JPH0328130A - Recoverer of uranium in marine - Google Patents

Recoverer of uranium in marine

Info

Publication number
JPH0328130A
JPH0328130A JP16491089A JP16491089A JPH0328130A JP H0328130 A JPH0328130 A JP H0328130A JP 16491089 A JP16491089 A JP 16491089A JP 16491089 A JP16491089 A JP 16491089A JP H0328130 A JPH0328130 A JP H0328130A
Authority
JP
Japan
Prior art keywords
adsorbent
seawater
adsorption
adsorption bed
support
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16491089A
Other languages
Japanese (ja)
Inventor
Jitsuo Sakakibara
榊原 実雄
Takahiro Hirotsu
孝弘 廣津
Norio Takagi
憲夫 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP16491089A priority Critical patent/JPH0328130A/en
Publication of JPH0328130A publication Critical patent/JPH0328130A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treatment Of Liquids With Adsorbents In General (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To recover uranium from marine water with adsorption beds reduced in costs, increased efficiency in contact with marine water, and facilitated transportation of the adsorbent, by bundling filament fibers and fibrous adsorbent, arranging them in a screen or network to form the adsorption bed. CONSTITUTION:Aramid resin fibers or the like are used as a material bearing the strength to bundle a fibrous adsorbent such as amidoximized acrylonitrile fibers 1 and they are arranged in network or screen in marine water. In this case, the upper part of the fibrous adsorbent is connected to the upper holder 2, while the lower part to the lower holder 4. The upper holder 2 is further bound to the buoys 3 and the buoys are connected through the cable 5 to the anchor 6 whereby the adsorption bed is set in the marine stream.

Description

【発明の詳細な説明】 (産業上の利用分野〉 この発明は海水中に微量に含まれているウラン等の有価
tIR源を効率的に回収するための海水中の微量元素の
回収装置に間する. (従来の技術〉 海水中に溶存するウラン等の有価vR源の回収方法とし
て種々の形態が今案されている.大別すると回収装置を
陸上に設置し、海水を汲み上げて吸着剤と接触させる方
式と吸着剤を海水中に設置し、海流、波力などのエネル
ギーを利用して吸着剤と海水の接触を図る方式とがある
.ここでは海水中に吸着削を設置する方式の従来技術に
ついて述べる。
[Detailed Description of the Invention] (Industrial Application Field) This invention is directed to an apparatus for recovering trace elements in seawater for efficiently recovering valuable tIR sources such as uranium contained in trace amounts in seawater. (Prior art) Various methods are currently being proposed for recovering valuable vR sources such as uranium dissolved in seawater. Broadly speaking, recovery equipment is installed on land, and seawater is pumped up and used as an adsorbent. There are two methods: a method in which the adsorbent is brought into contact with the seawater, and a method in which the adsorbent is placed in seawater and the adsorbent is brought into contact with the seawater using energy such as ocean currents and wave force. Let's talk about technology.

吸着剤を海水中に設置する場合、吸着剤を支持体内に充
填し、吸着床を形成する方式が代表的例である.吸着床
の形態として固定床(特開 昭62−22 1 403
など)、瀉動床(特開 昭58−69726など)及び
沈降床(特間 昭55−8 1 707なと〉等が考案
されている.また、吸着剤を補強材に張り合わせてベル
トあるいは帯状吸着床(特間 昭56−91839など
)を形成し、海水と吸着材の接触効率を改善する試みも
行われている. (発明が解決しようとする問題点) ウラン等海水中に微量に溶存するjRRを回収するため
には吸着剤を大量の海水と効率的に接触させる必要があ
る.また、吸着剤の海水中への設置や洋上への回収が技
術的に容易である必要がある.一般的には吸着剤を支持
体内に入れて吸着床を形成し、これを}11流中に設置
する方法が考えられている. 海水中のウラン吸着剤として無機系の吸着削及び有機系
の吸着剤が、また、吸着剤形状としては粒状及び繊維状
の吸着剤が間発されている.無機系であれ、有機系であ
れ粒状吸着剤を支持体内にいれて固定床で海水と接触さ
せるためには、吸着剤が海流中に遺失するのを防ぐため
に、tm流の上流側及び下流側には少なくとも吸着剤粒
径以下の海水通水孔を設ける必要がある.吸着剤の粒径
は1mm内外であるため、通水孔は微細なものとなる.
このような微細孔は通水抵抗を高めるばかりでなく、海
水による腐食を防止するためにチタン合金等の高価な材
料の使用が不可欠となる.また、吸着剤支持体を保持す
るための強度IIIS材としての構造体も別に必要にな
る.粒状吸着剤の搬送についてはスラリー輸送等の方法
が考案されている. 繊維状吸着剤を支持体内にいれて固定床を形成する方式
では、吸着剤流出防止のための微細孔を設ける必要はな
いが、吸着剤を保持するためのパネル構造は必要である
.また、吸着床を海流に対して安定して設置するために
は、吸着床を把持するための外部構造体が必要である.
吸着剤の入れ替えは自動化することが困難で、パネル構
造の単位吸着床を置々に取り扱わねばならず、実海域で
の実施には大きな問題となる.  更に、固定床では海
水の通水抵抗が大きく、海水の利用効率が低下するばか
りでなく、生物や懸濁物の付着による目詰まりの可能性
が強い. 粒状吸着剤を支持体内にいルて流動床で海水と接触させ
る方式では、流動層高を得るために海水取入れ口の面積
を吸着床支持体面積に対して小さくする必要があり、海
水の利用効率が悪くなる.吸着剤の量に対して支持体の
容積が大きくなり、支持体製作のためのコストが大きく
なるとともに、支持体にかかる流体抵抗も大きくなる.
これに伴い、吸着床を係留するための費用も増大する.
更に、海域の海況変化によって、吸着剤の損失が増大す
る可能性が強い. 吸着床を形成するに当たって、吸着剤を支持体内にいれ
て海水との接触を図る限り、吸着剤を保持する支持体の
製作及び該支持体を固定するための構造体の製作費用の
増大、これら構造体の維持費用の増大、海水利用効率の
低下、吸着剤の搬送の困難等の問題点を抱えている. 吸着剤を補強材に張りつけて吸着床を形成する方式では
吸着剤の支持体が簡素化され、海水との接触効率の改善
も期待できるが、吸着剤の損失が最大の問題となる.即
ち、補強材と吸着剤の界面が接着剤によって結合される
ことになるが、吸着剤相互の結合は弱く、海流中での長
時間の浸積では吸着剤相互間の剥離による損失が予測さ
れる。
When installing an adsorbent in seawater, a typical method is to fill the adsorbent into a support to form an adsorption bed. Fixed bed as the form of adsorption bed
etc.), diaphragm beds (Japanese Unexamined Patent Publication No. 58-69726, etc.), sedimentation beds (Tokuma 1970-8 1707, etc.), etc. have been devised.Also, adsorbents are laminated onto reinforcing materials to form belts or strips. Attempts have also been made to improve the contact efficiency between seawater and adsorbent by forming an adsorption bed (such as Tokuma 1983-91839). (Problems to be solved by the invention) Trace amounts of uranium etc. dissolved in seawater In order to recover jRR, it is necessary to bring the adsorbent into efficient contact with a large amount of seawater.In addition, it is necessary to be technically easy to install the adsorbent in seawater and recover it at sea. Generally speaking, a method is considered in which an adsorbent is placed in a support to form an adsorption bed, and this is placed in a stream.Inorganic adsorption and organic adsorption can be used as uranium adsorbents in seawater. Adsorbents, and granular and fibrous adsorbents are intermittent.Whether inorganic or organic, granular adsorbents are placed in a support and brought into contact with seawater in a fixed bed. In order to prevent the adsorbent from being lost in the ocean current, it is necessary to provide seawater passage holes with at least the particle size of the adsorbent on the upstream and downstream sides of the tm flow.The particle size of the adsorbent is Since the diameter is around 1 mm, the water holes are minute.
Such micropores not only increase water flow resistance, but also require the use of expensive materials such as titanium alloys to prevent corrosion from seawater. Additionally, a separate structure is required as a strength IIIS material to hold the adsorbent support. Methods such as slurry transport have been devised for transporting granular adsorbents. In the method of forming a fixed bed by placing fibrous adsorbent in a support, it is not necessary to provide micropores to prevent the adsorbent from flowing out, but a panel structure is required to hold the adsorbent. In addition, in order to install the adsorption bed stably against ocean currents, an external structure is required to hold the adsorption bed.
It is difficult to automate the replacement of adsorbents, and unit adsorption beds with a panel structure must be handled from time to time, which poses a major problem when implemented in actual seawater. Furthermore, fixed beds have a large seawater flow resistance, which not only reduces seawater utilization efficiency, but also increases the possibility of clogging due to adhesion of organisms and suspended matter. In a method in which granular adsorbent is placed in a support and brought into contact with seawater in a fluidized bed, the area of the seawater intake must be made smaller than the area of the adsorption bed support in order to obtain the height of the fluidized bed, making it difficult to utilize seawater. Efficiency deteriorates. The volume of the support becomes large relative to the amount of adsorbent, which increases the cost of manufacturing the support and increases the fluid resistance applied to the support.
This also increases the cost of mooring the adsorption bed.
Furthermore, there is a strong possibility that adsorbent loss will increase due to changes in sea conditions in the ocean area. When forming an adsorption bed, as long as the adsorbent is placed in a support and brought into contact with seawater, there will be an increase in the cost of manufacturing the support that holds the adsorbent and of the structure for fixing the support. Problems include increased maintenance costs for the structure, decreased seawater utilization efficiency, and difficulty in transporting the adsorbent. The method of attaching adsorbent to reinforcing material to form an adsorption bed simplifies the support for the adsorbent and is expected to improve the efficiency of contact with seawater, but the biggest problem is the loss of adsorbent. In other words, the interface between the reinforcing material and the adsorbent is bonded by the adhesive, but the bond between the adsorbents is weak, and loss due to separation between the adsorbents is expected if they are immersed in ocean currents for a long time. Ru.

吸着剤の損失を防止するためには吸着剤の積層が困難で
、極めて効率の悪い吸着床となる.また、吸着剤の損失
を防ぐため、吸着剤相互間に強固な接着を行えば海水の
浸透性が失われる.〈問題点を解決するための手段) 本発明は、吸着床そのものを吸着剤によって形成し、吸
着床コストの低減を図るとともに、海水との接触効率を
高め、また、吸着剤の搬送を容易に行うための方法を提
供するものである。
In order to prevent adsorbent loss, it is difficult to layer adsorbents, resulting in an extremely inefficient adsorption bed. In addition, in order to prevent loss of adsorbent, if strong adhesion is established between adsorbents, the permeability of seawater will be lost. <Means for Solving the Problems> The present invention forms the adsorption bed itself using an adsorbent, thereby reducing the cost of the adsorption bed, increasing the efficiency of contact with seawater, and facilitating the transportation of the adsorbent. It provides a method for doing so.

本発明において、吸着床を形成するものは結束した繊維
及びlI維状吸着剤を簾状または網目状に配置した吸着
剤構成と、これを支持する上部支持体及び下部支持体の
みであり、構造的に極めて簡素化されることである. 上部支持体および下部支持体の存在によって、吸着床は
+Itffi中で一定の形状が保たれる。また、+11
流速に応じて下部支持体の重量を調整することによって
、海流に対してIg%適の傾斜角で吸着床を設置するこ
とが可能である. 吸着剤である繊維は海水中で自重及び下部支持体の重量
を保持するだけでなく、吸着床を洋上に引き上げる際に
繊維束内に保持ざれる海水重量をも保持する強度が保証
されるので、単純なクレーン作業によって容易に吸着床
の搬送が出来る.(発明の効果) 本発明における最大の特徴は吸着剤の支持体を出来るだ
け簡略化し、吸着床構造体の製作費用を低減するととも
に、吸着剤と海水が直接接触できる構造としたことであ
る.即ち、吸着工程、脱着工程、濃縮・分離工程などか
ら構成される海水中のウラン回収システムにおけるコス
ト試算の結果によれば、吸着工程の全工程に占めるコス
トの割合は約80%に達し、吸着工程の中で吸着剤を除
く吸着床及び構造体のコストが吸着工程に占める割合は
38〜47%と見積られている(日本海水学会誌、40
(5)、 205(+987)、 同、 4 1 (5
)、 257(+988)).  即ち、吸着床及び構
造体のコストは全回収コストの30〜35%を占めるこ
とになり、この低減が回収コスト低減のために重要であ
る事は言うまでもない。
In the present invention, the only thing that forms the adsorption bed is the adsorbent structure in which bundled fibers and lI fibrous adsorbents are arranged in a blind or mesh pattern, and the upper and lower supports that support this. This means that it is extremely simplified. Due to the presence of the upper and lower supports, the adsorption bed maintains a constant shape in +Itffi. Also, +11
By adjusting the weight of the lower support according to the flow velocity, it is possible to install the adsorption bed at an angle of inclination appropriate for the Ig% relative to the ocean current. The fiber, which is an adsorbent, not only retains its own weight and the weight of the lower support in seawater, but also has the strength to retain the weight of seawater retained within the fiber bundle when the adsorbent bed is lifted out to sea. , the adsorption bed can be easily transported by simple crane operations. (Effects of the Invention) The most important feature of the present invention is that the support for the adsorbent is simplified as much as possible, reducing the manufacturing cost of the adsorption bed structure, and the structure is such that the adsorbent and seawater can come into direct contact with each other. In other words, according to the cost estimation results for a seawater uranium recovery system that consists of an adsorption process, a desorption process, an enrichment/separation process, etc., the cost ratio of the adsorption process to the total process reaches approximately 80%, and the adsorption process The cost of the adsorption bed and structure excluding the adsorbent is estimated to account for 38-47% of the adsorption process (Journal of the Seawater Society of Japan, 40
(5), 205 (+987), same, 4 1 (5
), 257(+988)). That is, the cost of the adsorption bed and structure accounts for 30 to 35% of the total recovery cost, and it goes without saying that this reduction is important for reducing the recovery cost.

本発明では吸着床を形成する構造体は上部及び下部支持
体のみであり、該支持体は、曲げモーメントに対する強
度を有すれば良いため、単純な梁構造でよく、加工費用
も要しない.以上の理由により、吸着床及び構造体に関
わる費用はほぼ皆無となり、回収システムを構築する場
合の経済的効果は絶大なものになる. 更に、吸着剤は繊維及びwA維状吸着剤の特性を最大限
に生かすことが出来る.即ち、原料繊維を短尺に切断す
る事なく、数十mの長繊維で使用することができ、吸着
剤製造時の薬品処理等の自動化にも有効である.吸着剤
製造コストの低下にもつながる。
In the present invention, the structure forming the adsorption bed is only the upper and lower supports, and since the supports only need to have strength against bending moments, a simple beam structure is sufficient, and processing costs are not required. For the above reasons, the costs associated with adsorption beds and structures are almost nil, and the economic effects of building a recovery system are enormous. Furthermore, the adsorbent can take full advantage of the properties of fiber and wA fibrous adsorbents. That is, the raw material fibers can be used as long fibers of several tens of meters without being cut into short lengths, and are also effective in automating chemical processing during adsorbent production. This also leads to a reduction in adsorbent production costs.

また、吸着床はクレーンによる装着、引き上げが可能な
ため、粒状吸着剤のスラリー輸送などのように、複雑な
搬送システムを必要とせず、吸着剤の損耗の恐れもない
Furthermore, since the adsorption bed can be installed and lifted by a crane, there is no need for a complicated transportation system, such as transporting slurry of granular adsorbent, and there is no risk of wear and tear on the adsorbent.

更に、a!u状吸着剤は上部支持体及び下部支持体に接
続されて+tl ti中に保持され、これを覆うものは
ないため、吸着床の全面に対して海流が作用し、海水の
流れを最大限に利用することが出来る。
Furthermore, a! The U-shaped adsorbent is connected to the upper and lower supports and held in +tl ti, and since there is nothing covering it, the ocean current acts on the entire surface of the adsorption bed, maximizing the seawater flow. It can be used.

(実施例) 以下、図面を参照して本発明の実施例を説明するが、本
発明はこの例によってなんら限定されるものではない. 第1図はill流中に設置されたウラン回収装置の単位
構成要素の一例を示したものである.MG*吸着剤1を
等間隔で網目状に配置した例を示す.繊維吸着剤1の上
部は上部支持体2に接続され、下部は下部支持体3に接
続されて吸着床を形成する,上部支持体2は更に浮体4
に接続され、浮体4を係留索5を経てアンカー6に接続
することによって吸着床は海流中に設置される。これら
の支持体はFRP等、耐海水、耐薬品性の材料を使用す
ることによって、吸着剤とともに吸着・脱着工程を含め
た繰り返し使用が可能である. 下部支持体3は金属片等を着脱可能な構造とし、重量を
調整することによって、海流に対する吸着床の設置角度
を調整することが出来る.比較的海流速が遅く、調整重
量が大きい場合には第1図に示すように吸着床は}11
流に対してほぼ直角に配置する.上記の配置は海流を最
も有効に利用できる反面、過大な荷重によって繊維東密
度が上昇し、海水の通水抵抗が増加し、繊維束が大きく
なると繊維東内部まで均一のウラン吸着が得られなくな
る傾向がある. 一方、比較的}11流速が速く、調整重量が軽いかある
いはない場合は第2図に示すように吹き流しの状態とな
る.この場合、繊維束の直径方向への圧力勾配が小さい
ため吸着速度が遅くなる傾向がある.また、上記の配置
は海流の利用効率が極めて低くなる.しかしながら、海
域条件によっては複数の吸着床を連結し、第3図に示す
ような配置を採用することによって、海流の有効利用を
図ることも効・果的である. いずれにしても、吸着床の設置海域によって、最適の設
置方式を採用すればよい。
(Examples) Examples of the present invention will be described below with reference to the drawings, but the present invention is not limited to these examples in any way. Figure 1 shows an example of the unit components of a uranium recovery device installed in an ill stream. An example in which MG* adsorbent 1 is arranged in a mesh pattern at equal intervals is shown. The upper part of the fiber adsorbent 1 is connected to the upper support 2, and the lower part is connected to the lower support 3 to form an adsorption bed, and the upper support 2 is further connected to the floating body 4.
The adsorption bed is installed in the ocean current by connecting the floating body 4 to the anchor 6 via the mooring line 5. By using seawater-resistant and chemical-resistant materials such as FRP, these supports can be used repeatedly, including adsorption and desorption processes, along with the adsorbent. The lower support 3 has a structure in which metal pieces and the like can be attached and removed, and by adjusting the weight, the installation angle of the adsorption bed relative to the ocean current can be adjusted. When the ocean current speed is relatively low and the adjustment weight is large, the adsorption bed will be }11 as shown in Figure 1.
Place it almost perpendicular to the flow. Although the above arrangement can make the most effective use of ocean currents, excessive loads will increase the fiber east density, increase seawater flow resistance, and if the fiber bundle becomes large, uniform uranium adsorption to the inside of the fiber east will not be achieved. Tend. On the other hand, if the flow velocity is relatively high and the adjustment weight is light or absent, a windsock state will occur as shown in Figure 2. In this case, the adsorption rate tends to be slow because the pressure gradient in the diametrical direction of the fiber bundle is small. Additionally, the above arrangement results in extremely low ocean current utilization efficiency. However, depending on sea conditions, it may be effective to utilize ocean currents effectively by connecting multiple adsorption beds and adopting the arrangement shown in Figure 3. In any case, the most suitable installation method may be adopted depending on the sea area where the adsorption bed is to be installed.

本方式の吸着床は基本的には固定床に分類されるため、
生物や懸濁物の付着による目詰まりの可能性がある.吸
着床の設置水深を微生物量の少ない水!10m以深に設
置することによって、また、浮体の上下揺によるm維束
の伸縮運動及びカルマン渦の生成に伴う振動等によって
清掃効果が発土し、1サイクル20日程度の吸ll訪問
では目詰まりは発生しなかった. 以上、吸着剤の繊維束を網目状に配置した例について示
したが、繊維束を適当な間隔で結束し、簾状に配置する
ことも有効である。第4図に吸着床の一部拡大図を示す
.繊維東径の5〜lO倍程度の間隔で結束することによ
り、全体としては円田状の&1維束を形成するものの、
結束された中間の繊維束は繊維間の動きが自由となり、
海流中に設置した場合、海流が最も通過しやすい形に変
形する.即ち、海流の上流側に対して第6図に示すよう
に凹形に変形し、繊維束の各繊維間を均等に海水が流れ
る状態が実現する.このため、繊維東径を比較的大きく
しても内部まで均一のウラン吸着性能が得られる。水平
方向の結束材7としては、第1図と同様、吸着材!al
l紺を使用しても良いし、また、耐海水性及び耐薬品性
に優れた材質を選択してもよい. 繊維吸着剤1はアクリロニトリル繊維をヒドロキシルア
ミンを含むメタノール溶液中で所定時間反応させてアミ
ドキシム化し、更に所定勢間アルカリ処理を行うことに
よって製造した。このような過程で得られるアミドキシ
ム型1111吸着剤はウラン吸着性が優れていることは
良く知られたところである。また、アミドキシム化時間
及びアルカリ処理時間によって、吸着速度や吸着容量が
大いに冗なることが知られている.しかしながら、処理
工程の如何に関わらず、第6図に示すようにウラン吸着
性能と繊維の強度は相反する間係にあり、7日間の吸着
で吸着剤1g当り1.5m g以上のウランを吸着する
吸着剤では殆ど強度を有しなくなる.本発明における吸
着剤wA維は強度部材として作用する必要があるため、
吸着性能をある程度犠牲にしなければならない. 吸着剤繊維に求められる強度について述べる.第1図に
おいて、繊維束の見かけ密度を0.15g /cm3、
繊維束の径Dを3cm、吸着床の巾Wを30m,吸着床
の長さしを40mとし、3cmの間隔をあけて網目状吸
着床を形成した場合について試、算する.黒潮を想定し
、海流連Vが2ノット、吸着床の抗力係数0.88を仮
定した場合、繊碓束の上部に作用する最大応力は大略2
.7MPaである.一方、繊維束に海水が保水された状
態で吸着床を船上に引き上げる場合には5.5MPaと
なり、吸着床を引き上げる時の方が大きな力が作用する
ことになる.吸着剤繊維の強度は繊維強度のばらつきを
今慮すれば、少なくともlOMPa以上が要求される.
ところで、第6図に示した繊維強度は1デニール当りの
短繊維強度を示しており、1デニール当り1gの単a維
強度は約110MPaに相当する.即ち、1デニール当
り0.1g以上の強度があれば上述の吸着床を形成でき
ることになる. 吸着実験は繊維強度に比重をおき、第6図の中からアミ
ドキシム化時間4時間、アルカリ処理時間4時間(第6
図中Aで示す条件)を選定し、55MPaの繊維強度及
び7日間の海水との接触で1gの繊維にlmgのウラン
吸着を予定した.m碓束径3 c m.  結束長さ1
5cm,  下部支持体の!II!!重量は4 .9M
Paとした.海水流速は0.5ノットであった.上記の
実験条件で得られたウラン吸着量は繊維東平均で約0.
7m g / gであった.吸着量の不足は瀾流速の不
足や調整重量の不適性によるものと考えられるが、ほぼ
予定した吸着量が得られた.尚、第7図に示すようにア
ラミド樹脂繊維や未処理のアクリル繊維など、耐海水性
、耐薬品性の繊維を強度部材8として繊維東中心に配置
し、周囲に吸着剤lを配置した補強繊維東吸着剤を用い
ることも当然ながら可能である。
Since the adsorption bed of this method is basically classified as a fixed bed,
There is a possibility of clogging due to adhesion of living organisms or suspended matter. The adsorption bed is installed at a water depth that has a low amount of microorganisms! By installing it at a depth of 10 m or more, the cleaning effect is achieved by the expansion and contraction movement of the m fibers due to the up-and-down movement of the floating body, and the vibrations caused by the generation of Karman vortices. did not occur. Although an example in which the fiber bundles of the adsorbent are arranged in a mesh pattern has been shown above, it is also effective to tie the fiber bundles at appropriate intervals and arrange them in a blind pattern. Figure 4 shows a partially enlarged view of the adsorption bed. By bundling at intervals of about 5 to 10 times the east diameter of the fibers, they form a circular &1 fiber bundle as a whole,
The bundled intermediate fiber bundles allow free movement between the fibers,
When installed in ocean currents, it deforms into a shape that allows the ocean currents to pass through it most easily. That is, the fiber bundle is deformed into a concave shape as shown in FIG. 6 with respect to the upstream side of the ocean current, and a state in which seawater flows evenly between each fiber of the fiber bundle is realized. Therefore, even if the fiber east diameter is relatively large, uniform uranium adsorption performance can be obtained throughout the interior. As the horizontal binding material 7, as in Fig. 1, an absorbent material is used! al
Navy blue may be used, or a material with excellent seawater and chemical resistance may be selected. Fiber adsorbent 1 was produced by reacting acrylonitrile fibers in a methanol solution containing hydroxylamine for a predetermined period of time to form an amidoxime, and then subjecting the fibers to an alkali treatment for a predetermined period of time. It is well known that the amidoxime type 1111 adsorbent obtained through such a process has excellent uranium adsorption properties. Furthermore, it is known that the adsorption rate and adsorption capacity are greatly affected by the amidoxime formation time and the alkali treatment time. However, regardless of the treatment process, as shown in Figure 6, the uranium adsorption performance and fiber strength are in a contradictory relationship, and over 1.5 mg of uranium is adsorbed per 1 g of adsorbent in 7 days of adsorption. Adsorbents that do this have almost no strength. Since the adsorbent wA fiber in the present invention needs to act as a strength member,
Adsorption performance must be sacrificed to some extent. We will discuss the strength required for adsorbent fibers. In Figure 1, the apparent density of the fiber bundle is 0.15g/cm3,
The calculations were made for the case where the diameter D of the fiber bundle is 3 cm, the width W of the adsorption bed is 30 m, the length of the adsorption bed is 40 m, and a mesh adsorption bed is formed with an interval of 3 cm. Assuming the Kuroshio current, the ocean current V is 2 knots, and the drag coefficient of the adsorption bed is 0.88, the maximum stress acting on the upper part of the fiber bundle is approximately 2 knots.
.. It is 7MPa. On the other hand, when the adsorption bed is pulled up onto the ship with seawater retained in the fiber bundles, the pressure is 5.5 MPa, which means that a larger force is applied when the adsorption bed is pulled up. Considering the variation in fiber strength, the strength of the adsorbent fiber is required to be at least 1OMPa or more.
By the way, the fiber strength shown in FIG. 6 indicates the short fiber strength per denier, and the single A fiber strength of 1 g per denier corresponds to about 110 MPa. In other words, if the strength is 0.1 g or more per denier, the above-mentioned adsorption bed can be formed. The adsorption experiment focused on fiber strength, and the amidoxime formation time was 4 hours and the alkali treatment time was 4 hours (Figure 6).
The conditions indicated by A in the figure) were selected, and it was planned that 1 mg of uranium would be adsorbed on 1 g of fiber with a fiber strength of 55 MPa and contact with seawater for 7 days. m Usui bundle diameter 3 cm m. Binding length 1
5cm, of the lower support! II! ! The weight is 4. 9M
It was set as Pa. The seawater current speed was 0.5 knots. The amount of uranium adsorbed under the above experimental conditions was approximately 0.
It was 7mg/g. Although the lack of adsorption amount is thought to be due to insufficient flow rate or inappropriate adjustment weight, almost the expected amount of adsorption was obtained. In addition, as shown in Fig. 7, seawater-resistant and chemical-resistant fibers such as aramid resin fibers and untreated acrylic fibers are placed in the east center of the fibers as the strength member 8, and an adsorbent l is placed around the reinforcement. Of course, it is also possible to use a fiber east adsorbent.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の網目状吸着床の実施例を示す模式図。 第2図は実施例の内、II ?R速か速い場合あるいは
下部調整重量が無い場合の吹き流しの状況図。第3図は
第2図の吸着床を連結して配置した実施例の模式図。第
4図は吸着剤a維束を一定間隔て結束し簾状に配置した
吸着床の実施例。第5図は海流中におけろ吸着剤!6l
i維束の変形状況。 第6図はウラン吸着性能と単繊維強度との関係。 第7図は補強した繊維束の例. 1、繊維吸着剤、2.上部支持体、3.4体、4.下部
支持体、・・・
FIG. 1 is a schematic diagram showing an embodiment of the mesh adsorption bed of the present invention. FIG. 2 shows II? of the embodiments. A diagram of the windsock situation when R speed is fast or when there is no lower adjustment weight. FIG. 3 is a schematic diagram of an embodiment in which the adsorption beds shown in FIG. 2 are connected and arranged. FIG. 4 shows an example of an adsorption bed in which adsorbent A fibers are tied together at regular intervals and arranged in a screen-like manner. Figure 5 shows an adsorbent that can be placed in ocean currents! 6l
i Deformation status of the fibrous bundle. Figure 6 shows the relationship between uranium adsorption performance and single fiber strength. Figure 7 is an example of a reinforced fiber bundle. 1. Fiber adsorbent, 2. Upper support, 3.4 bodies, 4. Lower support,...

Claims (1)

【特許請求の範囲】 1、繊維及び繊維状吸着剤を結束し、海水中に簾状また
は網目状に配置して吸着床を形成することを特徴とする
海水中のウラン回収装置。 2、該吸着剤の上端を支持体に接続し、上部支持体を浮
体に接続し、浮体を係留することによって該簾状及び網
目状吸着床を海水中に保持することを特徴とする特許請
求範囲第1項記載の海水中のウラン回収装置。 3、該吸着剤の下端を支持体に接続し、海流中における
吸着床の形状を保つと同時に、下部支持体の重量を調整
することによって、吸着床の海流に対する配置を調整し
、海水との接触効率を保持することを特徴とする特許請
求範囲第1項記載の海水中のウラン回収装置。
[Scope of Claims] 1. An apparatus for recovering uranium in seawater, characterized in that fibers and fibrous adsorbents are bundled and arranged in seawater in the form of a screen or mesh to form an adsorption bed. 2. A patent claim characterized in that the screen-like and mesh-like adsorption beds are held in seawater by connecting the upper end of the adsorbent to a support, connecting the upper support to a floating body, and mooring the floating body. A device for recovering uranium from seawater as described in Scope 1. 3. Connect the lower end of the adsorbent to a support to maintain the shape of the adsorption bed in ocean currents, and at the same time adjust the weight of the lower support to adjust the placement of the adsorption bed in relation to the ocean currents, thereby improving the relationship between the adsorption bed and seawater. The apparatus for recovering uranium in seawater according to claim 1, which maintains contact efficiency.
JP16491089A 1989-06-26 1989-06-26 Recoverer of uranium in marine Pending JPH0328130A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16491089A JPH0328130A (en) 1989-06-26 1989-06-26 Recoverer of uranium in marine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16491089A JPH0328130A (en) 1989-06-26 1989-06-26 Recoverer of uranium in marine

Publications (1)

Publication Number Publication Date
JPH0328130A true JPH0328130A (en) 1991-02-06

Family

ID=15802184

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16491089A Pending JPH0328130A (en) 1989-06-26 1989-06-26 Recoverer of uranium in marine

Country Status (1)

Country Link
JP (1) JPH0328130A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106570999A (en) * 2016-11-04 2017-04-19 山东省科学院激光研究所 Optical fiber isolation net array and optical fiber isolation net system
CN110184458A (en) * 2019-05-17 2019-08-30 核工业北京化工冶金研究院 It is a kind of to handle the technique containing uranium solution using Chemical adsorptive fiber

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5916812A (en) * 1982-07-21 1984-01-28 Hokko Chem Ind Co Ltd Agricultural and horticultural germicide
JPS5933417A (en) * 1982-08-18 1984-02-23 Minolta Camera Co Ltd Two-component wire angle zoom lens system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5916812A (en) * 1982-07-21 1984-01-28 Hokko Chem Ind Co Ltd Agricultural and horticultural germicide
JPS5933417A (en) * 1982-08-18 1984-02-23 Minolta Camera Co Ltd Two-component wire angle zoom lens system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106570999A (en) * 2016-11-04 2017-04-19 山东省科学院激光研究所 Optical fiber isolation net array and optical fiber isolation net system
CN110184458A (en) * 2019-05-17 2019-08-30 核工业北京化工冶金研究院 It is a kind of to handle the technique containing uranium solution using Chemical adsorptive fiber

Similar Documents

Publication Publication Date Title
US5553976A (en) Fluid riser between seabed and floating vessel
US6192691B1 (en) Method of collecting methane hydrate gas and apparatus therefor
CN101466447B (en) Fine filtering apparatus using flexible fiber filter module
US7430979B2 (en) Method of transporting an elongate member
JPH04281895A (en) Biological treating device
US20030123936A1 (en) Tension leg and method for transport, installation and removal of tension legs pipelines and slender bodies
JPH0328130A (en) Recoverer of uranium in marine
CN201792996U (en) Oil collection net
CN211257097U (en) Porous turbulent offshore wind power foundation anti-scouring device
CN105782189B (en) A kind of water floating body pipe fitting connector
EP1292765B1 (en) A wavepower collector
AU2017267504B2 (en) Subsea buoyancy systems
CN205478725U (en) Body pipe fitting connector on water
CN213202521U (en) Multifunctional reaction wall system and assembly for enhanced treatment of polluted surface water
US9944358B2 (en) Transportation and installation of subsea rigid tie-in connections
CN105672219A (en) Flexible intercepting net used in seawater
CN110485365A (en) A kind of seabed protection against erosion bionic system and its construction technology and application
CN210825639U (en) Ecological floating island
CN212116700U (en) Reinforcing apparatus of net cage structure
CN215293105U (en) Surrounding connection fixing assembly for aerator
JP3761043B2 (en) Pollution prevention membrane
SE537370C2 (en) Anchoring arrangement for anchoring a floating unit in water, method for anchoring a floating unit in water and use of an anchoring arrangement
JP2017070913A (en) Infiltration water intake unit
CN220351858U (en) Aerobic tank aeration system without partition wall
CN214698994U (en) Fixed connection device for fastening small steel wires by underwater dragging steel wires and floating drum