないようにし
たことを特徴とする。
The present invention solves these conventional drawbacks, and uses a core wire whose outer periphery is coated with a magnetic material as a lead wire to each coil of the detection section.
It is characterized by preventing electromagnetic induction noise from occurring in the lead wire.

以下、図面を用いて詳細に説明する。 Hereinafter, it will be explained in detail using the drawings.

第4図は、本考案の一実施例を示す構成説明図
であつて、第3図と同等部分には同一符号を付し
ている。
FIG. 4 is a configuration explanatory diagram showing one embodiment of the present invention, and the same parts as in FIG. 3 are given the same reference numerals.

第4図において、Lは1対の芯線、MSは磁性
体よりなる被覆体、STは外被体、INSは絶縁体
である。すなわち、本実施例では、1対の芯線L
の外周を磁性体(例えば鉄、ニツケルなど)より
なる被覆体MSで被覆したものを検出部の各コイ
ルへのリード線として用いている。なお、本実施
例では、被覆体MS内に1対の芯線Lを収納する
のにあたつて、芯線L相互間の位置関係が変化し
ないようにするために、芯線Lの周囲に絶縁性鉱
物(例えばMnO2,ZnO2,Al2O3)を充填してい
る。また、このようにして芯線Lが収納された複
数の被覆体MSを前述と同様な絶縁性鉱物と共に
例えばステンレス鋼よりなる外被体ST内に挿入
し、被覆体MS相互間の位置関係が被測定流体の
温度変化による構成部材の膨張、収縮や被測定流
体の流体振動による案内管WLへの押付力の経時
変化などによつて変化しないようにしている。
In FIG. 4, L is a pair of core wires, MS is a covering made of a magnetic material, ST is an outer sheath, and INS is an insulator. That is, in this embodiment, a pair of core wires L
The outer periphery of the sensor is coated with a coating MS made of a magnetic material (for example, iron, nickel, etc.) and is used as a lead wire to each coil of the detection section. In this embodiment, when storing a pair of core wires L in the covering MS, an insulating mineral is placed around the core wires L in order to prevent the positional relationship between the core wires L from changing. (for example, MnO 2 , ZnO 2 , Al 2 O 3 ). Further, a plurality of sheathing bodies MS in which the core wires L are housed in this manner are inserted into an outer sheathing ST made of stainless steel, for example, together with the same insulating mineral as described above, and the positional relationship between the sheathing bodies MS is changed. This prevents changes due to expansion or contraction of the constituent members due to changes in the temperature of the fluid to be measured, or changes over time in the pressing force against the guide tube WL due to fluid vibrations of the fluid to be measured.

このような構成によれば、芯線Lの外周が磁性
体よりなる被覆体MSで覆われているので、従来
のようなリード線における電磁誘導ノイズの発生
を極めて少なくすることができる。また、仮りに
電磁誘導ノイズが発生したとしても、芯線L相互
間及び被覆体MS相互間の位置関係が従来のよう
に大幅に変化することはなく、電磁誘導ノイズの
変化は十分小さなものとなり、電気回路処理によ
り残留電磁誘導ノイズを除去することができ、高
分解能が得られる。
According to such a configuration, since the outer periphery of the core wire L is covered with the covering MS made of a magnetic material, it is possible to extremely reduce the generation of electromagnetic induction noise in the lead wire as in the conventional case. Furthermore, even if electromagnetic induction noise were to occur, the positional relationships between the core wires L and between the coverings MS would not change significantly as in the past, and the change in electromagnetic induction noise would be sufficiently small. Residual electromagnetic induction noise can be removed by electrical circuit processing, resulting in high resolution.

なお、上記実施例では、1対の芯線を磁性体で
形成された被覆体内に収納した例を示したが、用
途に応じて1本あるいは3本以上の芯線を収納す
ればよい。
In the above embodiment, a pair of core wires are housed in a cover made of a magnetic material, but one core wire or three or more core wires may be housed depending on the application.

また、被覆体相互間の位置関係を固定するのに
あたつては、相互間をロウ付けや接着剤、固定部
材などを用いてもよい。
Furthermore, in order to fix the positional relationship between the coverings, brazing, adhesive, fixing member, etc. may be used between the coverings.

また、被覆体が酸化するおそれがある場合に
は、被覆体内及び外被体内に不活性ガスを充填し
てもよい。
In addition, if there is a risk that the covering may oxidize, an inert gas may be filled inside the covering and the outer covering.

以上説明したように、本考案によれば、電磁誘
導ノイズの発生が少なく、測定分解能が高い渦電
流式流速計が実現でき、液体ナトリウムのような
導電性の被測定流体の流速や流量測定に好適であ
る。
As explained above, according to the present invention, it is possible to realize an eddy current current meter that generates less electromagnetic induction noise and has high measurement resolution, and is suitable for measuring the flow velocity and flow rate of conductive fluids to be measured such as liquid sodium. suitable.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの種の装置の検出部を構成する検出
ユニツトDETの一例を示す構成説明図、第2図
は第1図の動作説明図、第3図は従来のリード線
構造の一例を示す構成説明図、第4図は本考案に
係るリード線構造の一例を示す構成説明図であ
る。 L……芯線、MS……被覆体(磁性体)、ST…
…外被体、INS……絶縁性鉱物。
Fig. 1 is a configuration explanatory diagram showing an example of the detection unit DET that constitutes the detection section of this type of device, Fig. 2 is an explanatory diagram of the operation of Fig. 1, and Fig. 3 shows an example of the conventional lead wire structure. FIG. 4 is an explanatory diagram showing an example of a lead wire structure according to the present invention. L...Core wire, MS...Coating (magnetic material), ST...
...Sheath, INS...Insulating mineral.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 導電性を有する被測定流体の流れ方向に沿つて
交流信号が印加される励磁コイルとこの励磁コイ
ルの近傍に少なくとも2個の検出コイルが配置さ
れた検出部を用い、任意の2個の検出コイルの出
力信号の差の信号に基づいて被測定流体の流速を
求めるように構成された渦電流式流速計におい
て、検出部の各コイルへのリード線として芯線の
外周が磁性体で被覆されたものを用いることを特
徴とする渦電流式流速計。
Using a detection section that includes an excitation coil to which an alternating current signal is applied along the flow direction of the conductive fluid to be measured and at least two detection coils arranged near the excitation coil, any two detection coils can be used. In an eddy current current meter configured to determine the flow velocity of the fluid to be measured based on the difference between the output signals of An eddy current type current meter characterized by using.
JP18954782U 1982-12-15 1982-12-15 Eddy current current meter Granted JPS5992817U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18954782U JPS5992817U (en) 1982-12-15 1982-12-15 Eddy current current meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18954782U JPS5992817U (en) 1982-12-15 1982-12-15 Eddy current current meter

Publications (2)

Publication Number Publication Date
JPS5992817U JPS5992817U (en) 1984-06-23
JPH032815Y2 true JPH032815Y2 (en) 1991-01-25

Family

ID=30408640

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18954782U Granted JPS5992817U (en) 1982-12-15 1982-12-15 Eddy current current meter

Country Status (1)

Country Link
JP (1) JPS5992817U (en)

Also Published As

Publication number Publication date
JPS5992817U (en) 1984-06-23

Similar Documents

Publication Publication Date Title
JP2557531B2 (en) Electromagnetic flow meter
US4430615A (en) Reflection type probes for eddy current testing instruments
JPS6386507A (en) Instrument transformer for measurement of current through electrical conductor
GB2196432A (en) A device for the contactless indirect electrical measurement of torque in a shaft
US3610040A (en) Electromagnetic flowmeter
US6437555B1 (en) Inductive sensor for measuring a current in a conductor
JP2003139802A (en) Current sensor
JPH032815Y2 (en)
JPH032814Y2 (en)
JPH0426530B2 (en)
EP0069459B1 (en) Measuring device of electromagnetic flowmeter
JPH05107091A (en) Electromagnetic flowmeter
JP2651003B2 (en) Eddy current displacement sensor
JPS63273001A (en) Displacement measuring instrument
JPS625603Y2 (en)
JPS59501838A (en) Inductive length and angle measuring device
WO2022186082A1 (en) Current sensor and manufacturing method of current sensor
JPS604084Y2 (en) displacement transducer
JPH08261807A (en) Electromagnetic flowmeter
JPH11208320A (en) Tension measuring device for trolley wire
JPH0537212Y2 (en)
JPH0560506A (en) Lead wire for strain gauge
JP3023647U (en) Current detector
JPH0228411Y2 (en)
JP2838640B2 (en) Coil structure of electromagnetic flowmeter and method of manufacturing the same