JPH03281329A - Optical three-dimensional shaping - Google Patents

Optical three-dimensional shaping

Info

Publication number
JPH03281329A
JPH03281329A JP8530790A JP8530790A JPH03281329A JP H03281329 A JPH03281329 A JP H03281329A JP 8530790 A JP8530790 A JP 8530790A JP 8530790 A JP8530790 A JP 8530790A JP H03281329 A JPH03281329 A JP H03281329A
Authority
JP
Japan
Prior art keywords
optical
optical mask
liquid crystal
resin
mask
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8530790A
Other languages
Japanese (ja)
Inventor
Hitoshi Kihara
均 木原
Tsunehito Iwaki
岩城 常仁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP8530790A priority Critical patent/JPH03281329A/en
Publication of JPH03281329A publication Critical patent/JPH03281329A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heating, Cooling, Or Curing Plastics Or The Like In General (AREA)

Abstract

PURPOSE:To shape in a short time, highly-accurately and inexpensively a three- dimensional form without making an optical mask into a large size, by a method wherein the mask is scanned on cured resin in a monoaxial direction along with a light source and an optical transmission part of an optical mask is changed continuously by corresponding to horizontal sectional forms each. CONSTITUTION:An optical mask 3 such as a liquid crystal shutter plate whose optical transmission part is changed electrically by corresponding to a horizontal sectional form of a three-dimentional object 7 which is desirous to obtain is installed on this side of photosetting resin 2. Then moving scanning of the optical mask 3 is performed on the surface of liquid setting resin 2 integrally with a light source in a monoaxial or biaxial direction by an XY stage driver 11. The optical transmission part of the optical mask 3 is changed electrically in accordance with the scanning by corresponding to the horizontal sectional form by a driver 6 and a layer is thinned in order by size of an extent of the optical mask.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は液状硬化樹脂に光を照射することにより露光硬
化を行わせ、3次元立体形状を造形させる立体造形方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention relates to a three-dimensional modeling method in which a three-dimensional three-dimensional shape is formed by exposing and curing a liquid cured resin by irradiating it with light.

(ロ)従来の技術 従来の光学的立体造形方法として、半導体のリングラフ
ィ技術の応用として光学マスクを用い各断面毎の順次露
光硬化を繰り返して立体造形を行う方法と、光エネルギ
ーを液状光硬化樹脂表面上に各断面形状にそって走査さ
せ、選択的に樹脂硬化を行わせることにより立体造形を
行う方法とがある。
(B) Conventional technology Conventional optical three-dimensional modeling methods include a method in which three-dimensional modeling is performed by sequentially exposing and curing each cross-section using an optical mask as an application of semiconductor phosphorography technology, and a method in which three-dimensional modeling is performed by repeatedly exposing and curing each cross section sequentially. There is a method of performing three-dimensional modeling by scanning the resin surface along each cross-sectional shape and selectively curing the resin.

光学マスクを用いる方法は、電子通信学会論文誌(19
81,4vo1.J64−CNo、4 P −237〜
)に記載された論文で提案されている。
The method using an optical mask is based on the journal of the Institute of Electronics and Communication Engineers (19
81.4vo1. J64-CNo, 4P-237~
) is proposed in the paper published in .

これは、先ず極めて浅い液状光硬化樹脂に上方又は下方
から光照射するにあたり、得ようとする立体物の水平断
面形状に相当する光透過部分を有した光学マスクを光硬
化樹脂の手前に配置し、この照射により所望断面形状の
薄層硬化部分を得、これに連続する水平断面形状につい
て、光硬化樹脂の深さを僅かずつ増し光学マスクを順次
取り替えては光照射を繰り返すことにより、所望の立体
を得るものである。しかしこの方法では、得ようとする
立体の水平断面形状毎の光学マスクを製作しなければな
らず、これに手間と時間とを特徴とする特に曲面の平滑
さを得るには立体の分割数を増す必要があり、これに連
れて光学マスクが多数必要となり、製作時間及び費用が
膨大となる。
This involves first irradiating extremely shallow liquid photocurable resin with light from above or below, and then placing an optical mask in front of the photocurable resin with a light-transmitting part corresponding to the horizontal cross-sectional shape of the three-dimensional object to be obtained. By this irradiation, a thin-layer cured part with a desired cross-sectional shape is obtained, and for the continuous horizontal cross-sectional shape, the depth of the photocuring resin is increased little by little, and the optical mask is sequentially replaced and light irradiation is repeated to obtain the desired shape. This is to obtain a three-dimensional object. However, with this method, it is necessary to manufacture an optical mask for each horizontal cross-sectional shape of the three-dimensional object to be obtained, which is characterized by time and effort. As a result, a large number of optical masks are required, which increases manufacturing time and costs.

一方、光エネルギーを走査させる方法は、特開昭60−
247515号公報〈特公昭63−40650号)等で
開示されているように、液状光硬化樹脂を容器内に収容
し、光エネルギーの作用点を容器内において3次元的に
相対移動させることができる光照射手段を設け、この光
照射手段による光エネルギの作用点をまず水平方向に相
対移動させつつ液状光硬化樹脂に対して選択的に光エネ
ルギを照射して水平状の硬化部分を形成し、次いて作用
点を垂直方向に若干相対移動させた後又は漸次相対移動
させつつ上記と同様に水平方向に相対移動させて硬化部
分を積層形成し、これを繰り返すことにより所望の立体
物を造形するものである。しかしこの方法では、光照射
手段又は容器を動作させて光ニオ・ルギの作用点を移動
させ、作用点における液状光硬化樹脂を逐次硬化させて
いるので、短時間で造形することができず、特に大型の
立体物を造形するのに適していないという問題がある。
On the other hand, the method of scanning light energy is
As disclosed in Japanese Patent Publication No. 247515 (Japanese Patent Publication No. 63-40650), a liquid photocurable resin is housed in a container, and the point of application of light energy can be moved relative to the container in three dimensions. A light irradiation means is provided, and the point of application of the light energy by the light irradiation means is first relatively moved in the horizontal direction while selectively irradiating the liquid photocurable resin with light energy to form a horizontal cured portion, Next, after slightly relatively moving the point of application in the vertical direction, or gradually moving it relative to each other and moving it relatively in the horizontal direction in the same manner as above, the cured portion is laminated, and by repeating this process, a desired three-dimensional object is modeled. It is something. However, in this method, the light irradiation means or the container is operated to move the point of action of the light niobium, and the liquid photocurable resin at the point of action is sequentially cured, so it is not possible to create a model in a short time. There is a problem in that it is not particularly suitable for modeling large three-dimensional objects.

又、上記問題点を解決する一案として、容器内の液状光
硬化樹脂に上方又は下方から露光可能な光を照射するに
あたり、得ようとする立体物の水平断面形状に応じて光
透過部が電気的に変化する液晶シャッター等の光学マス
クを光硬化樹脂の手前に設置し、この照射により所望断
面形状の薄層硬化部分を得、これを連続する水平断面形
状について、順次該薄硬化部分と該光透過部が電気的に
変化する光学マスクとの間に、薄い液状光硬化樹脂を供
給できるように光硬化樹脂の深さを僅かずつ増し、該液
晶シャッター等の光学マスクの光透退部形状を水平断面
形状データに合わせながら電気的に変化させ、光照射を
繰り返すことにより、所望の立体を得る光学マスクに液
晶シャッターを用いる方法特願平1−280261号参
照)が案出されている。しかしこの方法では、光造形物
のサイズが、液晶シャッターのサイズに制約されてしま
い、大型の立体物を造形するとした場合、それに合わせ
て液晶シャッターも大型サイズにしなければならず、装
置が大型化したり、大型液晶シャッターの製作の面にお
いても問題がある。このなめ、液晶シャッターと液状光
硬化の間にレンズを設けて、液晶シャッターの光透過部
の像を液状光硬化樹脂表面上(こ拡大投影させて光硬化
させることも考えられるが、造形精度の低下及び光量の
低下により造形時間が長くなる問題がある。
In addition, as an idea to solve the above problem, when irradiating the liquid photocurable resin in the container with exposing light from above or below, the light transmitting part is adjusted according to the horizontal cross-sectional shape of the three-dimensional object to be obtained. An optical mask such as an electrically variable liquid crystal shutter is placed in front of the photocuring resin, and by this irradiation, a thin cured portion with a desired cross-sectional shape is obtained. The depth of the photocurable resin is gradually increased so that a thin liquid photocurable resin can be supplied between the light transmitting part and the electrically variable optical mask, and the light transmitting/receiving part of the optical mask such as the liquid crystal shutter is A method has been devised in which a liquid crystal shutter is used as an optical mask to obtain a desired three-dimensional shape by electrically changing the shape while matching the horizontal cross-sectional shape data and repeating light irradiation (see Japanese Patent Application No. 1-280261). . However, with this method, the size of the stereolithographic object is limited by the size of the liquid crystal shutter, and if a large three-dimensional object is to be modeled, the liquid crystal shutter must also be made large to match, resulting in an increase in the size of the equipment. There are also problems in the production of large liquid crystal shutters. To solve this problem, it is possible to install a lens between the liquid crystal shutter and the liquid photocuring resin, and project the image of the light transmitting part of the liquid crystal shutter onto the surface of the liquid photocuring resin (enlarged projection and photocuring it, but it is possible to reduce the modeling accuracy. There is a problem that the modeling time becomes longer due to the reduction in the amount of light and the amount of light.

(ハ) 発明が解決しようとする課題 本発明はこうした点に鑑み、光学マスクを立体の水平断
面形状毎に製作せず、かつ光エネルギの作用点を移動さ
せることなく、短時間で立体物を造形することを目的と
している。
(c) Problems to be Solved by the Invention In view of these points, the present invention is capable of forming a three-dimensional object in a short time without manufacturing an optical mask for each horizontal cross-sectional shape of the three-dimensional object and without moving the point of application of light energy. It is intended to be shaped.

(ニ)課題を解決するための手段 本発明ては、得ようとする立体物の水平断面形状に応じ
て光透過部が電気的に変化する液晶シャッター板等の光
学マスクを光硬化樹脂の手前に設置し、該光学マスクを
光源と一体的に該液状光硬化樹脂表面上を1軸あるいは
2軸方向に移動走査させ、その走査に合わせて該光学マ
スクの光透過部を水平断面形状に応じて電気的に変化さ
せて、順次光学マスク程度サイズで薄層硬化させること
により所望断面形状の薄層硬化部分を得るようにしてい
る。
(d) Means for Solving the Problems In the present invention, an optical mask such as a liquid crystal shutter plate whose light transmitting portion electrically changes depending on the horizontal cross-sectional shape of the three-dimensional object to be obtained is placed in front of the photocuring resin. The optical mask is moved and scanned integrally with the light source in one or two axial directions on the surface of the liquid photocurable resin, and the light transmitting part of the optical mask is moved in accordance with the scanning according to the horizontal cross-sectional shape. A thin layer cured portion having a desired cross-sectional shape is obtained by electrically changing the thickness of the thin layer and sequentially curing the thin layer in the size of an optical mask.

(ホ) 作用 本発明は上記手段を用いるため、水平断面図形状毎に光
学マスクを製作する手間かはふける上に、面積的な走査
を水平断面形状に沿って行うのて、高速 高精度かつ安
価に大型サイズの3次元立体形状を造形することが可能
である。
(E) Function Since the present invention uses the above-mentioned means, it does not require the trouble of manufacturing an optical mask for each horizontal cross-sectional shape. It is possible to fabricate large-sized three-dimensional shapes at low cost.

(へ)実施例 以下、本発明の実施例について図面を用いて説明する。(f) Example Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明方法を実施するための装置の一例を示し
ている。樹脂収容容器1内に液状光硬化樹脂2を適当量
収容し、該液状光硬化樹脂2表面に光学マスクの役割を
する液晶シャッター板3と該液晶シャッター板3の上方
に液状光硬化樹脂2を硬化可能な波長を発する光源4を
設置し、該液晶シャッター板3と該光源4はXYステー
ジ9により一体で液状光硬化樹脂2表面上を2次元的に
走査できるように構成されている。この場合、該樹脂収
容容器1のサイズは該液晶シャッター板3のサイズより
大型である。まず、液状光硬化樹脂2内を昇降できる昇
降ステージ5を液状光硬化樹脂2液面より1回の露光時
間で硬化する厚さ分だけ沈める。所望立体の水平断面形
状の部分を光透過しその他の部分は光遮断するように液
晶シャッター板3をコントローラ6により動作させて、
第1層の水平断面形状を該昇降ステージ5上に該厚さ分
だけ光硬化させる。次に、該昇降ステージ5をさらに1
回の露光時間で硬化する厚さ分だけ沈め、2層目の水平
断面形状に応じて液晶シャッター板3の光透過部及び光
遮断部が変化するようにコントローラ6を動作させて、
2層目を光硬化させる。同様なことを繰り返すことによ
り、硬化樹脂層を何層も積み重ね所望の3次元立体形状
物7が短時間且つ容易に得られる。所望立体の水平断面
形状が、光学マスクである該液晶シャッター板3による
露光範囲よりサイズが大きい場合、該液晶シャッター板
3を光源4と一体でXYステージ9により液状光硬化樹
脂2表面上を2次元的に走査することにより部分的に順
次水平断面形状に合わせて光硬化させ、1層の水平断面
形状を造形する6大2図のa〜fに液晶シャッター板3
を走査させることによる水平断面形状の造形手順例を示
す。第2図aは樹脂収容容器1を上方から見たもので、
液晶シャッター板3(斜線部)と光源4(第2図では省
略)は左上に位置されている。破線は、所望の水平断面
形状である。まず左」二の斜線部を露光硬化させながら
XYステージ9により矢印の方向に液晶シャッター板3
と光源4を移動させていく(第2図b)。この時液晶シ
ャッター板3の光透過部を該液晶シャッター板3を移動
とともに連続的に水平断面形状に応じて変化させ露光さ
せると、液晶シャッター板3や光源4は走査時に停止す
ることなく定速移動が可能となる。液晶シャンター板3
と光源4を第2図C〜fに示すように走査させると、実
線部で示された光硬化された水平断面形状が、最終的に
第2図fにの実線で示されているように、所望の水平断
面形状か光硬化し、3次元立体形状物7が造形される。
FIG. 1 shows an example of an apparatus for carrying out the method of the invention. A suitable amount of liquid photocurable resin 2 is stored in a resin storage container 1, and a liquid crystal shutter plate 3 that serves as an optical mask is placed on the surface of the liquid photocurable resin 2, and the liquid photocurable resin 2 is placed above the liquid crystal shutter plate 3. A light source 4 that emits a curable wavelength is installed, and the liquid crystal shutter plate 3 and the light source 4 are configured so that they can two-dimensionally scan the surface of the liquid photocurable resin 2 together by an XY stage 9. In this case, the size of the resin container 1 is larger than the size of the liquid crystal shutter plate 3. First, the lifting stage 5, which can move up and down within the liquid photocurable resin 2, is lowered from the surface of the liquid photocurable resin 2 by a thickness that can be cured in one exposure time. The liquid crystal shutter plate 3 is operated by the controller 6 so as to transmit light through a portion of a desired three-dimensional horizontal cross-sectional shape and block light from other portions.
The horizontal cross-sectional shape of the first layer is photocured by the thickness on the lifting stage 5. Next, the lifting stage 5 is moved one more time.
The controller 6 is operated so that the light transmitting part and the light blocking part of the liquid crystal shutter plate 3 change according to the horizontal cross-sectional shape of the second layer.
Photocure the second layer. By repeating the same process, a desired three-dimensional three-dimensional object 7 can be easily obtained by stacking many cured resin layers in a short time. When the horizontal cross-sectional shape of the desired three-dimensional object is larger than the exposure range of the liquid crystal shutter plate 3, which is an optical mask, the liquid crystal shutter plate 3 is integrated with the light source 4, and the surface of the liquid photocuring resin 2 is exposed by the XY stage 9. By scanning dimensionally, the liquid crystal shutter plate 3 is partially sequentially photo-cured according to the horizontal cross-sectional shape to form a horizontal cross-sectional shape of one layer.
An example of a procedure for forming a horizontal cross-sectional shape by scanning is shown below. Figure 2a shows the resin container 1 viewed from above.
The liquid crystal shutter plate 3 (shaded area) and the light source 4 (omitted in FIG. 2) are located at the upper left. The dashed line is the desired horizontal cross-sectional shape. First, while exposing and curing the diagonally shaded area on the left side, move the liquid crystal shutter plate 3 in the direction of the arrow using the XY stage 9.
and move the light source 4 (Fig. 2b). At this time, when the light transmitting part of the liquid crystal shutter plate 3 is exposed by changing the light transmission part of the liquid crystal shutter plate 3 continuously according to the horizontal cross-sectional shape as the liquid crystal shutter plate 3 is moved, the liquid crystal shutter plate 3 and the light source 4 are moved at a constant speed without stopping during scanning. Movement becomes possible. LCD shunter board 3
When the light source 4 is scanned as shown in FIG. 2C to F, the photocured horizontal cross-sectional shape shown by the solid line finally becomes as shown by the solid line in FIG. 2F. Then, the desired horizontal cross-sectional shape is photocured, and a three-dimensional three-dimensional object 7 is formed.

この手順で光硬化層を積層することで、大型の3次元立
体形状物の造形が可能である。
By laminating photocurable layers in this procedure, it is possible to create large three-dimensional objects.

この3次元立体形状物は、CAD装置8で設計されたも
のが、各水平断面毎に2次元断面形状データに変換され
、各データが、コントローラ10に送られる。該コント
ローラ10は各水平断面形状データに応じて、液晶シャ
ッタードライバ6及びX)′ステージドライバ11にデ
ータが送られ、液晶シャッター板3の光透退部範囲とX
Yステージ9の位置・速度の同時制御を行っている。液
晶シャッタードライバ6は、デイスプレィ表示等で用い
られている技術を応用することにより、液晶シャツタ板
3に2次元的に配置されている各液晶シャッタ一部のう
ち、断面形状部に相当している部分は光透過するように
、その他の断面形状部に相当しない部分は光遮断するよ
うに液晶シャッター板3の動作をコントロールしている
。なお、液晶シャッター板3と液状光硬化樹脂2表面と
の距離は、光の拡散を考慮してできるだけ小さいほうが
望ましい。また光拡散の影響を無くす意味で、液晶シャ
ンター板3と液晶樹脂光硬化樹脂2表面との間にレンズ
アレイ等を設けて、光拡散を防ぐ手法も考えられる。
This three-dimensional three-dimensional object is designed by the CAD device 8 and is converted into two-dimensional cross-sectional shape data for each horizontal section, and each data is sent to the controller 10. The controller 10 sends data to the liquid crystal shutter driver 6 and the
The position and speed of the Y stage 9 are controlled simultaneously. The liquid crystal shutter driver 6 corresponds to a cross-sectional portion of a portion of each liquid crystal shutter two-dimensionally arranged on the liquid crystal shutter plate 3 by applying technology used in displays, etc. The operation of the liquid crystal shutter plate 3 is controlled so that the portions transmit light, and the portions that do not correspond to the other cross-sectional shapes block light. Note that the distance between the liquid crystal shutter plate 3 and the surface of the liquid photocuring resin 2 is desirably as small as possible in consideration of light diffusion. Furthermore, in order to eliminate the influence of light diffusion, a method of preventing light diffusion by providing a lens array or the like between the liquid crystal shunter plate 3 and the surface of the liquid crystal resin photocuring resin 2 may be considered.

(ト)発明の効果 本発明の光学的立体造形方法によれば2マスクを1軸方
向又は2軸方向に光源とともに硬化樹脂上を走査させる
とともに、各水平断面形状に応じて光学マスクの光透過
部が連続的に変化させているので、水平断面形状毎の光
学マスクを製作し毎回取り替えることなく、面光源によ
る露光を連続的に行っていくことができ、大型の3次元
立体形状を造形する場合に際しても、光学マスクを大型
サイズにすることなく、短時間 高精度で且つ安価に3
次元立体形状を造形することが可能である。
(G) Effects of the Invention According to the optical three-dimensional modeling method of the present invention, two masks are scanned over a cured resin together with a light source in one or two axial directions, and light transmission of the optical masks is performed according to each horizontal cross-sectional shape. Since the area changes continuously, it is possible to continuously perform exposure using a surface light source without having to create an optical mask for each horizontal cross-sectional shape and replace it each time, making it possible to print large three-dimensional shapes. Even if the optical mask is not large-sized, it can be used in a short time, with high precision, and at low cost.
It is possible to create three-dimensional shapes.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係わる光学的立体造形方法を実施する
ための立体造形装置の概略構成図、第2図a乃至fは本
発明に係わる光学的立体造形法方法を工程順に示した説
明図である。 (1)・・・容器、(2)・・・光硬化樹脂、(3)・
・・液晶シャッター板、(4)・・・光源、(5)・・
・昇降ステージ、(61(111・・・ドライバ、(7
)・・・立体形状物、(9)・・・XYステージ、(1
0)・・コントローラ。 呂願人 三洋電機株式会社
FIG. 1 is a schematic configuration diagram of a three-dimensional modeling apparatus for implementing the optical three-dimensional modeling method according to the present invention, and FIGS. 2 a to f are explanatory diagrams showing the optical three-dimensional modeling method according to the present invention in the order of steps. It is. (1)...container, (2)...photocuring resin, (3)...
...Liquid crystal shutter plate, (4)...Light source, (5)...
・Elevating stage, (61 (111...driver, (7
)...Three-dimensional object, (9)...XY stage, (1
0)...Controller. Ryo Ganjin Sanyo Electric Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 1)液状光硬化樹脂材を樹脂収容容器に収容し、該光硬
化樹脂に水平断面形状の露光マスクを介して光を照射す
ることにより、上記光硬化樹脂を選択的に硬化させ立体
形状を形成する方法に於て、上記マスクを1軸方向又は
2軸方向に上記光源とともに上記光硬化樹脂上を走査さ
せるとともに上記マスクの水平断面形状を連続的に変化
させることを特徴とした光学的立体造形方法。
1) A liquid photocurable resin material is placed in a resin storage container, and the photocurable resin is irradiated with light through an exposure mask with a horizontal cross section to selectively cure the photocurable resin and form a three-dimensional shape. A method for optical three-dimensional modeling, characterized in that the mask is scanned over the photocuring resin together with the light source in one or two axial directions, and the horizontal cross-sectional shape of the mask is continuously changed. Method.
JP8530790A 1990-03-30 1990-03-30 Optical three-dimensional shaping Pending JPH03281329A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8530790A JPH03281329A (en) 1990-03-30 1990-03-30 Optical three-dimensional shaping

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8530790A JPH03281329A (en) 1990-03-30 1990-03-30 Optical three-dimensional shaping

Publications (1)

Publication Number Publication Date
JPH03281329A true JPH03281329A (en) 1991-12-12

Family

ID=13854946

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8530790A Pending JPH03281329A (en) 1990-03-30 1990-03-30 Optical three-dimensional shaping

Country Status (1)

Country Link
JP (1) JPH03281329A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06198747A (en) * 1992-12-28 1994-07-19 Kawai Musical Instr Mfg Co Ltd Three-dimensional body forming device due to optical shaping technique
WO2005025838A1 (en) 2003-09-11 2005-03-24 Nabtesco Corporation Optical 3-dimensional object formation and device
WO2006035739A1 (en) * 2004-09-29 2006-04-06 Nabtesco Corporation Optical molding device and optical molding method
US7137801B2 (en) 2002-03-12 2006-11-21 Teijin Seiki Co., Ltd. Three-dimensional stereolithographic apparatus
EP3053729A1 (en) * 2015-02-04 2016-08-10 Visitech As Method for exposing a photo polymerizable material for solidification of material layer by layer to build a 3D object

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06198747A (en) * 1992-12-28 1994-07-19 Kawai Musical Instr Mfg Co Ltd Three-dimensional body forming device due to optical shaping technique
US7137801B2 (en) 2002-03-12 2006-11-21 Teijin Seiki Co., Ltd. Three-dimensional stereolithographic apparatus
WO2005025838A1 (en) 2003-09-11 2005-03-24 Nabtesco Corporation Optical 3-dimensional object formation and device
US7931851B2 (en) 2003-09-11 2011-04-26 Nabtesco Corporation Stereolithographic method and apparatus
WO2006035739A1 (en) * 2004-09-29 2006-04-06 Nabtesco Corporation Optical molding device and optical molding method
JPWO2006035739A1 (en) * 2004-09-29 2008-05-15 ナブテスコ株式会社 Stereolithography apparatus and stereolithography method
JP4669843B2 (en) * 2004-09-29 2011-04-13 ナブテスコ株式会社 Stereolithography apparatus and stereolithography method
EP3053729A1 (en) * 2015-02-04 2016-08-10 Visitech As Method for exposing a photo polymerizable material for solidification of material layer by layer to build a 3D object
WO2016124634A1 (en) * 2015-02-04 2016-08-11 Visitech As Method for exposing a photo polymerizable material for solidification of material layer by layer to build a 3d object
TWI719010B (en) * 2015-02-04 2021-02-21 挪威商維西科技股份有限公司 Method for exposing a photo polymerizable material for solidification of material layer by layer to build a 3d object

Similar Documents

Publication Publication Date Title
US5779967A (en) Method and apparatus for production of three-dimensional objects by stereolithography
US5236637A (en) Method of and apparatus for production of three dimensional objects by stereolithography
US4929402A (en) Method for production of three-dimensional objects by stereolithography
US8815143B2 (en) Method for producing a three-dimensional object by means of mask exposure
US5174943A (en) Method for production of three-dimensional objects by stereolithography
US4575330A (en) Apparatus for production of three-dimensional objects by stereolithography
CN101301792B (en) Light-curing quick moulding method based on LCD space light modulator and device
JPH03281329A (en) Optical three-dimensional shaping
JPH04305438A (en) Optical three-dimensional shaping method
JPH0699505A (en) Method and device for forming three-dimensional object
JPH03275337A (en) Optical method for forming three-dimensional body
JPH049662B2 (en)
JPH0514839Y2 (en)
JPH03205135A (en) Optical 3-d shaping method
KR20000018892A (en) Method and apparatus for fabricating three-dimensional optical model using liquid crystal display panel and method the same
JP4834297B2 (en) Stereolithography apparatus and stereolithography method
JP3721477B2 (en) Stereolithography
JP3444740B2 (en) Apparatus and method for manufacturing a three-dimensional object
JPH047125A (en) Optical three-dimensionally shaping method
JPH04284227A (en) Optically solid-shaping method
JPH11314276A (en) Device and method for forming three-dimensional object
JPH0798364B2 (en) Method and apparatus for creating three-dimensional objects
JPH049661B2 (en)
JPH0613196B2 (en) Method and apparatus for creating three-dimensional objects
JPH0653391B2 (en) Method and apparatus for creating three-dimensional objects