JPH03281538A - Silicone aqueous emulsion composition and production of silicone particulate matter using the same composition - Google Patents

Silicone aqueous emulsion composition and production of silicone particulate matter using the same composition

Info

Publication number
JPH03281538A
JPH03281538A JP22981690A JP22981690A JPH03281538A JP H03281538 A JPH03281538 A JP H03281538A JP 22981690 A JP22981690 A JP 22981690A JP 22981690 A JP22981690 A JP 22981690A JP H03281538 A JPH03281538 A JP H03281538A
Authority
JP
Japan
Prior art keywords
silicone
composition
colloidal silica
group
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22981690A
Other languages
Japanese (ja)
Other versions
JP3100613B2 (en
Inventor
Makoto Matsumoto
誠 松本
Junichiro Watanabe
純一郎 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Momentive Performance Materials Japan LLC
Original Assignee
Toshiba Silicone Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Silicone Co Ltd filed Critical Toshiba Silicone Co Ltd
Publication of JPH03281538A publication Critical patent/JPH03281538A/en
Application granted granted Critical
Publication of JP3100613B2 publication Critical patent/JP3100613B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Processes Of Treating Macromolecular Substances (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)
  • Silicon Polymers (AREA)

Abstract

PURPOSE:To obtain the title composition capable of providing particulate matter having excellent mechanical strength, small particle size and uniform shape as well as excellent dispersibility by blending a colloidal silica-silicone core shell body with a curing catalyst, emulsifying agent and water at a specific amount. CONSTITUTION:(A) 100 pts.wt. colloidal silica-silicone core shell body consisting of (i) 5-80wt.% core of colloidal silica and (ii) 20-95wt.% shell of polyorganosiloxane expressed by the average composition formula [R<1> is (substituted)1-8C monovalent organic group; (a) is 1.02-2.02] and having molecular ends blocked with OH is blended with (B) 0-5 pts.wt. curing catalyst, preferably dibutyltin dilaurate, (C) 1-20 pts.wt. emulsifying agent, preferably aliphatic substituted benzenesulfonic acid, etc., and (D) 50-1000 pts.wt. water to provide the objective composition. Furthermore, the composition is cured to from into fine particles by dispersing the composition into a heat medium of gas, etc., such as air heated to >=25 deg.C and bringing the composition into contact with the heat medium, thus providing the silicone particulate matter.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、シリコーン水性エマルション組成物およびそ
れを用いたシリコーン粒状物の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a silicone aqueous emulsion composition and a method for producing silicone granules using the same.

(従来の技術) 近年、シリコーン粒状物を各種有機樹脂の内部応力緩和
や耐衝撃強さ改善のための改質添加剤として用いること
が試みられてきている。
(Prior Art) In recent years, attempts have been made to use silicone granules as a modifying additive for alleviating internal stress and improving impact strength of various organic resins.

従来、この種のシリコーン粒状物の製造方法としては、
シリコーンゴムをそのままかもしくは凍結させた後粉砕
して粉末化する方法が用いられてきたが、生産性に乏し
い、粒径が大きくかつ不均一である、形状が不定形で分
散性に乏しい、潤滑性が不良であるなどの問題があった
Conventionally, the manufacturing method for this type of silicone granules is as follows:
Methods of pulverizing silicone rubber either as it is or after freezing it have been used, but this method has poor productivity, large and uneven particle size, irregular shape and poor dispersibility, and lubrication. There were problems such as poor quality.

そこで、この問題を改善するため、様々な方法が提案さ
れている。
Therefore, various methods have been proposed to improve this problem.

たとえば、特開昭59−88333号公報および特開昭
63−17959号公報には液状シリコーンゴム組成物
を熱風中に噴霧し噴霧状態で硬化させて球状硬化物を得
る方法が、また、特開昭82−243821号公報、特
開昭62−257939号公報、特開昭63−7794
2号公報および特開昭63−202658号公報には液
状シリコーンゴム組成物を水を媒体としたエマルジョン
またはサスペンションとした後、高温の液体または気体
と接触させて硬化させ球状粒子を得る方法が開示されて
いる。
For example, JP-A-59-88333 and JP-A-63-17959 disclose a method of spraying a liquid silicone rubber composition into hot air and curing it in the sprayed state to obtain a spherical cured product. Publication No. 82-243821, JP-A No. 62-257939, JP-A No. 63-7794
No. 2 and JP-A No. 63-202658 disclose a method of obtaining spherical particles by forming a liquid silicone rubber composition into an emulsion or suspension using water as a medium, and then hardening the composition by contacting it with a high-temperature liquid or gas. has been done.

しかしながら以上の方法で得られた粒状物は、各種シリ
カ、ヒユームド酸化チタンのような補強性充填剤が配合
されていないため機械的強度に乏しく、有機樹脂改質用
添加剤として用いた場合、外部からの応力の付加によっ
て形状が変化し、さらに粒状物自体が破壊するという難
点がある。しかもこの対策として、液状シリコーンゴム
組成物に補強性充填剤を配合しようとすると流動性か失
われるうえ、充填剤がもつ凝集性により得られる粒状物
の粒径が大きく形状も不定形になるという問題を生ずる
However, the granules obtained by the above method lack mechanical strength because they do not contain reinforcing fillers such as various silicas and fumed titanium oxide, and when used as additives for modifying organic resins, The problem is that the shape changes due to the stress applied from the granules, and the granules themselves are destroyed. Furthermore, as a countermeasure to this problem, if a reinforcing filler is added to a liquid silicone rubber composition, it will not only lose its fluidity, but also have a large particle size and irregular shape due to the cohesive properties of the filler. cause problems.

(発明が解決しようとする課題) このように、従来より、シリコーン粒状物を製造する方
法として種々提案されているが、機械的強度に優れ、し
かも粒径が小さく形状も均一で分散性に優れたシリコー
ン粒状物を得る方法か未だ開発されていないのが現状で
ある。
(Problems to be Solved by the Invention) As described above, various methods for manufacturing silicone granules have been proposed in the past, but they have excellent mechanical strength, small particle size, uniform shape, and excellent dispersibility. At present, no method has been developed to obtain silicone granules.

本発明は、このような従来の事情に対処してなされたも
ので、機械的強度に優れ、しかも粒径が小さく形状も均
一で分散性に優れたシリコーン粒状物の製造を可能とす
るシリコーン水性エマルジョン組成物とそれを用いたシ
リコーン粒状物の製造方法を提供することを目的とする
The present invention has been made in response to these conventional circumstances, and is an aqueous silicone material that enables the production of silicone granules that have excellent mechanical strength, are small in particle size, uniform in shape, and have excellent dispersibility. An object of the present invention is to provide an emulsion composition and a method for producing silicone granules using the emulsion composition.

[発明の構成] (課題を解決するための手段) 本発明のシリコーン組成物は、 (A) (a>コロイダルシリカのコア80〜5重量%
(b)平均組成式 %式%) (式中、R1は炭素数1〜8の置換または非置換の1価
の有機基、aは1.02〜8の数を示す)で表される分
子末端が水酸基で封鎖されたポリオルガノシロキサンの
シェル20〜95重量%からなるコロイダルシリカーシ
リコーンファシエル体100重量部、 (B)硬化触媒  0〜5重量部、 (C)乳化剤   1〜20重量部、 および (D)水     50〜1000重量部を組成分とし
て成ることを特徴とし、またこの組成物を用いた本発明
のシリコーン粒状物の製造方法は、前記組成物を25℃
以上の熱媒体に分散接触させてシリコーンを微粒子状に
硬化させることを特徴としている。
[Structure of the Invention] (Means for Solving the Problems) The silicone composition of the present invention includes (A) (a>80 to 5% by weight of colloidal silica core)
(b) Average compositional formula %Formula %) (wherein, R1 is a substituted or unsubstituted monovalent organic group having 1 to 8 carbon atoms, and a is a number of 1.02 to 8). 100 parts by weight of a colloidal silica silicone faciel body consisting of 20-95% by weight of a polyorganosiloxane shell whose ends are capped with hydroxyl groups, (B) 0-5 parts by weight of a curing catalyst, (C) 1-20 parts by weight of an emulsifier. , and (D) 50 to 1000 parts by weight of water, and the method for producing silicone granules of the present invention using this composition includes heating the composition at 25°C.
The method is characterized in that the silicone is hardened into fine particles by being brought into dispersion contact with the above heat medium.

本発明に係るシリコーン水性エマルジョン組成物は、次
のようにして製造し得る。
The silicone aqueous emulsion composition according to the present invention can be produced as follows.

すなわち、 (^)(a)コロイダルシリカと、 (b−1)  一般式 %式%() (式中、R2は炭素数1〜8の置換または非置換の 1
価の有機基を、口はΩ〜3の整数を示す)で表される構
造単位を有し、かつ水酸基を含有しないケイ素原子数2
〜10のオルガノシロキサンおよび必要に応して、 (b−2)アルコキン基を1〜4個有するシラン化合物
を、水性媒体中、乳化剤の存在下に重縮合させることに
よって、コロイダルシリカ−シリコーンコアシェル体水
性エマルションを調製し、次いで、(B)の硬化触媒を
添加することによって得られる。
That is, (^) (a) colloidal silica, (b-1) general formula % formula % () (in the formula, R2 is a substituted or unsubstituted 1 having 1 to 8 carbon atoms)
a silicon atom number of 2 that has a structural unit represented by a valent organic group (indicates an integer from Ω to 3) and does not contain a hydroxyl group.
~10 organosiloxanes and optionally (b-2) a silane compound having 1 to 4 alkoxy groups are polycondensed in an aqueous medium in the presence of an emulsifier to form a colloidal silica-silicone core-shell body. It is obtained by preparing an aqueous emulsion and then adding the curing catalyst (B).

(作用) 本発明に係るシリコーン水性エマルジョン組成物は、コ
ロイダルシリカのコアをシリコーンのシェルがシロキサ
ン結合を介して覆ったコアシェル体を主成分としている
ので、コロイダルシリカの補強性を十分に、かつ効果的
に引出すことが可能となり、これを室温でまたは加熱し
て水分など揮発物を蒸発させることによって、機械的強
度に優れたエラストマー硬化物が得られる。そして、本
発明に係る製造方法によって、機械的強度に優れ、しか
も粒径が小さく形状も均一で分散性に優れたシリコーン
粒状物を得ることができる。
(Function) The silicone aqueous emulsion composition according to the present invention has a core-shell body in which a core of colloidal silica is covered with a shell of silicone via siloxane bonds, so that the reinforcing property of colloidal silica is sufficiently enhanced and the composition is effective. By evaporating volatile substances such as water at room temperature or by heating, a cured elastomer product with excellent mechanical strength can be obtained. And, by the manufacturing method according to the present invention, it is possible to obtain silicone granules having excellent mechanical strength, small particle size, uniform shape, and excellent dispersibility.

(実施例) まず、本発明に係るシリコーン水性エマルジョン組成物
を成す組成分について説明する。
(Example) First, the components constituting the silicone aqueous emulsion composition according to the present invention will be explained.

本発明において使用する(A)成分のコロイダルシリカ
−シリコーンコアシェル体は、水が除去された後エラス
トマー硬化物を形成する成分であり、(a)成分の一つ
のコロイダルシリカ粒子を、(b)成分のポリオルガノ
シロキサンが覆ったものである。より単純な系のもので
さらに詳しくいえば、このコアシェル体とは、1)ポリ
オルガノシロキサンの両末端がシリカ表面とシロキサン
結合を介して結合したもの、2)ポリオルガノシロキサ
ンの片末端がシリカ表面とシロキサン結合を介して結合
し、他の末端が水酸基で封鎖されたもの、3)ポリオル
ガノシロキサンの両末端が水酸基で封鎖され、シリカ表
面とのシロキサン結合を持たないものの3種類の形態で
構成されたものである。そして、3.4官能性アルコキ
シシランやチェーンストッパーの併用により、これら形
態の種類は増加し、複雑なものとなる。
The colloidal silica-silicone core-shell body of the component (A) used in the present invention is a component that forms a cured elastomer after water is removed, and one colloidal silica particle of the component (a) is combined with the colloidal silica particle of the component (b). covered with polyorganosiloxane. In more detail, this core-shell body is a simpler system: 1) both ends of polyorganosiloxane are bonded to the silica surface via a siloxane bond, and 2) one end of polyorganosiloxane is bonded to the silica surface. There are three types of polyorganosiloxane: one in which the polyorganosiloxane is bonded via a siloxane bond and the other end is blocked with a hydroxyl group, and 3) both ends of the polyorganosiloxane are blocked with a hydroxyl group and there is no siloxane bond with the silica surface. It is what was done. When a 3.4-functional alkoxysilane or a chain stopper is used in combination, the types of these forms increase and become complex.

(A)成分のコロイダルシリカーシリコーンコアンエル
体中の(b)成分のポリオルガノシロキサンシェル部は
20〜95重量%の範囲で選択される。20重量%未満
では弾性率などが大きく低下して、エラストマー的特性
に欠ける硬化物が得られる。
The polyorganosiloxane shell portion of component (b) in the colloidal silica silicone core body of component (A) is selected in the range of 20 to 95% by weight. If it is less than 20% by weight, the elastic modulus etc. will be greatly reduced, resulting in a cured product lacking elastomeric properties.

方、95重量%を超えるとコロイダルシリカの補強性を
ポリオルガノシロキサンに十分に付与するには至らず、
力学的特性に欠けるエラストマー硬化物となる。
On the other hand, if it exceeds 95% by weight, it will not be possible to sufficiently impart the reinforcing properties of colloidal silica to the polyorganosiloxane,
This results in a cured elastomer that lacks mechanical properties.

また、(A)成分のコアシェル体中の(b)成分である
ポリオルガノシロキサンシェルのケイ素原子上に結合す
る有機基は、炭素数1〜8の置換または非置換の 1価
の炭化水素基でる。
In addition, the organic group bonded to the silicon atom of the polyorganosiloxane shell (b) in the core-shell body of component (A) is a substituted or unsubstituted monovalent hydrocarbon group having 1 to 8 carbon atoms. .

非置換有機基としては、メチル基、エチル基、プロピル
基、ヘキシル基、オクチル基、デシル基、ヘキサデシル
基、オクタデシル基などの直鎖または分岐状アルキル基
、フェニル基、ナフチル基、キセニル基などのアリール
基、ベンジル基、βフェニルエチル基、メチルベンジル
基、ナフチルメチル基などのアラルキル基およびシクロ
ヘキシル基、シクロベンジル基などのシクロアルキル基
などが例示される。
Examples of unsubstituted organic groups include straight chain or branched alkyl groups such as methyl, ethyl, propyl, hexyl, octyl, decyl, hexadecyl, and octadecyl groups, phenyl, naphthyl, and xenyl groups. Examples include aralkyl groups such as an aryl group, benzyl group, β-phenylethyl group, methylbenzyl group, and naphthylmethyl group, and cycloalkyl groups such as cyclohexyl group and cyclobenzyl group.

置換有機基としては、前記例示した非置換有機基の水素
原子をフッ素や塩素のようなハロゲン原子で置換した基
が挙げられ、そのようなものとして、3.3..3−ト
リフルオロプロピル基、3−フロロプロピル基なとが例
示される。
Examples of the substituted organic group include groups in which the hydrogen atom of the unsubstituted organic group listed above is substituted with a halogen atom such as fluorine or chlorine. .. Examples include 3-trifluoropropyl group and 3-fluoropropyl group.

(A) (b)成分における別の 1価の有機基として
、炭素官能性基と、エチレン性不飽和基を含む基が挙げ
られ、このような有機基を含む(A)成分を用いたエマ
ルジョン組成物は、繊維などの基材に塗布したときに接
着性(密着ないし固着)に優れ有利であり、またこのよ
うなエマルジョン組成物より得られるシリコーン粒状物
は、各種有機樹脂、ゴム等との相溶性に優れ、界面接着
性も良好であるので、物理特性改質剤として有利である
(A) Another monovalent organic group in component (b) includes a carbon functional group and a group containing an ethylenically unsaturated group, and an emulsion using component (A) containing such an organic group can be mentioned. The composition has excellent adhesion (adhesion or fixation) when applied to base materials such as fibers and is advantageous, and the silicone granules obtained from such emulsion compositions are compatible with various organic resins, rubbers, etc. Since it has excellent compatibility and good interfacial adhesion, it is advantageous as a physical property modifier.

ここでいう炭素官能性基とは、炭素原子と水素原子と、
さらに窒素および酸素のうち少なくとも1種の原子とに
よって構成される有機基をいい、たとえば、 −CH2−Ctl 2−CH2−NH2、Ct(2−(
j(2−CH2−〜H−CH2−CH2−NH2、−C
H2−CH2−CH2−NH−CH2−CH2−NH−
CH2−C)12−NH2、υ CH2 0H2−CO2−0−CH2−CH−CH2−0H 01( −CH2−CH2−CH2−3H などか挙げられる。
The carbon functional group here refers to carbon atoms, hydrogen atoms,
Furthermore, it refers to an organic group composed of at least one atom of nitrogen and oxygen, such as -CH2-Ctl 2-CH2-NH2, Ct(2-(
j(2-CH2-~H-CH2-CH2-NH2, -C
H2-CH2-CH2-NH-CH2-CH2-NH-
Examples include CH2-C)12-NH2, υ CH20H2-CO2-0-CH2-CH-CH2-0H01 (-CH2-CH2-CH2-3H).

また、エチレン性不飽和基としては、 CH2−CM−0−(Ct(2) 一般式 %式%() 4 1 CI2 − C−CO−R’  −・・・ (V)で表
されるものが挙げられる。その他、エチレン性不飽和基
を含む基として、一般式 %式%() で表されるものが挙げられる。たたし上記(III)〜
(VI)式中nは0〜10の整数を示す。
In addition, as the ethylenically unsaturated group, those represented by CH2-CM-0-(Ct(2) general formula % formula %() 4 1 CI2 - C-CO-R' -... (V) Other examples of groups containing an ethylenically unsaturated group include those represented by the general formula % ().
(VI) In the formula, n represents an integer of 0 to 10.

上記(m)式で表されるエチレン性不飽和を含む基を例
示すると、ビニロキシプロピル基、ビニロキシエトキシ
プロピル基、ビニロキシエチル基、ビニロキシエトキシ
エチル基などが挙げられ、好ましくはビニロキシプロピ
ル基、ビニロキシエトキシプロビル基である。
Examples of the group containing ethylenically unsaturated represented by the above formula (m) include a vinyloxypropyl group, a vinyloxyethoxypropyl group, a vinyloxyethyl group, a vinyloxyethoxyethyl group, and preferably a vinyloxypropyl group. , vinyloxyethoxyprobyl group.

エチレン性不飽和基が上記(IV)式で表される場合、
R3は水素原子または炭素数1〜6のアルキル基、好ま
しくは水素原子または炭素数1〜2のアルキル基、さら
に好ましくは水素原子またはメチル基である。このよう
な(IV)式で表される基としては、ビニルフェニル基
、イソプロペニルフェニル基等があげられ、好ましくは
ビニルフェニル基である。またこれら(IV)式で表さ
れるエチレン性不飽和基を含む基としては、ビニルフェ
ニル基、1−(ビニルフェニル)エチル基、2−(ビニ
ルフェニル)エチル基、(ビニルフェニル)メチル基、
イソプロペニルフェニル基、2−(ビニルフェノキシ)
エチル基、3−(ビニルベンゾイルオキシ)プロピル基
、3−(イソプロペニルへンゾイルアミノ)プロピル基
などが挙げられ、好ましくはビニルフェニル基、■−(
ビニルフェニル)エチル基、2−(ビニルフェニル)エ
チル基である。
When the ethylenically unsaturated group is represented by the above formula (IV),
R3 is a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, preferably a hydrogen atom or an alkyl group having 1 to 2 carbon atoms, and more preferably a hydrogen atom or a methyl group. Examples of the group represented by the formula (IV) include a vinylphenyl group, an isopropenylphenyl group, and a vinylphenyl group is preferable. Further, as the group containing an ethylenically unsaturated group represented by the formula (IV), vinylphenyl group, 1-(vinylphenyl)ethyl group, 2-(vinylphenyl)ethyl group, (vinylphenyl)methyl group,
Isopropenylphenyl group, 2-(vinylphenoxy)
Examples include ethyl group, 3-(vinylbenzoyloxy)propyl group, 3-(isopropenylhenzoylamino)propyl group, and preferably vinylphenyl group, ■-(
They are vinylphenyl)ethyl group and 2-(vinylphenyl)ethyl group.

エチレン性不飽和基が上記(V)式で表される場合、R
4は水素原子またはメチル基である。またR5は炭素数
1〜6のアルキレン基、−O−−S−または−N(R6
)R7−で表される基であり、R6は炭素数1〜6の炭
化水素基もしくは(メタ)アクリロイル基、R7は炭素
数1〜6のアルキレン基である。この(V)式で表され
るエチレン性不飽和基を含む基としては、γ−アクリロ
キシプロピル基、γ−メタクリロキシプロピル基、N−
メタクリロイル−N−メチル−γ−アミノプロピル基、
N−アクリロイル−N−メチル−γ−アミノプロピル基
、N、N−ビス(メタクリロイル〉−γ−アミノプロピ
ル基などが挙げられ、好ましくはN−メタクリロイル−
N−メチル−γ−アミノプロピル基、N−アクリロイル
−N−メチル−γ−アミノプロピル基である。
When the ethylenically unsaturated group is represented by the above formula (V), R
4 is a hydrogen atom or a methyl group. R5 is an alkylene group having 1 to 6 carbon atoms, -O--S- or -N(R6
) R7-, R6 is a hydrocarbon group or (meth)acryloyl group having 1 to 6 carbon atoms, and R7 is an alkylene group having 1 to 6 carbon atoms. Groups containing an ethylenically unsaturated group represented by formula (V) include γ-acryloxypropyl group, γ-methacryloxypropyl group, N-
methacryloyl-N-methyl-γ-aminopropyl group,
Examples include N-acryloyl-N-methyl-γ-aminopropyl group, N,N-bis(methacryloyl)-γ-aminopropyl group, and preferably N-methacryloyl-
N-methyl-γ-aminopropyl group and N-acryloyl-N-methyl-γ-aminopropyl group.

また上記(Vl)式で表されるエチレン性不飽和基を含
む基としては、ビニル基、アリル基、ホモアリル基、5
−ヘキセニル基、7−オクテニル基などが挙げられ、好
ましくはビニル基、アリル基である。
Further, as the group containing an ethylenically unsaturated group represented by the above formula (Vl), vinyl group, allyl group, homoallyl group, 5
-hexenyl group, 7-octenyl group and the like, preferably vinyl group and allyl group.

かかる炭素官能性基およびエチレン性不飽和基を含む基
は、(I)式の平均組成式 RS i O、、、)、、□ のR1の総量に対して、通常0,02〜10%、好まし
くは0.05〜5%の範囲内である。0.02%未満で
は、繊維などの基材に塗布したときの接着性(密着ない
し固着)の改善効果が小さく、またシリコーン微粉末を
製造した場合、各種有機樹脂、ゴム等に対する分散性お
よび相溶性、さらには界面接着性の改善効果か小さく、
逆に1096を越えると最終硬化物か硬くなりすぎるお
それかあり、たとえばシリコーン微粉末を応力緩和剤と
して使用した場合にその働きが不十分になる。
Such a group containing a carbon functional group and an ethylenically unsaturated group usually accounts for 0.02 to 10%, Preferably it is within the range of 0.05 to 5%. If it is less than 0.02%, the effect of improving adhesion (adhesion or fixation) when applied to base materials such as fibers is small, and when silicone fine powder is manufactured, dispersibility and compatibility with various organic resins, rubbers, etc. The effect of improving solubility and even interfacial adhesion is small;
On the other hand, if it exceeds 1096, the final cured product may become too hard, and, for example, when silicone fine powder is used as a stress relaxation agent, its function will be insufficient.

(B)成分の硬化触媒は、シリコーン水性エマルジョン
組成物を速やかに硬化させるだめのものであって、アル
キルスズ有機酸塩、亜鉛有機酸塩などの金属有機酸塩、
テトラブトキシチタンなどの有機金属アルコラード、n
−ブチルアミン、イミダゾールなどのアミン類なとか例
示される。本発明においては、アルキルスズ有機酸塩が
好ましく、特にジブチルスズジラウレート、ジオクチル
スズジラウレートなどのジアルキルスズジカルボキシレ
ートが適する。
The curing catalyst of component (B) is a catalyst capable of rapidly curing the silicone aqueous emulsion composition, and includes metal organic acid salts such as alkyltin organic acid salts and zinc organic acid salts;
Organometallic alcoholades such as tetrabutoxytitanium, n
Examples include amines such as -butylamine and imidazole. In the present invention, alkyltin organic acid salts are preferred, and dialkyltin dicarboxylates such as dibutyltin dilaurate and dioctyltin dilaurate are particularly suitable.

(B)成分の硬化触媒の配合量は、(A)成分のコロイ
ダルンリカーシリコーンコアシエル体100重量部に対
し、通常0.1〜5重量部である。配合量が0.1重量
部未満では硬化速度が遅くかつ、硬化物の強度か低い。
The amount of the curing catalyst (B) is usually 0.1 to 5 parts by weight per 100 parts by weight of the colloidal silicone core shell (A). If the amount is less than 0.1 part by weight, the curing speed will be slow and the strength of the cured product will be low.

たたし、コロイダルシリカ−シリコーンコアシェル体を
調製するときに、3または4官能のアルコキシシランを
用いた場合、前記硬化触媒を配合しなくとも所望のエラ
ストマー(硬化物)か得られる。一方、5重量部を超え
ると組成物が短時間に粘度上昇やゲル化を起し易く不安
定な状態を呈する。
However, when a tri- or tetrafunctional alkoxysilane is used when preparing a colloidal silica-silicone core-shell body, a desired elastomer (cured product) can be obtained without adding the curing catalyst. On the other hand, if the amount exceeds 5 parts by weight, the composition tends to increase in viscosity or gel in a short period of time, resulting in an unstable state.

(C)成分の乳化剤は、コロイダルシリカ−シリコーン
コアシェル体を水中において安定に存在させる役割と、
このコアシェル体を形成させる際の重縮合触媒としての
役割をなすものであり、アニオン系乳化剤あるいはカチ
オン系乳化剤である。
The emulsifier of component (C) has the role of stably existing the colloidal silica-silicone core-shell body in water;
It plays a role as a polycondensation catalyst when forming this core-shell body, and is an anionic emulsifier or a cationic emulsifier.

このアニオン系乳化剤としては、脂肪族置換基が炭素原
子6〜18の長さの炭素連鎖を有する脂肪族置換ベンゼ
ンスルホン酸、脂肪族置換ナフタレンスルホン酸、脂肪
族スルホン酸、シリルアルキルスルホン酸、脂肪族置換
ジフェニルエーテルスルホン酸などのを機スルホン酸系
乳化剤か挙げられ、なかでも脂肪族置換ベンゼンスルホ
ン酸かより好ましい。ただし、コロイダルシリカ−シリ
コーンコアシェル体エマルジョン調製時においては、こ
れらスルホン酸の状態で使用するが、後にアルカリで中
和するので、本発明の組成物ではスルホン酸塩の形で存
在する。
Examples of the anionic emulsifier include aliphatic substituted benzene sulfonic acid, aliphatic substituted naphthalene sulfonic acid, aliphatic sulfonic acid, silylalkyl sulfonic acid, aliphatic substituted naphthalene sulfonic acid in which the aliphatic substituent has a carbon chain having a length of 6 to 18 carbon atoms, Among them, aliphatic substituted benzenesulfonic acids are more preferred. However, when preparing a colloidal silica-silicone core-shell emulsion, these sulfonic acids are used in the form of sulfonic acids, but since they are later neutralized with an alkali, they are present in the form of sulfonic acid salts in the composition of the present invention.

一方、カチオン系乳化剤としては、たとえばオクタデシ
ルトリメチルアンモニウムクロリド、ヘキサデシルトリ
メチルアンモニウムクロリドなどのアルキルトリメチル
アンモニウム塩、たとえばジオクタデシルジメチルアン
モニウムクロリド、ジオクタデシルジメチルアンモニウ
ムクロリド、ジドデシルジメチルアンモニウムクロリド
などのジアルキルジメチルアンモニウム塩、たとえばオ
クタデシルジメチルベンジルアンモニウムクロリド、ヘ
キサデシルジメチルベンジルアンモニウムクロリドなど
の塩化ベンザルコニウムなど第4級アンモニウム塩型乳
化剤か挙げられる。
On the other hand, examples of cationic emulsifiers include alkyltrimethylammonium salts such as octadecyltrimethylammonium chloride and hexadecyltrimethylammonium chloride, dialkyldimethylammonium salts such as dioctadecyldimethylammonium chloride, dioctadecyldimethylammonium chloride, and didodecyldimethylammonium chloride. Examples include quaternary ammonium salt type emulsifiers such as benzalkonium chloride such as octadecyldimethylbenzylammonium chloride and hexadecyldimethylbenzylammonium chloride.

(C)成分の乳化剤の配合割合は、(A)成分のコロイ
ダルシリカ−シリコーンコアシェル体100重量部に対
して通常1〜20重量部である。配合量が1重量部未満
では安定なミセル形成か困難であり、20重量部を超え
るとエマルジョン粘度か上昇し、いずれも不安定なエマ
ルジョンとなる。
The blending ratio of the emulsifier (C) is usually 1 to 20 parts by weight per 100 parts by weight of the colloidal silica-silicone core shell (A). If the amount is less than 1 part by weight, it is difficult to form stable micelles, and if it exceeds 20 parts by weight, the viscosity of the emulsion increases, resulting in an unstable emulsion.

また必要に応じて、(C)成分としてノニオン系乳化剤
を併用してもよい。二〇ノニオン系乳化剤としては、た
とえばグリセリン脂肪酸エステル、ソルビタン脂肪酸エ
ステル、ポリオキシエチレン(以下POEと略す)アル
キルエーテル、POEソルビタン脂肪酸エステル、PO
Eグリセリン脂肪酸エステル、POEアルキルフェノー
ルエーテル、POEポリオキシプロピレンブロソク共重
合体などが挙げられる。
Furthermore, if necessary, a nonionic emulsifier may be used in combination as component (C). Examples of nonionic emulsifiers include glycerin fatty acid ester, sorbitan fatty acid ester, polyoxyethylene (hereinafter abbreviated as POE) alkyl ether, POE sorbitan fatty acid ester, PO
Examples include E-glycerin fatty acid ester, POE alkylphenol ether, and POE polyoxypropylene broth copolymer.

また、(D)成分の水の配合量は(A)成分のコアシェ
ル体100重量部に対して、通常50〜1000重量部
の範囲である。(D)成分が50重量部未満または10
00重量部を超えると乳化状態が悪く、エマルジョンが
不安定になる。
Further, the amount of water as the component (D) is usually in the range of 50 to 1000 parts by weight per 100 parts by weight of the core-shell body of the component (A). (D) Component is less than 50 parts by weight or 10
If it exceeds 0.00 parts by weight, the emulsification state will be poor and the emulsion will become unstable.

次に、本発明に係るシリコーン水性エマルジョン組成物
の製造方法について説明する。
Next, a method for producing a silicone aqueous emulsion composition according to the present invention will be explained.

本発明のシリコーン水性エマルジョン組成物は、(A)
(a)成分のコロイダルシリカと(A)(b−1)成分
のオルガノシロキサン、さらに必要に応じて(AXb−
2)成分のアルコキシシランとを、水性媒体中、有効量
の乳化剤、または乳化剤混合物の存在下に重縮合させる
ことによってコロイダルシリヵーシリコーンコアシェル
体エマルジョンを調製し、次いて(B)成分の硬化触媒
を添加することを骨子としている。
The silicone aqueous emulsion composition of the present invention comprises (A)
Colloidal silica as component (a) and organosiloxane as component (A)(b-1), and optionally (AXb-
2) Prepare a colloidal silica silicone core-shell emulsion by polycondensing component alkoxysilane in an aqueous medium in the presence of an effective amount of an emulsifier or a mixture of emulsifiers, and then harden component (B). The main point is to add a catalyst.

本発明に使用される(A)(a)成分のコロイダルシリ
カとは、S i O2を基本単位とする水中分散体を指
称するものであって、本発明においては4〜400nm
 、特に好ましくは30〜150r+mなる平均粒子径
を持ったものか適する。このようなコロイダルシリカと
しては、酸性側とアルカリ性側との双方のものかあるが
、条件に応じて適宜選択する。たとえばアニオン系乳化
剤を用いた酸性条件下での乳化重合を行う場合には、酸
性コロイダルシリカの使用が好ましい。
The colloidal silica of component (A) (a) used in the present invention refers to an aqueous dispersion having SiO2 as a basic unit, and in the present invention, colloidal silica with a diameter of 4 to 400 nm.
, particularly preferably those having an average particle diameter of 30 to 150 r+m. Such colloidal silica includes both acidic and alkaline types, and is selected appropriately depending on the conditions. For example, when carrying out emulsion polymerization under acidic conditions using an anionic emulsifier, it is preferable to use acidic colloidal silica.

本発明に使用される(A)(b−1>成分のオルガノシ
ロキサンは、上記の(II)式で表される構造単位を有
し、かつ水酸基を含有しないケイ素数1〜1゜のもので
あり、この構造は直鎖状、分岐状または環状など特に限
定はないか、環状構造をもつものが好ましい。
The organosiloxane (A) (b-1> component) used in the present invention has a structural unit represented by the above formula (II) and does not contain a hydroxyl group and has a silicon number of 1 to 1°. The structure is not particularly limited and may be linear, branched, or cyclic, but preferably has a cyclic structure.

ここで、ケイ素原子数10を超えると、乳化重合を行う
際、シロキサンミセル中にコロイダルシリカ粒子を取込
みにくいため、コアシェル体の形成に参加できないもの
か生じ、結果として目的のコアシェル体の他、フリーな
状態のコロイダルシリカおよびポリオルガノシロキサン
ミセルが共存したエマルジョンとなる。また、水酸基含
有シロキサンでは、初期乳化時に重縮合反応が起きてケ
イ素原子数10を超えるシロキサンとなり、上記問題点
が生じるので使用は好ましくない。
If the number of silicon atoms exceeds 10, it will be difficult to incorporate colloidal silica particles into the siloxane micelles during emulsion polymerization, resulting in particles that cannot participate in the formation of the core-shell body, and as a result, in addition to the desired core-shell body, free particles will be generated. An emulsion is formed in which colloidal silica and polyorganosiloxane micelles coexist. Further, in the case of a siloxane containing a hydroxyl group, a polycondensation reaction occurs during initial emulsification, resulting in a siloxane having more than 10 silicon atoms, which causes the above-mentioned problems, so its use is not preferred.

(A) (b−1)成分のオルガノシロキサンが有する
置換または非置換の1価の有機基としては、上記コロイ
ダルシリカ−シリコーンコアシェル体中のポリオルガノ
シロキサンシェルにおけるものと同様な有機基が挙げら
れる。
(A) The substituted or unsubstituted monovalent organic group possessed by the organosiloxane component (b-1) includes the same organic groups as those in the polyorganosiloxane shell in the colloidal silica-silicone core-shell body. .

上記(A)(b−1)成分のオルガノシロキサンとして
は、ヘキサメチルシクロトリシロキサン、オクタメチル
シクロテトラシロキサン、デカメチルシクロペンタシロ
キサン、1,3,5.7−チトラメチルー1゜3.5.
7−テトラフエニルシクロテトラシロキサン、1.3,
5.7−テトラベンジルテトラメチルシクロテトラシロ
キサン、1,3.5−トリス(3,3,3−トリフルオ
ロプロピル)トリメチルシクロトリシロキサンなどの環
状化合物か例示される。
Examples of the organosiloxane of component (A) (b-1) include hexamethylcyclotrisiloxane, octamethylcyclotetrasiloxane, decamethylcyclopentasiloxane, 1,3,5.7-titramethyl-1°3.5.
7-tetraphenylcyclotetrasiloxane, 1.3,
Examples include cyclic compounds such as 5.7-tetrabenzyltetramethylcyclotetrasiloxane and 1,3.5-tris(3,3,3-trifluoropropyl)trimethylcyclotrisiloxane.

なお、上記例示した環状化合物のほか、直鎖状あるいは
分岐状のオルガノシロキサンを用いてもよい。ただし、
直鎖状あるいは分岐状のシロキサンの場合、分子末端は
水酸基以外の有機基、たとえばアルコキシ基、トリメチ
ルシリル基、ジメチルビニルシリル基、メチルフェニル
ビニルシリル基、メチルジフェニルシリル基、3,3.
3−トリフルオロプロピルジメチルシリル基などで封鎖
されているものが好ましい。
In addition to the cyclic compounds exemplified above, linear or branched organosiloxanes may also be used. however,
In the case of a linear or branched siloxane, the molecular terminal has an organic group other than a hydroxyl group, such as an alkoxy group, a trimethylsilyl group, a dimethylvinylsilyl group, a methylphenylvinylsilyl group, a methyldiphenylsilyl group, 3,3.
Preferably, it is blocked with a 3-trifluoropropyldimethylsilyl group or the like.

また、必要に応じて使用する(A) (b−2)成分の
アルコキシシランは、シェル部を形成する一成分となる
ものであるが、コロイダルシリカのコアとオルガノシロ
キサンのシェルとの界面結合を仲介するものとしても有
効である。
In addition, the alkoxysilane as component (A) (b-2), which is used as necessary, is one of the components forming the shell part, but it is necessary to prevent the interfacial bond between the colloidal silica core and the organosiloxane shell. It is also effective as an intermediary.

このようなアルコキシ基を1〜4個有する有機シラン化
合物としては、ビニルトリメトキシシラン、ビニルトリ
エトキシシラン、ビニルトリプロポキシシラン、ビニル
トリブトキシシラン、ビニルトリ (メトキシエトキシ
)シラン、γ−メタクリロキシエチルトリメトキシシラ
ン、γ−メタクリロキシエチルトリエトキシシラン、γ
−アクリロキシエチルトリメトキシシラン、γ−アクリ
ロキシエチルトリエトキシシラン、γ−メタクリロキシ
プロピルトリメトキシシラン、γ−メタクリロキシプロ
ピルトリエトキシシラン、γ−アクリロキシエチルトリ
メトキシシラン、γ−アクリロキシプロピルトリメトキ
シシラン、γ−アクリロキシプロピルトリエトキシシラ
ン、ジメチルビニルメトキシシラン、ジメチルビニルエ
トキシシラン、メチルビニルジメトキシシラン、メチル
ビニルジェトキシシラン、テトラメトキシシラン、テト
ラエトキシシラン、テトラプロポキシシラン、テトラブ
トキシシラン、メチルトリメトキシシラン、メチルトリ
エトキシシラン、メチルトリプロポキシシラン、メチル
トリブトキシシラン、エチルトリメトキシシラン、エチ
ルトリエトキシシラン、エチルトリプロポキシシラン、
エチルトリブトキシシラン、プロピルトリメトキシシラ
ン、プロピルトリエトキシシラン、プロピルトリプロポ
キンシラン、プロピルトリブトキシシラン、ジメチルジ
メトキシシラン、ジメチルジェトキシシラン、ジメチル
ジプロポキシシラン、シメチルシブトキンシラン、ジエ
チルジメトキシシラン、ジエチルジェトキシシラン、ジ
エチルジプロポキシシラン、ジエチルジェトキシシン、
メチルエチルトリメトキシシラン、メチルプロピルジェ
トキシシラン、ジフェニルジメトキシシラン、ジフェニ
ルジェトキシシラン、フェニルトリメトキシシラン、フ
ェニルトリエトキシシラン、γ−メルカプトプロピルト
リメトキシシラン、γ−グリシド牛ジプロピルトリメト
キシシラン、γ−グリシドキシプロピルメチルジメトキ
シシランなとや、フルオロアルキルアルコキシシランな
どのふっ化アルコキシシランなどがある。
Examples of such organic silane compounds having 1 to 4 alkoxy groups include vinyltrimethoxysilane, vinyltriethoxysilane, vinyltripropoxysilane, vinyltributoxysilane, vinyltri(methoxyethoxy)silane, and γ-methacryloxyethyltrisilane. Methoxysilane, γ-methacryloxyethyltriethoxysilane, γ
-Acryloxyethyltrimethoxysilane, γ-acryloxyethyltriethoxysilane, γ-methacryloxypropyltrimethoxysilane, γ-methacryloxypropyltriethoxysilane, γ-acryloxyethyltrimethoxysilane, γ-acryloxypropyltrimethoxysilane Methoxysilane, γ-acryloxypropyltriethoxysilane, dimethylvinylmethoxysilane, dimethylvinylethoxysilane, methylvinyldimethoxysilane, methylvinyljethoxysilane, tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, tetrabutoxysilane, methyl trimethoxysilane, methyltriethoxysilane, methyltripropoxysilane, methyltributoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, ethyltripropoxysilane,
Ethyltributoxysilane, propyltrimethoxysilane, propyltriethoxysilane, propyltripropoquinesilane, propyltributoxysilane, dimethyldimethoxysilane, dimethyljethoxysilane, dimethyldipropoxysilane, dimethylsibutquinsilane, diethyldimethoxysilane, diethyl Jetoxysilane, diethyldipropoxysilane, diethyljetoxycin,
Methyl ethyltrimethoxysilane, methylpropyljethoxysilane, diphenyldimethoxysilane, diphenyljethoxysilane, phenyltrimethoxysilane, phenyltriethoxysilane, γ-mercaptopropyltrimethoxysilane, γ-glycid bovine dipropyltrimethoxysilane, γ Examples include -glycidoxypropylmethyldimethoxysilane and fluorinated alkoxysilanes such as fluoroalkylalkoxysilane.

そして、上述したような(A)(b−1)成分のオルガ
ノンロキサンおよび(A) (b−2)成分のアルコキ
シシランは、本発明に係る組成物中のコロイダルシリカ
−シリコーンコアシェル体におけるポリオルガノシロキ
サンシェル部が20〜95重量%となり、しかも(I)
式の平均組成式 RS i O(4−a)72 (式中R1は炭素数1〜8の置換または非置換の1価の
有機基、aは1.02〜8の数)を満たすものになるよ
うに配合される。
The above-mentioned organone loxane as the component (A) (b-1) and the alkoxysilane as the component (A) (b-2) are the components of the colloidal silica-silicone core-shell body in the composition according to the present invention. The organosiloxane shell portion is 20 to 95% by weight, and (I)
The average composition formula of the formula RS i O (4-a) 72 (wherein R1 is a substituted or unsubstituted monovalent organic group having 1 to 8 carbon atoms, a is a number of 1.02 to 8) It is blended accordingly.

なお、(A) (b−2)成分としてアルコキシ基と炭
素官能性基またはエチレン性不飽和基を含む基を併せ持
つものを配合した場合、本発明にかかる組成物から形成
されるエラストマー硬化物の繊維などの基材に対する接
着性(密着ないし固着)を向上させ、またシリコーン粒
状物では各種有機樹脂、ゴムなどに対する相溶性、界面
接着性を向上させることができて有利である。たたしそ
の配合量は、前記(1)式の平均組成式のケイ素原子に
結合した有機基の総量に対して 0.02〜10%、より好ましくは0.05〜5%とな
るように配合することが望ましい。
In addition, when a compound having both an alkoxy group and a group containing a carbon functional group or an ethylenically unsaturated group is blended as component (A) (b-2), the cured elastomer product formed from the composition according to the present invention It is advantageous in that it can improve adhesion (adhesion or fixation) to base materials such as fibers, and in the case of silicone granules, it can improve compatibility with various organic resins, rubbers, etc., and interfacial adhesion. However, the blending amount is 0.02 to 10%, more preferably 0.05 to 5%, based on the total amount of organic groups bonded to silicon atoms in the average composition formula of formula (1) above. It is desirable to mix them.

炭素官能性基とアルコキシ基を併せ持つ有機ケイ素化合
物としては、3−アミノプロピルメチルジメトキシシラ
ン、N−(2−アミノエチル)−3−アミノプロピルト
リエトキシシラン、N−(2−アミノエチル)−3−ア
ミノプロピルメチルジメトキシシラン、N−ジエチレン
トリアミンプロピルメチルジメトキシシラン、3−グリ
シドキシプロピルメチルシエトキシシラン、3,4−エ
ポキシシクロヘキシルエチルトリメトキシシラン、3−
メルカプトプロピルメチルジメトキシシランなどを挙げ
ることができる。
Examples of organosilicon compounds having both a carbon functional group and an alkoxy group include 3-aminopropylmethyldimethoxysilane, N-(2-aminoethyl)-3-aminopropyltriethoxysilane, N-(2-aminoethyl)-3 -aminopropylmethyldimethoxysilane, N-diethylenetriaminepropylmethyldimethoxysilane, 3-glycidoxypropylmethylethoxysilane, 3,4-epoxycyclohexylethyltrimethoxysilane, 3-
Examples include mercaptopropylmethyldimethoxysilane.

一方、エチレン性不飽和基を含む基とアルコキシ基を併
せ持つ有機ケイ素化合物としては、(ビニロキシプロピ
ル)メチルジメトキシシラン、(ビニロキシエトキシプ
ロピル)メチルジメトキシシラン、p−ビニルフェニル
メチルジメトキシシラン、l−(m−ビニルフェニル)
メチルジメチルイソプロポキシシラン、2−(p−ビニ
ルフェニル)エチルメチルジメトキシンラン、3−(p
−ビニルベンゾイロキシ)プロピルメチルジメトキシシ
ラン、1−(p−ビニルフェニル シシン、1−(0−ビニルフェニル)−1.1.2−)
ジメチル−2,2−ジメトキシジシラン、l−(p−ビ
ニルフェニル)−1.1−ジフェニル−3−エチル−3
,3−ジェトキシジシロキサン、m−ビニルフェニル[
3−( トリエトキシシリル)プロピル]ジフェニルシ
ラン、[3−(p−イソプロペニルベンゾイルアミノ)
プロピル]フエニルジプロポキシシラン、γーアクリロ
キシプロピルメチルジェトキシシラン、γーメタクリロ
キシプロピルメチルジメトキシシラン、γーメタクリロ
キシプロピルトリメトキシシラン、N−メタクリロイル
−N−メチル−γーアミノプロピルメチルジメトキシシ
ラン、N−アクリロイル−N−メチル−γーアミノプロ
ピルメチルジメトキシシラン、N.N−ビス(メタクリ
ロイル)−γーアミノプロピルメチルジメトキシシラン
、N,N−ビス(アクリロイル)−γーアミノプロピル
メチルジメトキシシラン、N−メタクリロイル−N−メ
チル−γーアミノプロピルフエニルジエトキシシラン、
l−(3−メタクリロキシプロピル)−1.1.3−ト
リメチル−3,3ジメトキシジシロキサン、ビニルメチ
ルジメトキシンラン、ビニルエチルジイソプロポキシシ
ラン、ビニルジメチルニドキシンラン メトキンシラン、5−へキセニルメチルジェトキシシラ
ン、7−オクチニルエチルシエトキンシランなどのシラ
ン化合物およびこれを加水分解したシロキサン化合物か
挙げられ、これらを単独または2種以上の混合物として
用いる。
On the other hand, examples of organosilicon compounds having both an ethylenically unsaturated group and an alkoxy group include (vinyloxypropyl)methyldimethoxysilane, (vinyloxyethoxypropyl)methyldimethoxysilane, p-vinylphenylmethyldimethoxysilane, l- (m-vinylphenyl)
Methyldimethylisopropoxysilane, 2-(p-vinylphenyl)ethylmethyldimethoxine, 3-(p-vinylphenyl)ethylmethyldimethoxysilane,
-vinylbenzoyloxy)propylmethyldimethoxysilane, 1-(p-vinylphenylshicine, 1-(0-vinylphenyl)-1.1.2-)
Dimethyl-2,2-dimethoxydisilane, l-(p-vinylphenyl)-1,1-diphenyl-3-ethyl-3
, 3-jethoxydisiloxane, m-vinylphenyl [
3-(triethoxysilyl)propyl]diphenylsilane, [3-(p-isopropenylbenzoylamino)
[propyl] phenyldipropoxysilane, γ-acryloxypropylmethyljethoxysilane, γ-methacryloxypropylmethyldimethoxysilane, γ-methacryloxypropyltrimethoxysilane, N-methacryloyl-N-methyl-γ-aminopropylmethyldimethoxy Silane, N-acryloyl-N-methyl-γ-aminopropylmethyldimethoxysilane, N. N-bis(methacryloyl)-γ-aminopropylmethyldimethoxysilane, N,N-bis(acryloyl)-γ-aminopropylmethyldimethoxysilane, N-methacryloyl-N-methyl-γ-aminopropylphenyldiethoxysilane,
l-(3-methacryloxypropyl)-1.1.3-trimethyl-3,3dimethoxydisiloxane, vinylmethyldimethoxylan, vinylethyldiisopropoxysilane, vinyldimethylnidoxinlanmethquinsilane, 5-hexenyl Examples include silane compounds such as methyljethoxysilane and 7-octynylethylsiethoxysilane, and siloxane compounds obtained by hydrolyzing the same, and these may be used alone or in a mixture of two or more.

なお、上述した有機ケイ素化合物として好ましいものは
、(ビニロキシプロピル)メチルジメトキシシラン、(
ビニロキシエトキシプロピル)メチルジメトキシシラン
、p−ビニルフェニルメチルジメトキシシラン、2−(
p−ビニルフェニル)エチルメチルジメトキシシラン、
3−(p−ビニルベンゾイロキシ)プロピルメチルジメ
トキシシラン、1−(p−ビニルフェニル)エチルメチ
ルジメトキシシラン、γーメタクリロキシプロピルメチ
ルジメトキシシラン、N−メタクリロイル−N−メチル
−γアミノプロピルメチルジメトキシシラン、N−アク
リロイル−N−メチル−γ−アミノプロピルメチルジメ
トキシシラン、ビニルメチルジメトキシシラン、アリル
メチルジメトキシシランであり、さらに好ましくは、(
ビニロキシプロピル)メチルジメトキンシラン、p−ビ
ニルフェニルメチルジメトキシシラン、N−メタクリロ
イル−N−メチル−γ−アミノプロピルメチルジメトキ
シシラン、ビニルメチルジメトキシシランなどのシラン
化合物およびこれを加水分解したシロキサン化合物であ
る。
The above-mentioned organosilicon compounds are preferably (vinyloxypropyl)methyldimethoxysilane, (vinyloxypropyl)methyldimethoxysilane, (
vinyloxyethoxypropyl)methyldimethoxysilane, p-vinylphenylmethyldimethoxysilane, 2-(
p-vinylphenyl)ethylmethyldimethoxysilane,
3-(p-vinylbenzoyloxy)propylmethyldimethoxysilane, 1-(p-vinylphenyl)ethylmethyldimethoxysilane, γ-methacryloxypropylmethyldimethoxysilane, N-methacryloyl-N-methyl-γaminopropylmethyldimethoxy silane, N-acryloyl-N-methyl-γ-aminopropylmethyldimethoxysilane, vinylmethyldimethoxysilane, allylmethyldimethoxysilane, more preferably (
Silane compounds such as vinyloxypropyl)methyldimethoxysilane, p-vinylphenylmethyldimethoxysilane, N-methacryloyl-N-methyl-γ-aminopropylmethyldimethoxysilane, and vinylmethyldimethoxysilane, and siloxane compounds obtained by hydrolyzing these. be.

上記したように、本発明に係るシリコーン水性エマルジ
ョン組成物は、上記(A)(a)成分のコロイダルシリ
カと、(A>(b−1)成分のオルガノシロキサンと必
要に応じて(A)(b−2)成分のアルコキシシランと
を、水性媒体中、乳化剤の存在下にホモジナイザーなど
を用いてせん断混合し、重縮合させることによってコロ
イダルシリカ−シリコーンコアシェル体を調製し、次い
で(B)成分の硬化触媒を添加することによって製造で
きる。
As described above, the silicone aqueous emulsion composition according to the present invention comprises colloidal silica as the component (A)(a), organosiloxane as the component (A>(b-1)), and optionally (A)( A colloidal silica-silicone core-shell body is prepared by shear mixing the component b-2) with the alkoxysilane using a homogenizer in the presence of an emulsifier in an aqueous medium and polycondensing the mixture. It can be produced by adding a curing catalyst.

この乳化剤は主に(A) (b−1)成分を乳化させる
ための界面活性剤の役割を果たすと同時に、(A)(a
)成分と、(A) (b−1)成分および(A) (b
−2)成分との重縮合反応の触媒の働きをするものであ
り、ここでアニオン系乳化剤としては有機スルホン酸系
乳化剤が、またアニオン系乳化剤としては第4級アンモ
ニウム塩型が好ましい。しかし、第4級アンモニウム塩
型の場合は種類によって触媒作用が低いので、水酸化ナ
トリウムや水酸化カリウムなどのアルカリ触媒の添加併
用が望まれる。
This emulsifier mainly plays the role of a surfactant to emulsify components (A) (b-1), and at the same time
) component, (A) (b-1) component and (A) (b
-2) It functions as a catalyst for the polycondensation reaction with component 2), and the anionic emulsifier is preferably an organic sulfonic acid emulsifier, and the anionic emulsifier is preferably a quaternary ammonium salt type. However, in the case of the quaternary ammonium salt type, the catalytic action is low depending on the type, so it is desirable to use an alkali catalyst such as sodium hydroxide or potassium hydroxide in combination.

また、この乳化剤の使用量は、(A) (a)成分と、
(A) (b−1)および(A) (b−2)成分の合
計量100重量部剤が、またアニオン系乳化剤としては
第4級アンモニウム塩型が好ましい。しかし、第4級ア
ンモニウム塩型の場合は種類によって触媒作用が低いの
で、水酸化ナトリウムや水酸化カリウムなどのアルカリ
触媒の添加併用が望まれる。
In addition, the usage amount of this emulsifier is as follows: (A) component (a);
A total of 100 parts by weight of components (A) (b-1) and (A) (b-2) is preferred, and as the anionic emulsifier, a quaternary ammonium salt type is preferred. However, in the case of the quaternary ammonium salt type, the catalytic action is low depending on the type, so it is desirable to use an alkali catalyst such as sodium hydroxide or potassium hydroxide in combination.

また、この乳化剤の使用量は、(A)(a)成分と、(
A)(b−1)および(A) (b−2)成分の合計量
ioo重量部に対して通常1〜20重量部、好ましくは
 1〜10重量部程置部ある。また、必要に応じてノニ
オン系の乳化剤を併用してもよい。
In addition, the usage amount of this emulsifier is as follows: (A) component (a) and (
The amount is usually 1 to 20 parts by weight, preferably 1 to 10 parts by weight, based on the total amount of IOO parts by weight of components A)(b-1) and (A)(b-2). In addition, a nonionic emulsifier may be used in combination if necessary.

なお、前記コロイダルシリカ−シリコーンコアシェル体
の調製に当り、コロイダルシリカを安定な状態に保持し
ておくため、酸性コロイダルシリカ−アニオン系乳化剤
、アルカリ性コロイダルンリカーカチオン系乳化剤の組
合せを選択する。
In preparing the colloidal silica-silicone core-shell body, a combination of an acidic colloidal silica-anionic emulsifier and an alkaline colloidal cationic emulsifier is selected in order to maintain colloidal silica in a stable state.

この際の水の使用量は、(A) (a)成分と(A)(
b−1)および(A) (b−2)の合計量100重量
部に対して通常50〜1000重量部、好ましくは 1
00〜500重量部であり、縮合温度は通常、5〜10
0℃である。
The amount of water used in this case is (A) component (a) and (A) (
Usually 50 to 1000 parts by weight, preferably 1 to 100 parts by weight of the total amount of b-1) and (A) (b-2).
00 to 500 parts by weight, and the condensation temperature is usually 5 to 10 parts by weight.
It is 0°C.

なお、本発明に係る組成物中のコロイダルシリカ−シリ
コーンコアシェル体の調製に際し、シリコーンシェル部
の強度を向上させるために第3成分として架橋剤を添加
することもできる。この架橋剤としては、たとえばメチ
ルトリメトキシシラン、ビニルトリメトキシシラン、メ
チルトリエトキシシラン、フェニルトリメトキシシラン
、エチルトリエトキシシラン、(3,3,3−トリフル
オロプロピル)トリメトキシシランなどの3官能性架橋
剤、テトラエトキシシランなどの4官能性架橋剤を挙げ
ることかできる。この架橋剤の添加量は、(A) (b
−1)、および(A)(b−2)成分の合計量に対して
、通常10重量96以下、好ましくは5重量%以下であ
る。
In addition, when preparing the colloidal silica-silicone core-shell body in the composition according to the present invention, a crosslinking agent may be added as a third component in order to improve the strength of the silicone shell portion. Examples of the crosslinking agent include trifunctional trimethoxysilane such as methyltrimethoxysilane, vinyltrimethoxysilane, methyltriethoxysilane, phenyltrimethoxysilane, ethyltriethoxysilane, and (3,3,3-trifluoropropyl)trimethoxysilane. and tetrafunctional crosslinking agents such as tetraethoxysilane. The amount of this crosslinking agent added is (A) (b
-1) and (A) (b-2) It is usually 10% by weight or less, preferably 5% by weight or less, based on the total amount of components (b-2).

上記により得られる本発明に係る組成物中のコロイダル
シリカ−シリコーンコアシェル体エマルジョンは、酸性
あるいはアルカリ性になっているので、長期安定性を保
つためアルカリあるいは酸で中和する必要かある。この
アルカリ性物質としては、たとえば水酸化ナトリウム、
水酸化カリウム、炭酸ナトリウム、炭酸水素ナトリウム
、トリエタノールアミンなどが用いられ、また酸として
は塩酸、硫酸、硝酸、酢酸、しゅう酸なとか用いられる
Since the colloidal silica-silicone core-shell emulsion in the composition according to the present invention obtained as described above is acidic or alkaline, it is necessary to neutralize it with an alkali or acid to maintain long-term stability. Examples of this alkaline substance include sodium hydroxide,
Potassium hydroxide, sodium carbonate, sodium hydrogen carbonate, triethanolamine, etc. are used, and as acids, hydrochloric acid, sulfuric acid, nitric acid, acetic acid, and oxalic acid are used.

上記コロイダルシリカ−シリコーンコアシェル体に対し
、要すれば(B)成分の硬化触媒を添加し、撹拌混合を
行うことで、本発明のシリコーン水性エマルジョン組成
物の製造が完了する。本発明において使用する硬化触媒
としては、上記したようにジアルキルスズジ力ルボレー
トが好まし7い。また、これら硬化触媒の使用に際して
、予め常法により乳化剤と水を使用し、0/讐型または
讐10型エマルジョンとしてお(ことか望ましい。さら
に、前記硬化触媒の添加・撹拌混合温度は5〜25℃の
範囲内か好ましい。
If necessary, a curing catalyst as component (B) is added to the colloidal silica-silicone core-shell body, and the mixture is stirred and mixed to complete the production of the silicone aqueous emulsion composition of the present invention. As the curing catalyst used in the present invention, dialkyltin dihydroborate is preferably used as described above. In addition, when using these curing catalysts, it is preferable that an emulsifier and water be used in advance in a conventional manner to form a 0/1 emulsion or an 10 type emulsion. It is preferably within the range of 25°C.

次に、本発明のシリコーン水性エマルジョン組成物を用
いたシリコーン粒状物の製造方法について説明する。
Next, a method for producing silicone granules using the silicone aqueous emulsion composition of the present invention will be explained.

この方法は、前記本発明に係るシリコーン水性エマルジ
ョン組成物を、25℃以上の熱媒体、たとえば液体もし
くは気体に分散接触させ、組成物中の主要構成成分であ
るコロイダルシリカ−シリコーンコアシェル体を微粒子
状に硬化させることからなる。加熱温度が25℃未満で
はコアシェル体の硬化速度が遅く、所望の特性の良いシ
リコーン粒状物を得ることか困難となる。とくに好まし
い加熱温度は50℃以上である。上記熱媒体に使用する
液体としては、コアシェル体を溶解したりその硬化を阻
害したりしないものであればよく、たとえば流動パラフ
ィン、ワックス類、ジメチルシリコーン油、フタル酸エ
ステル類などが挙げられる。
In this method, the silicone aqueous emulsion composition according to the present invention is brought into dispersion contact with a heat medium of 25°C or higher, such as a liquid or gas, and the colloidal silica-silicone core-shell body, which is the main component in the composition, is transformed into fine particles. It consists of curing. If the heating temperature is less than 25°C, the curing speed of the core-shell body will be slow, making it difficult to obtain silicone granules with desired properties. A particularly preferred heating temperature is 50°C or higher. The liquid used as the heat medium may be any liquid that does not dissolve the core-shell body or inhibit its hardening, and examples thereof include liquid paraffin, waxes, dimethyl silicone oil, and phthalate esters.

また上記加熱媒体に使用する気体としても、液体の場合
と同様にコアシェル体を溶解したりその硬化を阻害する
ものを避け、さらに可燃性のものを避けることが望まし
く、たとえば空気、窒素ガス、各種不燃性ガスなどが適
する。
As for the gas used as the heating medium, it is preferable to avoid anything that would dissolve the core-shell material or inhibit its hardening, as in the case of liquids, and it is also desirable to avoid flammable materials, such as air, nitrogen gas, and various other gases. Nonflammable gas is suitable.

上記シリコーン水性エマルジョン組成物を25℃以上の
熱媒体に分散接触させ、組成物中のコロイダルシリカ−
シリコーンコアシェル体の硬化を完結させる方法として
は、たとえば組成物を高温の空気中に噴霧し硬化を完結
させる方法、組成物を所定温度に設定した熱媒体を満た
した撹拌機付混合機に少量ずつ連続して供給し、これを
撹拌しながら連続して接触分散させる方法、あるいは組
成物中に加熱液体を投入し撹拌する方法などがある。
The above silicone aqueous emulsion composition is brought into dispersion contact with a heat medium at a temperature of 25°C or higher, and the colloidal silica in the composition is
Methods for completing the curing of the silicone core shell body include, for example, spraying the composition into hot air to complete the curing, or adding the composition in small portions to a mixer equipped with an agitator filled with a heating medium set at a predetermined temperature. There is a method in which the composition is continuously supplied and continuously contacted and dispersed while stirring, or a method in which a heated liquid is poured into the composition and stirred.

このようにして得られたシリコーン粒状物の用途として
は、それ自体単独で用いる場合と他の材料との組合わせ
で用いる場合かある。他の材料との組合わせで用いる場
合には、これを添加配合した各種材料の機械的強度、耐
水性、潤滑性等の物理特性を改良できる。
The silicone granules thus obtained can be used either alone or in combination with other materials. When used in combination with other materials, the physical properties such as mechanical strength, water resistance, and lubricity of various materials to which it is added can be improved.

かかる場合のシリコーン粒状物の適用対象としては、た
とえば、次のようなものが挙げられるが、もとよりこれ
らの対象に限定されるものではない。
In such a case, the silicone granules may be applied to, for example, the following, but are not limited to these objects.

すなわち、固体潤滑剤、撥水剤、剥離剤、粘着防止剤、
グリース、オイル、セメント、プラスタ、塗料、注形材
料、成形材料、フィルム、農薬や医療用となとか考えら
れる。また特に高分子材料に混入して用いる場合の対象
高分子の例としては、天然ゴム、ポリクロロプレンゴム
、ポリブタジェンゴム、5BRSEPR,EPTゴム、
ポリイソプレンゴム、ポリイソブチンゴム、ポリアクリ
ル酸エステルゴム、ポリウレタンゴム、ブタジェンアク
リロニトリル共重合体ゴム、ポリエステルゴム、ポリサ
ルファイドゴム、フッ素ゴム、シリコーンゴムあるいは
これらの共重合体ゴム、あるいはこれらのゴムの混合物
があり、樹脂材料としては、ナイロン−5、ナイロン−
6、ナイロン=7、ナイロン−8、ナイロン−9、ナイ
ロン−10、ナイロン−11、ナイロン−12、ナイロ
ン−66、ケブラーなどの芳香族ポリアミドなどに代表
される各種ポリアミド、ポリエチレンテレフタレート、
ポリブチレンテレフタレート、ポリ水素化キシリレンテ
レフタレート、ポリカプロラクトン、ポリカプロラクト
ンなとに代表される飽和ポリエステル、ポリカーボネー
ト、ABS樹脂、AS樹脂、ポリスチレン、ポリエチレ
ン、ポリプロピレン、ポリブタンエン、ポリ塩化ビニル
、ボッ塩化ビニリデン、ポリアクリロニトリル、ポリビ
ニルアルコール、ポリビニルアセテート、ポリビニルブ
チラール、ポリメチルメタクリレート、含フツ素樹脂、
その他のポリオレフィン系樹脂、ポリエチレングリコー
ル、ポリプロピレングリコール、ポリテトラヒドロフラ
ン、ベントン、ポリフェニレンオキサイド、ポリアセタ
ールなどのポリエーテル類、フェノール樹脂、ポリウレ
タン樹脂、アクリル樹脂、ユリア樹脂、不飽和ポリエス
テル樹脂、メラミン樹脂、フタル酸樹脂、BTレジン、
ポリイミド樹脂、シリコーン樹脂、セルロイド、アセチ
ルセルロース、エポキシアクリレト、ポリアクリル酸塩
、エポキシ樹脂などの各種の熱可塑性樹脂、熱硬化性樹
脂、紫外線、γ線、電子線などの高エネルギー線により
硬化する樹脂、さらにこれらの樹脂のブロックもしくは
ランダム共重合物あるいはブレンド物などが挙げられる
Namely, solid lubricants, water repellents, release agents, anti-stick agents,
Possible uses include grease, oil, cement, plaster, paint, casting materials, molding materials, films, agricultural chemicals, and medical uses. In addition, examples of target polymers particularly when mixed into polymer materials include natural rubber, polychloroprene rubber, polybutadiene rubber, 5BRSEPR, EPT rubber,
Polyisoprene rubber, polyisobutene rubber, polyacrylic ester rubber, polyurethane rubber, butadiene acrylonitrile copolymer rubber, polyester rubber, polysulfide rubber, fluororubber, silicone rubber, or copolymer rubber of these rubbers, or There are mixtures, and the resin materials include nylon-5 and nylon-5.
6. Nylon = 7, nylon-8, nylon-9, nylon-10, nylon-11, nylon-12, nylon-66, various polyamides represented by aromatic polyamides such as Kevlar, polyethylene terephthalate,
Saturated polyesters represented by polybutylene terephthalate, polyhydrogenated xylylene terephthalate, polycaprolactone, polycaprolactone, polycarbonate, ABS resin, AS resin, polystyrene, polyethylene, polypropylene, polybutane, polyvinyl chloride, polyvinylidene chloride, polyvinyl chloride, Acrylonitrile, polyvinyl alcohol, polyvinyl acetate, polyvinyl butyral, polymethyl methacrylate, fluorine-containing resin,
Other polyolefin resins, polyethylene glycol, polypropylene glycol, polytetrahydrofuran, bentone, polyphenylene oxide, polyethers such as polyacetal, phenol resin, polyurethane resin, acrylic resin, urea resin, unsaturated polyester resin, melamine resin, phthalate resin , BT resin,
Polyimide resin, silicone resin, celluloid, acetyl cellulose, epoxy acrylate, polyacrylate, various thermoplastic resins such as epoxy resin, thermosetting resin, cured by high energy rays such as ultraviolet rays, gamma rays, and electron beams. Examples include resins, block or random copolymers, or blends of these resins.

もちろんこれらの樹脂は各種無機質粉状充填剤、ガラス
繊維やカーボン繊維その他の繊維状充填剤あるいは補強
剤、耐熱性向上剤、耐候性向上剤その他の安定剤、改質
剤、顔料、染料などを含有していてもよいことはいうま
でもない。
Of course, these resins contain various inorganic powder fillers, glass fibers, carbon fibers, and other fibrous fillers or reinforcing agents, heat resistance improvers, weather resistance improvers, other stabilizers, modifiers, pigments, dyes, etc. It goes without saying that it may be contained.

以下、本発明の実施例を具体的に示す。Examples of the present invention will be specifically shown below.

なお、実施例中の部および%は、特に断らない限り重量
部および重量%を表すものとする。
Note that parts and % in the examples represent parts by weight and % by weight unless otherwise specified.

また、原料となるコロイダルシリカおよび中間体のコロ
イダルシリカ−シリコーンコアシェル体の平均粒子径は
、動的光散乱法の採用された火爆電子(株)製レーサー
粒径解析システムLPA−3000S 731.00を
用いて計j定した。
In addition, the average particle diameter of colloidal silica as a raw material and colloidal silica-silicone core-shell body as an intermediate was measured using a laser particle size analysis system LPA-3000S 731.00 manufactured by Hibaku Denshi Co., Ltd., which uses a dynamic light scattering method. It was determined using

さらに、中間体のコロイダルシリカ−シリコーンコアシ
ェル体をグラフト重合体と見なした場合、つまりフロイ
ダルシリ力コアを幹ポリマ−シェルを技ポリマーと見な
した場合のグラフト率およびグラフト効率は以下の方法
で求めた。すなわち、コアシェル体含有エマルジョンを
40℃/ 0.5mmHg 。
Furthermore, when the intermediate colloidal silica-silicone core-shell body is regarded as a graft polymer, that is, when the floidal silica core is regarded as a trunk polymer and the silicone shell is regarded as a technical polymer, the grafting ratio and grafting efficiency are determined by the following method. Ta. That is, the core-shell body-containing emulsion was heated at 40°C/0.5mmHg.

5時間減圧乾燥することで得たコアシェル体乾燥物の一
定圧ff1(ff)をシクロヘキサン中に投入し、振と
う機で2時間振とうして遊離のポリオルガノシロキサン
を溶解させ、遠心分離機を用いて回転数23.00Or
pmで30分間遠心分離し不溶分を得る。
A constant pressure of ff1 (ff) of the dried core-shell body obtained by drying under reduced pressure for 5 hours is put into cyclohexane, shaken for 2 hours with a shaker to dissolve the free polyorganosiloxane, and then heated with a centrifuge. Rotation speed 23.00Or
Centrifuge at pm for 30 minutes to obtain insoluble matter.

次に、真空乾燥機を用いて120℃で1時間乾燥し、不
溶分重量(m)を得、次式によりグラフト率、グラフト
効率を算出した。
Next, it was dried at 120° C. for 1 hour using a vacuum dryer to obtain the weight (m) of insoluble matter, and the grafting rate and grafting efficiency were calculated using the following formula.

グラフト率= (m)−(ρ)Xコアシェル体中のコア分率×100 (ρ)Xコアシェル体中のコア分率 グラフト効率= (m)−(、& ) Xコアシェル体中のコア分率× 
100 (g )1 00 ( Xコアシェル体中のコア分率 実施例1 酸性コロイダルシリカスノーテックスOL  (日産化
学工業(株)製、平均粒子径84nmSS i 022
0.66%、N a 200.019%、PH2,78
−、シリカ−1と略記)i、ooo部、蒸留水470部
、ドデシルベンゼンスルホン酸8.4部の混合液中に、
オクタメチルシクロテトラシロキサン(b−1と略記)
210部を加え、ホモミキサーにより予備撹拌した後、
ホモジナイザーにより300kgf/cJの圧力で2回
通すことにより、乳化、分散させた。
Grafting ratio = (m) - (ρ) X Core fraction in core-shell body x 100 (ρ) ×
100 (g) 100 (X Core fraction in core shell body Example 1 Acidic colloidal silica Nortex OL (manufactured by Nissan Chemical Industries, Ltd., average particle diameter 84 nm SS i 022
0.66%, Na 200.019%, PH2,78
-, abbreviated as silica-1) i, ooo parts, 470 parts of distilled water, and 8.4 parts of dodecylbenzenesulfonic acid,
Octamethylcyclotetrasiloxane (abbreviated as b-1)
After adding 210 parts and pre-stirring with a homomixer,
The mixture was emulsified and dispersed by passing it through a homogenizer twice at a pressure of 300 kgf/cJ.

この混合液をコンデンサー、窒素導入口および撹拌機を
備えたセパラブルフラスコに移し、撹拌混合しなから8
5℃で5時間加熱し、5℃で48時間冷却することによ
って縮合を完結させた。次いで、このポリオルガノシロ
キサンエマルジョンを炭酸ナトリウム水溶液でPH7に
中和し、縮合を終わらせた。得られたポリオルガノシロ
キサン中のオクタメチルシクロテトラシロキサンの縮合
率は99.6%であった。
Transfer this mixed solution to a separable flask equipped with a condenser, nitrogen inlet, and stirrer, and stir and mix.
Condensation was completed by heating at 5°C for 5 hours and cooling at 5°C for 48 hours. Next, this polyorganosiloxane emulsion was neutralized to pH 7 with an aqueous sodium carbonate solution to complete the condensation. The condensation rate of octamethylcyclotetrasiloxane in the obtained polyorganosiloxane was 99.6%.

また、前記ポリオルガノシロキサンがコロイダルシリカ
−シリコーンコアシェル体であるということが、動的光
散乱法に基づく粒径解析および電子顕微鏡観察により確
認できた。すなわち、レーサー粒径解析システム(火爆
電子(株)製LPA−300OS/3100 )を用い
て粒径解析したところ、原料コロイダルシリカの84r
v付近にピークを持つ単一分散の粒径分布が完全に消失
し、155部m付近にピークを持った単一分散の粒径分
布か新たに現れた。さらに、電子顕微鏡により観察した
ところ、シリコーン粒子像のみが確認され、原料シリカ
粒子像は全く観察されなかった。
Furthermore, it was confirmed by particle size analysis based on dynamic light scattering and electron microscopy that the polyorganosiloxane was a colloidal silica-silicone core-shell material. That is, when the particle size was analyzed using a racer particle size analysis system (LPA-300OS/3100 manufactured by Hibaku Denshi Co., Ltd.), it was found that 84r of the raw material colloidal silica
The monodisperse particle size distribution with a peak around v completely disappeared, and a monodisperse particle size distribution with a peak around 155 parts m newly appeared. Further, when observed using an electron microscope, only silicone particle images were confirmed, and no raw material silica particle images were observed at all.

一方、このコアシェル体エマルジョンの一部を多量のア
セトン中に投入し、コアシェル体を析出させ、日別後、
真空乾燥機で50℃、12時間乾燥し、コアシェル体凝
集物を得た。そして、このコアシェル体凝集物の元素分
析、IRおよびIH129SINMR分析の結果、シリ
コーンシェルの割合は49.2%であった。また、前記
コアシェル体をグラフト重合体とみなした場合のグラフ
ト率およびグラフト効率はそれぞれ40,2%であった
On the other hand, a part of this core-shell body emulsion was poured into a large amount of acetone to precipitate a core-shell body, and after a day,
It was dried in a vacuum dryer at 50°C for 12 hours to obtain a core-shell aggregate. As a result of elemental analysis, IR and IH129SINMR analysis of this core-shell aggregate, the proportion of silicone shell was 49.2%. Furthermore, when the core-shell body was considered to be a graft polymer, the grafting rate and grafting efficiency were 40 and 2%, respectively.

次に、上記調製し、たコロイダルシリカ−シリコーンコ
アシェル体水性エマルジョン ion (固形分24.
0%)に対しジブチルスズジラウレートの50%水性エ
マルジョン(ジブチルスズジラウレート50部、ドデシ
ルベンゼンスルホン酸ナトリウム 5部および蒸留水4
5部にて調製)  0.24部を25℃にて添加し、混
合撹拌することにより、シリコーン水性エマルジョン組
成物を得た。
Next, the colloidal silica-silicone core-shell aqueous emulsion prepared above (solid content 24.
0%) to a 50% aqueous emulsion of dibutyltin dilaurate (50 parts dibutyltin dilaurate, 5 parts sodium dodecylbenzenesulfonate and 4 parts distilled water)
A silicone aqueous emulsion composition was obtained by adding 0.24 parts (prepared with 5 parts) at 25° C. and mixing and stirring.

上記シリコーン水性エマルジョン組成物をフッ素樹脂製
容器に注ぎ、温度25℃相対温度60%の雰囲気中に 
1週間放置して、キャスティングおよび硬化を進めるこ
とにより、厚さ1mn+程度のゴム状シートを得た。こ
のゴム状シートについて、硬さ、引張強さ、100%引
張応力、伸びを月S K 6301に準じて評価したと
ころ、表−1に示すような結果が得られた。
The above silicone aqueous emulsion composition was poured into a fluororesin container and placed in an atmosphere at a temperature of 25°C and a relative temperature of 60%.
A rubber-like sheet with a thickness of approximately 1 mm+ was obtained by allowing the mixture to stand for one week and proceeding with casting and curing. The hardness, tensile strength, 100% tensile stress, and elongation of this rubber sheet were evaluated according to Tsuki SK 6301, and the results shown in Table 1 were obtained.

また、上記シリコーン水性エマルジョン組成物を表−1
に示す種々の基材にキャスティングしたのち、同様の条
件下に放置したところ、それぞれ各種基材上にゴム状シ
ートが得られた。これらのゴム状シートと各種基材との
接着性を調べた結果を表−1に併せて示した。
In addition, Table 1 shows the above silicone aqueous emulsion composition.
After casting on the various substrates shown in Figure 1, rubber-like sheets were obtained on each of the various substrates when left under the same conditions. Table 1 also shows the results of examining the adhesion between these rubber sheets and various base materials.

[接着性の判定コ 基材上に設けたゴム状シートの一端を基材に対してほぼ
垂直方向に約300mm/分の速度で引張り、このとき
のゴム状シートと基材との状態を観察し、下記のように
評価した。
[Determination of adhesion: Pull one end of the rubber-like sheet provided on the base material in a direction almost perpendicular to the base material at a speed of about 300 mm/min, and observe the state of the rubber-like sheet and base material at this time. It was evaluated as follows.

◎・・・接着性に極めて優れ、界面剥離ではなく、ゴム
状シートが破壊 O・・・界面剥離を起こすが、剥離させるに際してはか
なりの力が必要 △・・・界面剥離を起こすが、剥離させるに際しての力
は上記O印より若干小さい ×・・・界面剥離し、わずかの力で剥離さらに、上記シ
リコーン水性エマルジョン組成物を室温で24時間放置
し熟成した後、スプレードライヤーDL−41(ヤマト
科学(株)製 商品名)を用いて、入口温度250℃、
出口温度100℃、吐出速度fil /hrの条件下で
噴霧して前記コロイダルシリカーシリコーンコアシエル
体を硬化させたところ、サイクロン下部の生成物容器よ
りシリコーン粒状物110gが得られた。このシリコー
ン粒状物を電子顕微鏡で観察したところ、平均粒子径3
.0μmの真珠に近い形状を有する粒状物であることが
わかった。
◎... Extremely excellent adhesion, not interfacial peeling, but destruction of the rubber sheet O... Interfacial peeling occurs, but considerable force is required to peel △... Interfacial peeling occurs, but no peeling occurs The force used for drying is slightly smaller than the O mark above. Using Kagaku Co., Ltd. product name), the inlet temperature was 250℃,
When the colloidal silica silicone core shell body was cured by spraying under conditions of an outlet temperature of 100° C. and a discharge rate of fil/hr, 110 g of silicone granules were obtained from the product container at the bottom of the cyclone. When this silicone granule was observed under an electron microscope, the average particle size was 3.
.. It was found that the particles were 0 μm in shape and had a shape similar to a pearl.

次いで、このシリコーン粒状物10部と、極限粘度[η
]か l、05のポリブチレンテレフタレート100部
とを混合して熱可塑性樹脂組成物を調製した。そして、
この組成物を二軸押出機を使用して、シリンダー温度2
30℃で押出加工し、ベレットを得た。得られたベレッ
トの破断面を走査型電子顕微鏡で観察したところ、シリ
コーン粒状物は樹脂層中に均一に分散しており、しかも
その形状は混合前の球状が変形、破壊されずに保たれて
いることか確認できた。
Next, 10 parts of this silicone granule and the intrinsic viscosity [η
] or 100 parts of polybutylene terephthalate of 05 were mixed to prepare a thermoplastic resin composition. and,
This composition was prepared using a twin-screw extruder at a cylinder temperature of 2
Extrusion processing was performed at 30°C to obtain a pellet. When the fractured surface of the obtained pellet was observed with a scanning electron microscope, it was found that the silicone particles were uniformly dispersed in the resin layer, and that the shape was maintained as spherical before mixing without being deformed or destroyed. I was able to confirm that it was there.

また、このベレットを用いて、シリンダー温度231)
℃、金型温度60℃で射出成形を行い物性評価用試験片
を作成した。この試験片について行った耐衝撃性の試験
結果を表−1に併せて示した。なお耐衝撃性試験は、A
STM−D256に準拠して1/4′ノツチ付き、温度
条件23℃でアイゾツト衝撃強度を測定した。
Also, using this pellet, the cylinder temperature 231)
℃, injection molding was performed at a mold temperature of 60℃ to prepare test pieces for physical property evaluation. The results of the impact resistance test conducted on this test piece are also shown in Table-1. In addition, the impact resistance test is A
Izot impact strength was measured at a temperature of 23° C. with a 1/4′ notch according to STM-D256.

実施例2.3 各種成分の配合比を変えた以外は、実施例1の場合と同
一条件でポリオルガノシロキサンエマルジョンを調製し
た。得られたこれらのポリオルガノシロキサンは、動的
光散乱に基つく粒径解析および電子顕微鏡観察によって
、単一分散の粒径分布を有するコロイダルシリカーシリ
コーンコアンエル体であると確認できた。これらのコア
シェル体について、実施例1の場合と同様に評価した結
果を表−1に示す。
Example 2.3 A polyorganosiloxane emulsion was prepared under the same conditions as in Example 1, except that the blending ratio of various components was changed. These obtained polyorganosiloxanes were confirmed to be colloidal silica silicone core-el bodies having a monodisperse particle size distribution by particle size analysis based on dynamic light scattering and observation using an electron microscope. These core-shell bodies were evaluated in the same manner as in Example 1, and the results are shown in Table 1.

次に、上記コアシェル体水性エマルジョンを用いて、実
施例1の場合と同一条件でジブチルスズジラウレートの
添加を行って、シリコーン水性エマルジョン組成物を得
た。
Next, dibutyltin dilaurate was added to the core-shell aqueous emulsion under the same conditions as in Example 1 to obtain a silicone aqueous emulsion composition.

かくして得たシリコーン水性エマルション組成物を実施
例1の場合と同様な方法により硬化させてゴム状シート
を作成しその物性を調べた。その結果を表−1に示す。
The silicone aqueous emulsion composition thus obtained was cured in the same manner as in Example 1 to prepare a rubber sheet, and its physical properties were investigated. The results are shown in Table-1.

また上記シリコーン水性エマルジョン組成物を実施例1
の場合と同様な方法により、種々の基材にキャスティン
グし硬化させ、得られた各種基材上のゴム状シートにつ
いて、実施例1の場合と同様にゴム状シートと各種基材
との接着性を調べた結果を表−1に併せて示す。
In addition, the above silicone aqueous emulsion composition was prepared in Example 1.
Using the same method as in Example 1, the adhesiveness between the rubber sheet and various substrates was evaluated for the rubber sheets on various substrates obtained by casting and curing on various substrates. The results of the investigation are also shown in Table 1.

さらに上記シリコーン水性エマルジョン組成物を実施例
1の場合と同様な方法により噴霧硬化させてシリコーン
粒状物を得、得られたシリコーン粒状物について種々の
物性を調べるとともに、実施例1の場合と同一条件でポ
リブチレンテレフタレートと混合し押出加工によりベレ
ットを作成して、実施例1の場合と同様の評価を行った
。これらの結果も表−1に併せて示す。
Furthermore, the above silicone aqueous emulsion composition was spray-cured in the same manner as in Example 1 to obtain silicone granules, and various physical properties of the obtained silicone granules were investigated and under the same conditions as in Example 1. A pellet was prepared by mixing with polybutylene terephthalate and extrusion processing, and the same evaluation as in Example 1 was performed. These results are also shown in Table-1.

実施例4 酸性コロイダルシリカとして、スノーテックスOZL 
(8産化学工業(株)製、平均粒子径122nIl、S
 i 0221.14%、N a 200.1.01%
、PH2,02−、シリカ−2と略記)を用いた以外は
、実施例1の場合と同−組成、同一条件でポリオルガノ
シロキサンエマルジョンを調製した。得られたポリオル
ガノシロキサンは、動的光散乱に基づく粒径解析および
電子顕微鏡観察によって、単一分散に粒径分布を有する
コロイダルシリカーシリコーンコアシェル体であると確
認できた。このコアシェル体について、実施例1の場合
と同様に評価した結果を表−1に示す。
Example 4 Snowtex OZL as acidic colloidal silica
(Manufactured by Yasan Kagaku Kogyo Co., Ltd., average particle size 122 nIl, S
i 0221.14%, Na 200.1.01%
A polyorganosiloxane emulsion was prepared with the same composition and under the same conditions as in Example 1, except that silica-2 (abbreviated as silica-2) was used. The obtained polyorganosiloxane was confirmed to be a colloidal silica silicone core-shell material having a monodisperse particle size distribution by particle size analysis based on dynamic light scattering and observation using an electron microscope. This core-shell body was evaluated in the same manner as in Example 1, and the results are shown in Table 1.

次に、上記コアシェル体水性エマルジョンを用いて、実
施例1の場合と同一条件でジブチルスズジラウレートの
添加を行って、シリコーン水性エマルジョン組成物を得
た。
Next, dibutyltin dilaurate was added to the core-shell aqueous emulsion under the same conditions as in Example 1 to obtain a silicone aqueous emulsion composition.

かくして得たシリコーン水性エマルジョン組成物を実施
例1の場合と同様な方法により硬化させてゴム状シート
を作成しその物性を調べた。その結果を表−1に示す。
The thus obtained aqueous silicone emulsion composition was cured in the same manner as in Example 1 to prepare a rubber-like sheet, and its physical properties were investigated. The results are shown in Table-1.

また上記シリコーン水性エマルジョン組成物を実施例1
の場合と同様な方法により、種々の基材にキャスティン
グし硬化させ、得られた各種基材上のゴム状シートにつ
いて、実施例1の場合と同様にゴム状シートと各種基材
との接着性を調べた結果を表−1に併せて示す。
In addition, the above silicone aqueous emulsion composition was prepared in Example 1.
Using the same method as in Example 1, the adhesiveness between the rubber sheet and various substrates was evaluated for the rubber sheets on various substrates obtained by casting and curing on various substrates. The results of the investigation are also shown in Table 1.

さらに上記シリコーン水性エマルジョン組成物を実施例
1の場合と同様な方法により噴霧硬化させてシリコーン
粒状物を得、得られたシリコーン粒状物について種々の
物性を調べるとともに、実施例1の場合と同一条件でポ
リブチレンテレフタレートと混合し押出加工によりペレ
ットを作成して、実施例]の場合と同様の評価を行った
。これらの結果も表−1に併せて示す。
Furthermore, the above silicone aqueous emulsion composition was spray-cured in the same manner as in Example 1 to obtain silicone granules, and various physical properties of the obtained silicone granules were investigated and under the same conditions as in Example 1. The pellets were mixed with polybutylene terephthalate and extruded to form pellets, and evaluated in the same manner as in Example]. These results are also shown in Table-1.

実施例5.6 実施例1の場合において、オクタメチルシクロテトラン
ロキサン(b−1と略記)に3−アミノプロピルメチル
ジメトキシシラン(b−2aと略記)(実施例5)もし
くは(p−ビニルフェニル)メチルジメトキシシラン(
b−2bと略記)(実施例6)4.2部を予め添加配合
した以外は実施例1の場合と同−組成、同一条件でポリ
オルガノシロキサンエマルジョンを調製した。
Example 5.6 In the case of Example 1, 3-aminopropylmethyldimethoxysilane (abbreviated as b-2a) (Example 5) or (p-vinyl phenyl)methyldimethoxysilane (
b-2b) (Example 6) A polyorganosiloxane emulsion was prepared with the same composition and under the same conditions as in Example 1, except that 4.2 parts were added in advance.

得られたこのポリオルガノシロキサンエマルジョンは、
動的光散乱に基づく粒径解析および電子顕微鏡観察によ
って、単一分散の粒径分布を有するコロイダルシリカ−
シリコーンコアシェル体であると確認できた。このコア
シェル体について、実施例1の場合と同様に評価した結
果を表−1に示す。
This polyorganosiloxane emulsion obtained is
Colloidal silica with a monodisperse particle size distribution was determined by particle size analysis based on dynamic light scattering and electron microscopy observation.
It was confirmed that it was a silicone core shell body. This core-shell body was evaluated in the same manner as in Example 1, and the results are shown in Table 1.

次に、上記コアシェル体水性エマルジョンを用いて、実
施例1の場合と同一条件でジブチルスズジラウレートの
添加を行って、シリコーン水性エマルジョン組成物を得
た。
Next, dibutyltin dilaurate was added to the core-shell aqueous emulsion under the same conditions as in Example 1 to obtain a silicone aqueous emulsion composition.

かくして得たシリコーン水性エマルジョン組成物を実施
例1の場合と同様な方法により硬化させてゴム状シート
を作成しその物性を調へた。その結果を表−1に示す。
The silicone aqueous emulsion composition thus obtained was cured in the same manner as in Example 1 to prepare a rubber-like sheet, and its physical properties were investigated. The results are shown in Table-1.

また上記シリコーン水性エマルジョン組成物を実施例1
の場合と同様な方法により、種々の基材にキャスティン
グし硬化させ、得られた各種基材上のゴム状シートにつ
いて、実施例1の場合と同様にゴム状シートと各種基材
との接着性を調べた結果を表−1に併せて示す。
In addition, the above silicone aqueous emulsion composition was prepared in Example 1.
Using the same method as in Example 1, the adhesiveness between the rubber sheet and various substrates was evaluated for the rubber sheets on various substrates obtained by casting and curing on various substrates. The results of the investigation are also shown in Table 1.

さらに上記シリコーン水性エマルジョン組成物を実施例
1の場合と同様な方法により噴霧硬化させてシリコーン
粒状物を得、得られたシリコーン粒状物について種々の
物性を調べるとともに、実施例1の場合と同一条件でポ
リブチレンテレフタレートと混合し押出加工によりペレ
ットを作成して、実施例1の場合と同様の評価を行った
。これらの結果も表−1に併せて示す。
Furthermore, the above silicone aqueous emulsion composition was spray-cured in the same manner as in Example 1 to obtain silicone granules, and various physical properties of the obtained silicone granules were investigated and under the same conditions as in Example 1. The mixture was mixed with polybutylene terephthalate and extruded to form pellets, and the same evaluation as in Example 1 was conducted. These results are also shown in Table-1.

実施例7 実施例1の場合において、酸性コロイダルシリカに代え
てアルカリ性コロイダルシリカのスノーテックス20L
(8産化学工業(株)製、平均粒子径72r+m、 S
 i O220,3部%、N a 200.022% 
、PH9,93・・・シリカ−3と略記)を用い、また
ドデシルベンゼンスルホン酸に代えてジオクタデシルジ
メチルアンモニウムクロリド30部および水酸化カリウ
ム 6,0部を用い、さらに予めオクタメチルシクロテ
トラシロキサン(b−1と略記)に、3−メルカプトプ
ロピルメチルジメトキシシラン(b−2Cと略記)4.
2部を配合した以外は実施例1の場合と同一組成、同一
条件でポリオルガノシロキサンエマルジョンを調製した
(中和には塩酸を用いた)。
Example 7 In the case of Example 1, Snowtex 20L of alkaline colloidal silica was used instead of acidic colloidal silica.
(Manufactured by Yasan Kagaku Kogyo Co., Ltd., average particle size 72r+m, S
i O220, 3 parts%, Na 200.022%
, PH9,93...abbreviated as silica-3), 30 parts of dioctadecyldimethylammonium chloride and 6.0 parts of potassium hydroxide were used in place of dodecylbenzenesulfonic acid, and octamethylcyclotetrasiloxane (abbreviated as silica-3) was used in advance. b-1), 3-mercaptopropylmethyldimethoxysilane (abbreviated as b-2C)4.
A polyorganosiloxane emulsion was prepared with the same composition and under the same conditions as in Example 1, except that 2 parts of the emulsion was added (hydrochloric acid was used for neutralization).

得られたこのポリオルガノシロキサンエマルジョンは、
動的光散乱に基づく粒径解析および電子顕微鏡観察によ
って、単一分散の粒径分布を有するコロイダルシリカ−
シリコーンコアシェル体であると確認できた。このコア
シェル体について、実施例1の場合と同様に評価した結
果を表−2に示す。
This polyorganosiloxane emulsion obtained is
Colloidal silica with a monodisperse particle size distribution was determined by particle size analysis based on dynamic light scattering and electron microscopy observation.
It was confirmed that it was a silicone core shell body. This core-shell body was evaluated in the same manner as in Example 1, and the results are shown in Table 2.

次に、上記コアシェル体水性エマルジョンを用いて、実
施例1の場合と同一条件でジブチルスズジラウレートの
添加を行って、シリコーン水性エマルジョン組成物を得
た。
Next, dibutyltin dilaurate was added to the core-shell aqueous emulsion under the same conditions as in Example 1 to obtain a silicone aqueous emulsion composition.

かくして得たシリコーン水性エマルジョン組成物を実施
例]の場合と同様な方法により硬化させてゴム状シート
を作成しその物性を調べた。その結果を表−2に示す。
The silicone aqueous emulsion composition thus obtained was cured in the same manner as in Example] to prepare a rubber-like sheet, and its physical properties were investigated. The results are shown in Table-2.

また上記シリコーン水性エマルジョン組成物を実施例]
の場合と同様な方法により、種々の基材にキャスティン
グし硬化させ、得られた各種基材上のゴム状シートにつ
いて、実施例1の場合と同様にゴム状シートと各種基材
との接着性を調べた結果を表−2に併せて示す。
Examples of the above silicone aqueous emulsion composition]
Using the same method as in Example 1, the adhesiveness between the rubber sheet and various substrates was evaluated for the rubber sheets on various substrates obtained by casting and curing on various substrates. The results of the investigation are also shown in Table 2.

さらに上記シリコーン水性エマルジョン組成物を実施例
1の場合と同様な方法により噴霧硬化させてシリコーン
粒状物を得、得られたシリコーン粒状物について種々の
物性を調べるとともに、実施例1の場合と同一条件でポ
リブチレンテレフタレートと混合し押出加工によりペレ
ットを作成して、実施例1の場合と同様の評価を行った
。これらの結果も表−2に併せて示す。
Furthermore, the above silicone aqueous emulsion composition was spray-cured in the same manner as in Example 1 to obtain silicone granules, and various physical properties of the obtained silicone granules were investigated and under the same conditions as in Example 1. The mixture was mixed with polybutylene terephthalate and extruded to form pellets, and the same evaluation as in Example 1 was conducted. These results are also shown in Table-2.

実施例8 アルカリ性コロイダルシリカとして、スノーテックス 
20L(ンリカー3と略記) 1000部、蒸留水47
0部、ジオクタデシルジメチルアンモニウムクロリド3
0部および水酸化カリウム 6.0部の混合物に、オク
タメチルシクロテトラシロキサン(b−1と略記)21
部部と3−グリンドキシブロピルメチルジメトキシシラ
ン(b−2dと略記)4.2部との混合物を加え、実施
例1の場合と同様の条件でポリオルガノシロキサンエマ
ルジョンを調製しく中和には塩酸を用いた)、オクタメ
チルシクロテトラシロキサンの縮合率95.3%のポリ
オルガノシロキサンエマルジョンを得た。
Example 8 Snowtex as alkaline colloidal silica
20L (abbreviated as liquor 3) 1000 parts, distilled water 47
0 parts, dioctadecyldimethylammonium chloride 3
0 parts of potassium hydroxide and 6.0 parts of potassium hydroxide, 21 parts of octamethylcyclotetrasiloxane (abbreviated as b-1)
A mixture of 1 part and 4.2 parts of 3-glyndoxypropylmethyldimethoxysilane (abbreviated as b-2d) was added, and a polyorganosiloxane emulsion was prepared and neutralized under the same conditions as in Example 1. (using hydrochloric acid), a polyorganosiloxane emulsion with a condensation rate of 95.3% of octamethylcyclotetrasiloxane was obtained.

得られたこのポリオルガノシロキサンエマルジョンは、
動的光散乱に基づく粒径解析および電子顕微鏡観察によ
って、単一分散の粒径分布を有するコロイダルシリカ−
シリコーンコアシェル体であると確認できた。このコア
シェル体について、実施例1の場合と同様に評価した結
果を表−2に示す。
This polyorganosiloxane emulsion obtained is
Colloidal silica with a monodisperse particle size distribution was determined by particle size analysis based on dynamic light scattering and electron microscopy observation.
It was confirmed that it was a silicone core shell body. This core-shell body was evaluated in the same manner as in Example 1, and the results are shown in Table 2.

次に、上記コアシェル体水性エマルジョンを用いて、実
施例1の場合と同一条件でジブチルスズジラウレートの
添加を行って、シリコーン水性エマルジョン組成物を得
た。
Next, dibutyltin dilaurate was added to the core-shell aqueous emulsion under the same conditions as in Example 1 to obtain a silicone aqueous emulsion composition.

かくして得たシリコーン水性エマルジョン組成物を実施
例1の場合と同様な方法により硬化させてゴム状シート
を作成しその物性を調べた。その結果を表−2に示す。
The thus obtained aqueous silicone emulsion composition was cured in the same manner as in Example 1 to prepare a rubber-like sheet, and its physical properties were investigated. The results are shown in Table-2.

また上記シリコーン水性エマルジョン組成物を実施例1
の場合と同様な方法により、種々の基材にキャスティン
グし硬化させ、得られた各種基材上のゴム状シートにつ
いて、実施例1の場合と同様にゴム状シートと各種基材
との接着性を調べた結果を表−2に併せて示す。
In addition, the above silicone aqueous emulsion composition was prepared in Example 1.
Using the same method as in Example 1, the adhesiveness between the rubber sheet and various substrates was evaluated for the rubber sheets on various substrates obtained by casting and curing on various substrates. The results of the investigation are also shown in Table 2.

実施例9 実施例1の場合において、予めオクタメチルシクロテト
ラシロキサン(b−1と略記)に、3−アミノブロピル
メチルシメトキンシラン(b−2aと略記)42部およ
びテトラエトキシシラン(b−2eと略記)8.4部を
配合した以外は実施例1の場合と同一組成、同一条件で
ポリオルガノシロキサンエマルジョンを調製した。
Example 9 In the case of Example 1, 42 parts of 3-aminopropylmethylcymethquine silane (abbreviated as b-2a) and tetraethoxysilane (abbreviated as b-1) were added in advance to octamethylcyclotetrasiloxane (abbreviated as b-1). A polyorganosiloxane emulsion was prepared with the same composition and under the same conditions as in Example 1, except that 8.4 parts (abbreviated as 2e) were blended.

得られたこのポリオルガノシロキサンエマルジョンは、
動的光散乱に基づく粒径解析および電子顕微鏡観察によ
って、単一分散の粒径分布を有するコロイダルシリカ−
シリコーンコアシェル体であると確認できた。このコア
シェル体について、実施例]の場合と同様に評価した結
果を表−2に示す。
This polyorganosiloxane emulsion obtained is
Colloidal silica with a monodisperse particle size distribution was determined by particle size analysis based on dynamic light scattering and electron microscopy observation.
It was confirmed that it was a silicone core shell body. This core-shell body was evaluated in the same manner as in Example], and the results are shown in Table 2.

次に、上記コアシェル体水性エマルジョンを用いて、実
施例1の場合と同一条件でジブチルスズジラウレートの
添加を行って、シリコーン水性エマルジョン組成物を得
た。
Next, dibutyltin dilaurate was added to the core-shell aqueous emulsion under the same conditions as in Example 1 to obtain a silicone aqueous emulsion composition.

かくして得たシリコーン水性エマルジョン組成物を実施
例1の場合と同様な方法により硬化させてゴム状シート
を作成しその物性を調べた。その結果を表−2に示す。
The thus obtained aqueous silicone emulsion composition was cured in the same manner as in Example 1 to prepare a rubber-like sheet, and its physical properties were investigated. The results are shown in Table-2.

また上記シリコーン水性エマルジョン組成物を実施例1
の場合と同様な方法により、種々の基材にキャスティン
グし硬化させ、得られた各種基材上のゴム状シートにつ
いて、実施例1の場合と同様にゴム状シートと各種基材
との接着性を調べた結果を表−2に併せて示す。
In addition, the above silicone aqueous emulsion composition was prepared in Example 1.
Using the same method as in Example 1, the adhesiveness between the rubber sheet and various substrates was evaluated for the rubber sheets on various substrates obtained by casting and curing on various substrates. The results of the investigation are also shown in Table 2.

比較例1 コロイダルシリカを使用せず、オクタメチルシクロテト
ラシロキサン(b−1と略記)210部、ドデシルベン
ゼンスルホン酸4.2部および蒸留水630部を用いて
、実施例1の場合と同一条件でポリオルガノシロキサン
エマルジョンを調製した。
Comparative Example 1 The same conditions as in Example 1 were carried out without using colloidal silica, but using 210 parts of octamethylcyclotetrasiloxane (abbreviated as b-1), 4.2 parts of dodecylbenzenesulfonic acid, and 630 parts of distilled water. A polyorganosiloxane emulsion was prepared.

このエマルジョンの中のシロキサンミセル粒径は275
0mであり、またオクタメチルシクロテトラシロキサン
の縮合率は953%であった。
The siloxane micelle particle size in this emulsion is 275
The condensation rate of octamethylcyclotetrasiloxane was 953%.

次に、このポリオルガノシロキサンエマルジョンを用い
て、実施例1の場合と同一条件でジブチルスズジラウレ
ートの添加を行って、シリコーン水性エマルジョン組成
物を得た。
Next, using this polyorganosiloxane emulsion, dibutyltin dilaurate was added under the same conditions as in Example 1 to obtain a silicone aqueous emulsion composition.

得られたシリコーン水性エマルジョン組成物を実施例1
の場合と同様な方法により硬化させてコム状シートを作
成しその物性を調べた。その結果を表−2に示す。
The obtained silicone aqueous emulsion composition was prepared in Example 1.
A comb-shaped sheet was prepared by curing in the same manner as in the case of , and its physical properties were investigated. The results are shown in Table-2.

また上記シリコーン水性エマルジョン組成物を実施例1
の場合と同様な方法により、種々の基材にキャスティン
グし硬化させ、得られた各種基材上のゴム状シートにつ
いて、実施例1の場合と同様にゴム状シートと各種基材
との接着性を調へた結果を表−2に併せて示す。
In addition, the above silicone aqueous emulsion composition was prepared in Example 1.
Using the same method as in Example 1, the adhesiveness between the rubber sheet and various substrates was evaluated for the rubber sheets on various substrates obtained by casting and curing on various substrates. The results are also shown in Table 2.

さらに上記シリコーン水性エマルジョン組成物を実施例
1の場合と同様な方法により噴霧硬化させてシリコーン
粒状物を得、得られたシリコーン粒状物について種々の
物性を調べるとともに、実施例1の場合と同一条件でポ
リブチレンテレフタレートとl見合し押出加工によりベ
レットを作成して、実施例1の場合と同様の評価を行っ
た。これらの結果も表−2に併せて示す。
Furthermore, the above silicone aqueous emulsion composition was spray-cured in the same manner as in Example 1 to obtain silicone granules, and various physical properties of the obtained silicone granules were investigated and under the same conditions as in Example 1. A pellet was prepared by extrusion processing with polybutylene terephthalate, and the same evaluation as in Example 1 was performed. These results are also shown in Table-2.

比較例2.3 コロイダルシリカを使用せず、オクタメチルシクロテト
ラシロキサン(b−1と略記)210部、ドデシルベン
センスルホン酸8.4部および蒸留水470部を用いて
、実施例1の場合と同一条件でポリオルガノシロキサン
エマルジョンを調製した。
Comparative Example 2.3 Same as in Example 1, without using colloidal silica and using 210 parts of octamethylcyclotetrasiloxane (abbreviated as b-1), 8.4 parts of dodecylbenzene sulfonic acid, and 470 parts of distilled water. A polyorganosiloxane emulsion was prepared under the same conditions.

このエマルジョンの中のシロキサンミセル粒径は280
nliであり、またオクタメチルシクロテトラシロキサ
ンの縮合率は963%であった。
The siloxane micelle particle size in this emulsion is 280
nli, and the condensation rate of octamethylcyclotetrasiloxane was 963%.

次いて、このポリオルガノハイドロジエンシロキサンエ
マルジョン69部に対し、上記のスノーテックス01、
(シリカ−1)とジブチルスズジラウレート50%水性
エマルジョンとをそれぞれ100部と 0.40部を配
合したもの(比較例2)および50部と 0.40部を
配合したもの(比較例3)を調製した。
Next, to 69 parts of this polyorganohydrodiene siloxane emulsion, the above Snowtex 01,
(Silica-1) and dibutyltin dilaurate 50% aqueous emulsion were prepared by blending 100 parts and 0.40 parts (Comparative Example 2) and 50 parts and 0.40 parts (Comparative Example 3), respectively. did.

上記調製した配合物について実施例1の場合と同様な方
法により硬化させてゴム状シートを作成しその物性を調
べた。その結果を表−2に示す。
The compound prepared above was cured in the same manner as in Example 1 to prepare a rubber sheet, and its physical properties were investigated. The results are shown in Table-2.

また上記シリコーン水性エマルジョン組成物を実施例1
の場合と同様な方法により、種々の基材にキャスティン
グし硬化させ、得られた各種基材上のゴム状シートにつ
いて、実施例1の場合と同様にゴム状シートと各種基材
との接着性を調べた結果を表−2に併せて示す。
In addition, the above silicone aqueous emulsion composition was prepared in Example 1.
Using the same method as in Example 1, the adhesiveness between the rubber sheet and various substrates was evaluated for the rubber sheets on various substrates obtained by casting and curing on various substrates. The results of the investigation are also shown in Table 2.

さらに上記シリコーン水性エマルジョン組成物を実施例
1の場合と同様な方法により噴霧硬化させてシリコーン
粒状物を得、得られたシリコーン粒状物について種々の
物性を調べるとともに、実施例1の場合と同一条件でポ
リブチレンテレフタレートと混合し押出加工によりベレ
ットを作成して、実施例1の場合と同様の評価を行った
。これらの結果も表−2に併せて示す。
Furthermore, the above silicone aqueous emulsion composition was spray-cured in the same manner as in Example 1 to obtain silicone granules, and various physical properties of the obtained silicone granules were investigated and under the same conditions as in Example 1. A pellet was prepared by mixing with polybutylene terephthalate and extrusion processing, and the same evaluation as in Example 1 was performed. These results are also shown in Table-2.

比較例4 実施例1において調製したコロイダルシリカシリコーン
コアシェル体水性エマルジョンに、硬化触媒としてのジ
ブチルスズジラウレートを添加せず、そのままゴム状シ
ートの作成を試みた。しかし、1ケ月間放置したにもか
かわらす、硬化しないため、物性評価には至らなかった
Comparative Example 4 An attempt was made to prepare a rubber-like sheet without adding dibutyltin dilaurate as a curing catalyst to the colloidal silica silicone core-shell aqueous emulsion prepared in Example 1. However, the physical properties could not be evaluated because it did not harden even after being left for one month.

参考例 ポリブチレンテレフタレートにシリコーン粒状物を配合
することなく、実施例1の場合と同一条件で物性評価用
試験片を作成し、その耐衝撃性を試験したところ、その
アイゾツト衝撃強度は6.Okgf  伊c+n/ c
mであった。
Reference Example A test piece for evaluating physical properties was prepared under the same conditions as in Example 1 without adding silicone granules to polybutylene terephthalate, and its impact resistance was tested.The Izot impact strength was 6. Okgf Italian c+n/c
It was m.

(以下余白) [発明の効果] 上記説明したように、本発明に係るシリコーン水性エマ
ルジョン組成物は、コロイダルシリカのコアをシリコー
ンのシェルがシロキサン結合を介して覆ったコアシェル
体を主成分としているので、コロイダルシリカの補強性
を十分に、かつ効果的に引出すことが可能となり、これ
を室温でまたは加熱して水分など揮発物を蒸発させるこ
とによって、機械的強度に優れたエラストマー硬化物が
得られる。
(The following is a blank space) [Effects of the Invention] As explained above, the silicone aqueous emulsion composition according to the present invention has a core-shell body in which a core of colloidal silica is covered with a shell of silicone through siloxane bonds. , it is possible to sufficiently and effectively bring out the reinforcing properties of colloidal silica, and by evaporating volatile substances such as moisture at room temperature or by heating, a cured elastomer product with excellent mechanical strength can be obtained. .

そして本発明に係る方法によって、機械的強度に優れ、
しかも粒径が小さく形状も均一で分散性に優れたシリコ
ーン粒状物を得ることができる。
And, by the method according to the present invention, it has excellent mechanical strength,
Furthermore, silicone granules having a small particle size, uniform shape, and excellent dispersibility can be obtained.

Claims (2)

【特許請求の範囲】[Claims] (1) (A)(a)コロイダルシリカのコア80〜5重量%(
b)平均組成式 R^1_aSiO_(_4_−_a_)_/_2…(
I )(式中、R^1は炭素数1〜8の置換または非置換
の1価の有機基、aは1.02〜2.02の数を示す)
で表される分子末端が水酸基で封鎖されたポリオルガノ
シロキサンのシェル20〜95重量%からなるコロイダ
ルシリカ−シリコーンコアシェル体100重量部、 (B)硬化触媒0〜5重量部、 (C)乳化剤1〜20重量部、 および (D)水50〜1000重量部 を組成分として成ることを特徴とするシリコーン水性エ
マルジョン組成物。
(1) (A) (a) Colloidal silica core 80-5% by weight (
b) Average compositional formula R^1_aSiO_(_4_-_a_)_/_2...(
I) (wherein R^1 is a substituted or unsubstituted monovalent organic group having 1 to 8 carbon atoms, and a represents a number of 1.02 to 2.02)
100 parts by weight of a colloidal silica-silicone core-shell body consisting of 20 to 95% by weight of a polyorganosiloxane shell whose molecular terminals are blocked with hydroxyl groups, (B) 0 to 5 parts by weight of a curing catalyst, (C) Emulsifier 1 20 parts by weight, and (D) 50 to 1000 parts by weight of water.
(2)請求項1記載のシリコーン水性エマルジョン組成
物を、25℃以上の熱媒体に分散接触させてシリコーン
を微粒子状に硬化させることを特徴とするシリコーン粒
状物の製造方法。
(2) A method for producing silicone granules, which comprises bringing the aqueous silicone emulsion composition according to claim 1 into dispersion contact with a heat medium at 25° C. or higher to harden the silicone into fine particles.
JP02229816A 1990-02-23 1990-08-31 Silicone aqueous emulsion composition Expired - Lifetime JP3100613B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP4402490 1990-02-23
JP2-44024 1990-02-23

Publications (2)

Publication Number Publication Date
JPH03281538A true JPH03281538A (en) 1991-12-12
JP3100613B2 JP3100613B2 (en) 2000-10-16

Family

ID=12680091

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02229816A Expired - Lifetime JP3100613B2 (en) 1990-02-23 1990-08-31 Silicone aqueous emulsion composition

Country Status (1)

Country Link
JP (1) JP3100613B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0632984A (en) * 1992-05-27 1994-02-08 Wacker Chemie Gmbh Aqueous dispersion of organopolysiloxane and preparation thereof
WO1998026019A1 (en) * 1996-12-13 1998-06-18 Matsushita Electric Works, Ltd. Silicone emulsion coating composition and processes for the preparation thereof
JPH10204294A (en) * 1997-01-28 1998-08-04 Toshiba Silicone Co Ltd Emulsion silicone composition and air bag
JP2007508413A (en) * 2003-10-08 2007-04-05 ダウ・コーニング・コーポレイション Silicone MQ resin reinforced silicone elastomer emulsion
JP2007308711A (en) * 2007-06-18 2007-11-29 Momentive Performance Materials Japan Kk Protective water-repellent composition for building
JP2008508370A (en) * 2004-07-29 2008-03-21 エボニック デグサ ゲーエムベーハー Aqueous silane nanocomposites
JP2009132850A (en) * 2007-11-02 2009-06-18 Shin Etsu Chem Co Ltd Film-forming organopolysiloxane emulsion composition, and feeling improver for use in fiber
JP2009197158A (en) * 2008-02-22 2009-09-03 Shin Etsu Chem Co Ltd Film-forming organopolysiloxane emulsion composition
JP2010037458A (en) * 2008-08-06 2010-02-18 Nitto Denko Corp Resin composition containing fine metal oxide particle
JP2010083954A (en) * 2008-09-30 2010-04-15 Nippon Shokubai Co Ltd Polymer microparticle, method for manufacturing the same, and electroconductive microparticle
CN110511396A (en) * 2019-09-06 2019-11-29 广州宏翼新材料有限公司 A kind of polymerization silicone oil emulsion and its preparation process

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0632984A (en) * 1992-05-27 1994-02-08 Wacker Chemie Gmbh Aqueous dispersion of organopolysiloxane and preparation thereof
WO1998026019A1 (en) * 1996-12-13 1998-06-18 Matsushita Electric Works, Ltd. Silicone emulsion coating composition and processes for the preparation thereof
US6025077A (en) * 1996-12-13 2000-02-15 Matsushita Electric Works, Ltd. Silicone emulsion coating composition and processes for the preparation thereof
JPH10204294A (en) * 1997-01-28 1998-08-04 Toshiba Silicone Co Ltd Emulsion silicone composition and air bag
JP2007508413A (en) * 2003-10-08 2007-04-05 ダウ・コーニング・コーポレイション Silicone MQ resin reinforced silicone elastomer emulsion
JP4819685B2 (en) * 2003-10-08 2011-11-24 ダウ・コーニング・コーポレイション Silicone MQ resin reinforced silicone elastomer emulsion
JP2008508370A (en) * 2004-07-29 2008-03-21 エボニック デグサ ゲーエムベーハー Aqueous silane nanocomposites
JP2007308711A (en) * 2007-06-18 2007-11-29 Momentive Performance Materials Japan Kk Protective water-repellent composition for building
JP2009132850A (en) * 2007-11-02 2009-06-18 Shin Etsu Chem Co Ltd Film-forming organopolysiloxane emulsion composition, and feeling improver for use in fiber
JP4678402B2 (en) * 2007-11-02 2011-04-27 信越化学工業株式会社 Film-forming organopolysiloxane emulsion composition and fiber texture improving agent
JP2009197158A (en) * 2008-02-22 2009-09-03 Shin Etsu Chem Co Ltd Film-forming organopolysiloxane emulsion composition
JP2010037458A (en) * 2008-08-06 2010-02-18 Nitto Denko Corp Resin composition containing fine metal oxide particle
JP2010083954A (en) * 2008-09-30 2010-04-15 Nippon Shokubai Co Ltd Polymer microparticle, method for manufacturing the same, and electroconductive microparticle
CN110511396A (en) * 2019-09-06 2019-11-29 广州宏翼新材料有限公司 A kind of polymerization silicone oil emulsion and its preparation process

Also Published As

Publication number Publication date
JP3100613B2 (en) 2000-10-16

Similar Documents

Publication Publication Date Title
US6071987A (en) Silicone emulsion composition and process for producing silicone powder therefrom
JP2832143B2 (en) Silicone fine particles and method for producing the same
KR920010084B1 (en) Silica-core silicone-shell particles emulsion containing the same dispersed therein and process for producing the emulsion
AU598954B2 (en) Finely divided silicone rubber additive material and method for producing same
JP2819417B2 (en) Method for producing antibacterial silicone rubber granules
JPH0330620B2 (en)
JPS6116927A (en) Manufacture of polydiorganosiloxane aqueous latex
JP3105912B2 (en) High-strength silicone rubber granules and method for producing the same
JPH07108952B2 (en) Aqueous silicone dispersion based on aminosilane and / or amidosilane that crosslinks to an elastomer when water is removed
TW201922858A (en) Production method for silica-coated spherical silicone elastomer particles and silica-coated spherical silicone elastomer particles
JPH03281538A (en) Silicone aqueous emulsion composition and production of silicone particulate matter using the same composition
JP3044048B2 (en) Organopolysiloxane-based elastomer powder and method for producing the same
JPH0920631A (en) Cosmetic
JPS61272264A (en) Production of reinforced aqueous suspension of polyorganosiloxane
JP2014214263A (en) Silicone composite particle
JPH0796623B2 (en) Silicone rubber granular material and method for producing the same
JPH0478657B2 (en)
JP2992592B2 (en) Emulsion type silicone composition and method for producing silicone fine particles
US20230348720A1 (en) Polyether-polysiloxane crosslinked rubber spherical particle, method for manufacturing the same, polyether-polysiloxane crosslinked composite particle, and method for manufacturing the same
JP7467639B2 (en) Finely divided aqueous particle-stabilized Pickering emulsions and particles produced therefrom - Patents.com
JPH04110351A (en) Aqueous silicone emulsion composition and production of silicone powder by using same
JPH04154861A (en) Resin composition
JP3115581B2 (en) Silicone aqueous emulsion composition
JP7347089B2 (en) Silicone rubber spherical particles, silicone composite particles, and manufacturing methods thereof
JP3199118B2 (en) Silicone aqueous emulsion composition

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080818

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080818

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

SG99 Written request for registration of restore

Free format text: JAPANESE INTERMEDIATE CODE: R316G99

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080818

Year of fee payment: 8

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080818

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080818

Year of fee payment: 8

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080818

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

SG99 Written request for registration of restore

Free format text: JAPANESE INTERMEDIATE CODE: R316G99

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080818

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090818

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090818

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090818

Year of fee payment: 9

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090818

Year of fee payment: 9

SG99 Written request for registration of restore

Free format text: JAPANESE INTERMEDIATE CODE: R316G99

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090818

Year of fee payment: 9

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090818

Year of fee payment: 9

SG99 Written request for registration of restore

Free format text: JAPANESE INTERMEDIATE CODE: R316G99

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090818

Year of fee payment: 9

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090818

Year of fee payment: 9

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

SG99 Written request for registration of restore

Free format text: JAPANESE INTERMEDIATE CODE: R316G99

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090818

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090818

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100818

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100818

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110818

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110818

Year of fee payment: 11