JPH03281074A - Laser beam heat treatment equipment - Google Patents

Laser beam heat treatment equipment

Info

Publication number
JPH03281074A
JPH03281074A JP2078858A JP7885890A JPH03281074A JP H03281074 A JPH03281074 A JP H03281074A JP 2078858 A JP2078858 A JP 2078858A JP 7885890 A JP7885890 A JP 7885890A JP H03281074 A JPH03281074 A JP H03281074A
Authority
JP
Japan
Prior art keywords
laser beam
heat treatment
temperature
laser
irradiation part
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2078858A
Other languages
Japanese (ja)
Inventor
Seizo Doi
清三 土井
Tatsuo Nomaki
野牧 辰夫
Hideyuki Sasaki
秀幸 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2078858A priority Critical patent/JPH03281074A/en
Publication of JPH03281074A publication Critical patent/JPH03281074A/en
Pending legal-status Critical Current

Links

Landscapes

  • Radiation Pyrometers (AREA)
  • Laser Beam Processing (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To carry out laser beam heat treatment with high accuracy by calculating the irradiation part temperature based on frequency and intensity of a scattered line spectrum by a scattered line spectral means of an irradiation part provided on the laser beam heat treatment equipment. CONSTITUTION:The laser beam heat treatment equipment 1 which irradiates the sample 2 surface with a laser beam 10 to carry out heat treatment thereon is provided with a spectroscope 4 (spectral means) to disperse a scattered line 11 generated from the laser beam irradiation part 2a of the sample surface at the time of radiating the laser beam and the frequency and intensity are obtained from the spectrum of the scattered line 11. The temperature of the laser beam irradiation part is calculated by a computer 5 (temperature detecting means) based on this frequency and intensity. Consequently, the temperature of the laser beam irradiation part itself is measured accurately and laser beam heat treatment can be carried out with high accuracy.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、例えばレーザ光により金属表面の硬化0合金
化等の熱処理を行うレーザ熱処理装置に係り、特に熱処
理する部キイ表面のレーザ光照射部分の温度監視を行う
ことができるレーザ熱処理装置に関する。
Detailed Description of the Invention [Object of the Invention] (Industrial Application Field) The present invention relates to a laser heat treatment apparatus that performs heat treatment such as hardening and zero alloying on a metal surface using a laser beam, and particularly relates to a The present invention relates to a laser heat treatment apparatus that can monitor the temperature of a portion of a surface irradiated with laser light.

(従来の技術) 各種材料を熱処理する工程は各種製造業において最も基
礎的な工程の一つであり、このための熱処理装置として
は例えば電気炉がその代表的なものの−っであるが、近
年レーザ光が汎用光となり、レーザを加熱源とする熱処
理装置が実用化。
(Prior art) The process of heat treating various materials is one of the most basic processes in various manufacturing industries, and the typical heat treatment equipment for this purpose is, for example, an electric furnace, but in recent years Laser light has become a general-purpose light, and heat treatment equipment that uses lasers as a heating source has been put into practical use.

市販されるようになってきた。このレーザ熱処理装置は
、電気炉に比べて、瞬時に所定温度に加熱できる点や、
材料の任意の箇所のみ選択的に加熱できる点等多くの長
所を有しており、これらの特徴を活かした活用が盛んに
行われている。例えば、鉄鋼表面にレーザ光を照射し、
表面を非晶質化して耐食性を向上させる表面処理や、溶
接、高分子材料の穴あけ、さらには光照射に伴う結晶−
非結晶転移を利用した高密度記録等、例に限りがないほ
どである。
It has become commercially available. Compared to electric furnaces, this laser heat treatment equipment has the advantage of being able to instantaneously heat up to a predetermined temperature.
It has many advantages, such as being able to selectively heat any part of the material, and is widely used to take advantage of these features. For example, by irradiating a steel surface with laser light,
Surface treatment that improves corrosion resistance by making the surface amorphous, welding, drilling of polymer materials, and even crystallization caused by light irradiation.
There are countless examples, such as high-density recording using amorphous transitions.

(発明が解決しようとする課題) しかしながら、」二記したようなレーザ熱処理装置にお
いては、熱処理する部材表面のレーザ光照射部の温度を
直接的に測定する手段はなかった。
(Problems to be Solved by the Invention) However, in the laser heat treatment apparatus as described in Section 2, there is no means for directly measuring the temperature of the laser beam irradiated portion of the surface of the member to be heat treated.

すなわち、レーザ光照射部近傍に熱電対を設置すること
により照射部近傍の温度を測定することはできるが、照
射部そのものの温度をIf定することはできなかった。
That is, although it is possible to measure the temperature near the irradiation part by installing a thermocouple near the laser beam irradiation part, it has not been possible to determine If the temperature of the irradiation part itself.

また、レーザ光照射部が熱処理する部材の表面で移動す
るようなレーザ熱処理を行う場合には、照射部の移動と
ともに熱電対を移動させることは難しいので、照射部の
移動に従って照射部近傍の温度を測定することも困難で
あった。しかし、材料の精密な熱処理加工を実現するた
めには、レーザ光照射部の直接的な測温を可能とするレ
ーザ熱処理装置の実現が望まれている。
In addition, when performing laser heat treatment in which the laser beam irradiation part moves on the surface of the member to be heat treated, it is difficult to move the thermocouple along with the movement of the irradiation part, so the temperature near the irradiation part changes as the irradiation part moves. It was also difficult to measure. However, in order to realize precise heat treatment of materials, it is desired to realize a laser heat treatment apparatus that can directly measure the temperature of the laser beam irradiated part.

本発明は上記した従来技術の課題を解決するためになさ
れたもので、その目的とするところは、試料(熱処理す
る部材)表面のレーザ光照射部そのものの温度を測定し
、レーザ光照射部が移動する場合にもこの照射部の移動
とともに照射部の温度をl!FI定することができるレ
ーザ熱処理装置を提供することにある。
The present invention has been made to solve the above problems of the prior art, and its purpose is to measure the temperature of the laser beam irradiated part itself on the surface of the sample (member to be heat treated), and to measure the temperature of the laser beam irradiated part itself. Even when moving, the temperature of the irradiation part is changed as the irradiation part moves! An object of the present invention is to provide a laser heat treatment apparatus that can determine FI.

[発明の構成] (課題を解決するための手段) 上記目的を達成するために、本発明にあっては、レーザ
光を試料表面に照射して試料表面を加熱処理するための
レーザ光発生手段を有するレーザ熱処理装置において、 前記レーザ光照射時に試料表面のレーザ光照射部から発
生する散乱線を分光する分光手段と、該分光手段により
得られる散乱線のスペクトルから該散乱線の周波数及び
強度を求め、この周波数及び強度を基にして前記レーザ
光照射部の温度を算出する温度算出手段とを備えて成る
ことを特徴とする。
[Structure of the Invention] (Means for Solving the Problems) In order to achieve the above object, the present invention provides a laser beam generating means for heat-treating the sample surface by irradiating the sample surface with a laser beam. A laser heat treatment apparatus comprising: a spectroscopy means for dispersing the scattered rays generated from the laser beam irradiated portion of the sample surface during the laser beam irradiation; and a spectroscopy means for determining the frequency and intensity of the scattered rays from the spectrum of the scattered rays obtained by the spectroscopic means. and temperature calculation means for calculating the temperature of the laser beam irradiation section based on the frequency and intensity.

(作用) 上記構成を有する本発明のレーザ熱処理装置において、
まず、レーザ光発生手段により試料表面にレーザ光を照
射すると、試料表面のレーザ光照射部から散乱線として
レイリー線、ストークス線及びアンチストークス線が発
生する。これらの散乱線は分光手段に入射して分光され
、温度算出手段はこの分光器により得られるスペクトル
からストークス線及びアンチストークス線の周波数及び
強度を求める。
(Function) In the laser heat treatment apparatus of the present invention having the above configuration,
First, when a laser beam is irradiated onto a sample surface by a laser beam generating means, Rayleigh lines, Stokes lines, and anti-Stokes lines are generated as scattered rays from the laser beam irradiated portion of the sample surface. These scattered rays enter a spectrometer and are separated into spectra, and the temperature calculation means calculates the frequencies and intensities of the Stokes lines and anti-Stokes lines from the spectra obtained by the spectrometer.

ここで、ストークス線及びアンチストークス線のピーク
強度(Is、Ias)の比は、レイリー線からのストー
クス線及びアンチストークス線のエネルギー差を五Wと
すれば、次式で与えられる。
Here, the ratio of the peak intensities (Is, Ias) of the Stokes line and the anti-Stokes line is given by the following equation, assuming that the energy difference between the Stokes line and the anti-Stokes line from the Rayleigh line is 5 W.

・・・(1) (1)式におけるWs、Wasはそれぞれストークス線
...(1) In equation (1), Ws and Was are each Stokes lines.

アンチストークス線の周波数、kはボルツマン定数、T
は光散乱部すなわちレーザ光照射部の温度である。
The frequency of the anti-Stokes line, k is Boltzmann's constant, T
is the temperature of the light scattering section, that is, the laser beam irradiation section.

ストークス線、アンチストークス線の周波数及び強度(
Ws 、 Was、  ■s、Ias)は上記したよう
に分光手段及び温度算出手段により得られるので、温度
算出手段は得られたWs 、 Was、  I s 。
Frequency and intensity of Stokes lines and anti-Stokes lines (
Since Ws, Was, ■s, Ias) are obtained by the spectroscopy means and temperature calculation means as described above, the temperature calculation means obtains the obtained Ws, Was, Is.

I asの値を上記(+)式に代入することにより、レ
ーザ光照射部の温度Tを算出することができる。
By substituting the value of I as into the above equation (+), the temperature T of the laser beam irradiation section can be calculated.

従って、レーザ光照射部近傍に熱電対等の温度検知手段
を設けることなく、照射部そのものの温度を測定するこ
とができ、また、レーザ光照射部が試料表面で移動する
場合にも、照射部の移動とともに散乱線を測定すること
は照射部近傍で熱電対等を移動させる場合に比べて比較
的容品なので、照射部の移動とともにこの照射部の温度
を測定することも可能となる。
Therefore, the temperature of the irradiation section itself can be measured without providing a temperature detection means such as a thermocouple near the laser beam irradiation section, and even when the laser beam irradiation section moves on the sample surface, the temperature of the irradiation section can be measured. Measuring the scattered radiation as the irradiation part moves is relatively simpler than moving a thermocouple or the like near the irradiation part, so it is also possible to measure the temperature of the irradiation part as the irradiation part moves.

(実施例) 以下に、本発明の実施例を図に基づいて説明する。第1
図は本発明の一実施例のレーザ熱処理装置の構成を示す
説明図である。
(Example) Below, an example of the present invention will be described based on the drawings. 1st
The figure is an explanatory diagram showing the configuration of a laser heat treatment apparatus according to an embodiment of the present invention.

図においてこのレーザ熱処理装置f1は、概略試料2表
面にレーザ光を照射して試料2表面を加熱処理するため
のレーザ光発生手段としてのレーザ発振器3と、レーザ
光照射時に試料2表面のレーザ光照射部2aから発生す
る散乱線を分光する分光手段としての分光器4と、分光
器4により得られる散乱線のスペクトルから散乱線の周
波数及び強度を求め、この周波数及び強度を基にしてレ
ーザ光照射部2aの温度を算出する温度算出手段として
のコンピュータ5とから成る。
In the figure, this laser heat treatment apparatus f1 generally includes a laser oscillator 3 as a laser beam generating means for heating the surface of the sample 2 by irradiating the surface of the sample 2 with a laser beam, and a laser beam emitted from the surface of the sample 2 during laser beam irradiation. The frequency and intensity of the scattered rays are determined from the spectrum of the scattered rays obtained by the spectroscope 4 as a spectroscopy means for dispersing the scattered rays generated from the irradiation part 2a, and the laser beam is generated based on the frequency and intensity. The computer 5 serves as a temperature calculation means for calculating the temperature of the irradiation section 2a.

分光器4はレーザ発振器3から発生するレーザ光の波長
領域の光を分光する分光器であり、分光器4に散乱線が
入射する入射面側にはスリット6が設けられている。ま
た、分光器4の出力は電気信号として増幅器7及びイン
ターフェイス8を介してコンピュータ5に入力されるよ
うになっている。
The spectrometer 4 is a spectrometer that separates light in the wavelength range of the laser beam generated from the laser oscillator 3, and a slit 6 is provided on the side of the entrance surface where the scattered radiation enters the spectrometer 4. Further, the output of the spectrometer 4 is input as an electrical signal to the computer 5 via an amplifier 7 and an interface 8.

例えば、レーザ発振器3から発生した周波数WOのレー
ザ光10が試料2表面に照射されると、このレーザ光照
射部2aから発生した散乱線11がスリット6を介して
分光器4に入射する。分光器4はこの散乱線11を分光
して得た散乱線11のスペクトルを、電気信号として増
幅器7、インターフェイス8を介してコンピュータ5に
送る。
For example, when the surface of the sample 2 is irradiated with a laser beam 10 of frequency WO generated from the laser oscillator 3, scattered rays 11 generated from the laser beam irradiation section 2a enter the spectrometer 4 through the slit 6. The spectrometer 4 spectrally spectrally disperses the scattered radiation 11 and sends the spectrum of the scattered radiation 11 to the computer 5 as an electrical signal via an amplifier 7 and an interface 8.

第2図は分光器4で測定される散乱線11のスペクトル
の一例を示しており、同図より理解されるように、熱処
理されるべき試料2のフォノン(エネルギーtiw)に
基ずくビークが、エネルギーtWoを持つレイリー散乱
線Cの両側に現れる。図中低エネルギー側に現れるビー
クAがストーク線であり、高エネルギー側に現れるビー
クBがアンチストークス線である。コンピュータ5は、
このスペクトルから上記レイリー線Cの周波数Wo 。
FIG. 2 shows an example of the spectrum of the scattered radiation 11 measured by the spectrometer 4. As can be understood from the figure, the peak based on the phonons (energy tiw) of the sample 2 to be heat treated is They appear on both sides of the Rayleigh scattered ray C with energy tWo. In the figure, beak A appearing on the low energy side is a Stokes line, and beak B appearing on the high energy side is an anti-Stokes line. The computer 5 is
From this spectrum, the frequency Wo of the Rayleigh line C is determined.

ビークAとビークBのビーク強度1s、Insとその周
波数Ws 、 Wasを求める。
The peak intensities 1s and Ins of beak A and beak B and their frequencies Ws and Was are determined.

ここで、前記(+)式を変形してレーザ光照射部の温度
Tを求める式を導くと次のようになる。
Here, when the above-mentioned equation (+) is modified to derive an equation for determining the temperature T of the laser beam irradiation part, the following is obtained.

・・・(2) すなわち、コンピュータ5により、上記スペクトルから
得られた周波数W s 、 W as、周波数1 s、
 I as。
...(2) That is, the frequencies W s , W as , the frequency 1 s, obtained from the spectrum by the computer 5,
I as.

及びレイリー線の周波数Woとストークス線、アンチス
トークス線の周波数Ws、Wasとから得られるレイリ
ー線からのストークス線、アンチストークス線のエネル
ギー差′FXWが(2)式に代入されて、レーザ光照射
部2aの温度Tが算出される。
The energy difference 'FXW between the Stokes line and the anti-Stokes line from the Rayleigh line obtained from the frequency Wo of the Rayleigh line and the frequencies Ws and Was of the Stokes line and anti-Stokes line is substituted into equation (2), and the laser beam irradiation is performed. The temperature T of the portion 2a is calculated.

次に、本実施例を具体的に説明する。Next, this example will be explained in detail.

まず、レーザ発振器3として波長5145人のレーザ光
を発生するアルゴン・イオンレーザを用い、試料2とし
てシリコンウェファにダイヤモンド膜を被覆したものを
使用して、この試料2にレーザ光を照射した。このとき
レーザ光照射部2aから発生する散乱線を分光器4によ
り分光したところ、そのスペクトルは室温で1334c
v’近傍にストークス線を示した。また、試料2を加熱
し続けると1334cm−’のピーク点すなわちフォノ
ン・エネルギーはわずかながら低エネルギー側にシフト
する傾向が見られた。そのため正確に散乱線のエネルギ
ー及び強度を測定した。
First, an argon ion laser that generates laser light with a wavelength of 5145 wavelengths was used as the laser oscillator 3, and a silicon wafer coated with a diamond film was used as the sample 2, and the sample 2 was irradiated with laser light. At this time, when the scattered rays generated from the laser beam irradiation part 2a were analyzed by the spectrometer 4, the spectrum was 1334c at room temperature.
A Stokes line is shown near v'. Further, as Sample 2 was continued to be heated, the peak point at 1334 cm-', that is, the phonon energy, tended to shift slightly to the lower energy side. Therefore, we accurately measured the energy and intensity of the scattered radiation.

そして、このスペクトルからコンピュータ5によりレイ
リー線の周波数Wo 、  ストークス線、アンチスト
ークス線の周波数及びピーク強度W s 、 Was、
  Is、Iasを求め、上記したように(2)式を用
いてレーザ光照射部2aの温度Tを算出した。また、比
較のために、できる限りレーザ光照射部2a近傍に設置
した熱電対によりレーザ光照射部2a近傍の温度を測定
した。第3図はこのようにして得られた温度Tと、スト
ークス線、アンチストークス線のピーク強度比R(Is
/Ias)との関係を示す図である。図中実線は上記(
2)式から得られる特性曲線、丸印の部分は熱電対によ
り得られた測定値を示す。同図かられかるように、(2
)式から得られる特性曲線と熱電対によるll?l定値
はほぼ一致した。
Then, from this spectrum, the computer 5 calculates the Rayleigh line frequency Wo, the Stokes line, the anti-Stokes line frequencies and peak intensities Ws, Was,
Is and Ias were determined, and the temperature T of the laser beam irradiation section 2a was calculated using equation (2) as described above. For comparison, the temperature near the laser beam irradiation section 2a was measured using a thermocouple installed as close as possible to the laser beam irradiation section 2a. Figure 3 shows the temperature T obtained in this way and the peak intensity ratio R (Is
/Ias). The solid line in the figure is above (
2) In the characteristic curve obtained from the formula, the circled portion indicates the measured value obtained by the thermocouple. As you can see from the same figure, (2
) and the characteristic curve obtained from the equation ll? by the thermocouple? The l constant values almost matched.

このように本実施例によれば、レーザ光照射部2a近傍
に熱電対の温度検知手段を設けることになく、試料2a
に加熱処理用のレーザ光以外何らの作用を与えずに、レ
ーザ光照射部2aそのものの温度を絶対温度として極め
て正確に測定することが可能となる。レーザ光照射部2
8が試料2表面で移動するような場合には、レーザ光照
射部2aの移動とともに分光器4の散乱線入射面を移動
させる等の方法を用いて散乱線を分光することにより、
レーザ光照射部2aの移動に従ってこの温度Tを算出す
ることが可能である。
In this way, according to this embodiment, the sample 2a is
It becomes possible to extremely accurately measure the temperature of the laser beam irradiated section 2a itself as an absolute temperature without applying any effect other than the laser beam for heat treatment. Laser light irradiation section 2
8 moves on the surface of the sample 2, by dispersing the scattered rays using a method such as moving the scattered ray incident surface of the spectrometer 4 along with the movement of the laser beam irradiation part 2a,
It is possible to calculate this temperature T according to the movement of the laser beam irradiation section 2a.

また、上記実施例において、コンピュータ5で得られた
温度Tのデータをレーザ発振器3の制御部(図示せず)
にフィードバックさせて、レーザ光照射部2aの温度に
応じてレーザ発振器3にょるレーザ光照射を制御するこ
とも可能である。
In the above embodiment, the temperature T data obtained by the computer 5 is sent to the control section (not shown) of the laser oscillator 3.
It is also possible to control the laser beam irradiation by the laser oscillator 3 according to the temperature of the laser beam irradiation section 2a by feeding back the temperature.

本実施例装置を用いれば、レーザ光照射部そのものの温
度を正確に測定して、高精度でレーザ熱処理加工を行う
ことができる。例えば、金属表面の焼入等の硬化1合金
化、クラツデイング、グレージング等の加熱表面処理を
行う場合には、レーザ光照射部そのものの温度が所定範
囲内にあるように監視して、高精度で加熱処理を行うこ
とができる。
By using the apparatus of this embodiment, it is possible to accurately measure the temperature of the laser beam irradiation part itself and perform laser heat treatment with high precision. For example, when performing heating surface treatments such as hardening, alloying, cladding, and glazing on metal surfaces, the temperature of the laser beam irradiation part itself must be monitored to ensure that it is within a predetermined range. Heat treatment can be performed.

また、有機物、半導体、セラミックス等の非金属にレー
ザによる加熱加工処理を行う場合にも、レーザ光照射部
そのものを正確に測温することにより、高精度で加熱処
理を行うことができる。例えば、A!LNセラミックス
にレーザスクライブ等のレーザ加]二処理を行った後セ
ラミックス表面に金属膜の形成を行う場合には、レーザ
光が照射された部分が金属化してこの部分にめっき膜が
付着することが多いという問題があるが、レーザ光が照
射された部分が金属化するか否かはそのときのレーザ光
照射部の温度に微妙に左右されることがわかっている。
Furthermore, when heat processing is performed on non-metals such as organic substances, semiconductors, and ceramics using a laser, the heat processing can be performed with high precision by accurately measuring the temperature of the laser beam irradiation section itself. For example, A! When forming a metal film on the ceramic surface after performing two treatments such as laser scribing on LN ceramics, the part irradiated with the laser light may become metallized and a plating film may adhere to this part. Although there is a problem that there are many cases, it is known that whether or not the part irradiated with laser light becomes metallized depends slightly on the temperature of the part irradiated with laser light at that time.

すなわち、このような場合に本実施例装置を用いてレー
ザ光照射部そのものの温度を正確に測定することにより
、レーザ光照射時の条件を調整してAiN表面の金属化
を防ぎ、良好な膜形成を行うことが可能となる。
In other words, in such a case, by accurately measuring the temperature of the laser beam irradiation part itself using the device of this embodiment, the conditions during laser beam irradiation can be adjusted to prevent metalization of the AiN surface and to form a good film. It becomes possible to perform the formation.

なお、本発明は上記実施例に限定されるものではなく種
々変形実施が可能である。例えば上記実施例においては
ヒートモードのレーザ熱処理装置を例にとったが、フォ
トンモードにより試料の加工、処理を行うレーザ加工・
処理装置も適用可能である。
It should be noted that the present invention is not limited to the above-mentioned embodiments, and various modifications can be made. For example, in the above embodiment, a heat mode laser heat treatment device was used as an example, but a laser processing device that processes and processes a sample in a photon mode
Processing devices are also applicable.

[発明の効果] 本発明のレーザ熱処理装置は以上の構成及び作用を有す
るもので、レーザ光照射部近傍に熱電対等の温度検知手
段を設けることなく、この照射部そのものの温度を測定
することが可能となり、また、レーザ光照射部が試料表
面で移動する場合にも、この照射部の移動とともに照射
部の温度を測定することが可能となる。
[Effects of the Invention] The laser heat treatment apparatus of the present invention has the above-described configuration and function, and can measure the temperature of the laser beam irradiation section itself without providing a temperature detection means such as a thermocouple near the laser beam irradiation section. Furthermore, even when the laser beam irradiation section moves on the sample surface, it becomes possible to measure the temperature of the irradiation section as the irradiation section moves.

従って、本発明装置を用いて金属の表面処理等の加熱処
理や非金属の加熱加工処理を行えば、処理時のレーザ光
照射部そのものの温度を正確にIll定して、高精度で
レーザ熱処理を行うことができ、その工業的価値は極め
て大である。
Therefore, if heat treatment such as surface treatment of metals or heat processing of non-metals is performed using the apparatus of the present invention, the temperature of the laser beam irradiation part itself during treatment can be accurately determined, and the laser heat treatment can be performed with high precision. can be carried out, and its industrial value is extremely large.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例のレーザ熱処理装置の構成を
概略的に示す説明図、第2図は同実施例で得られる散乱
線のスペクトルの一例を示す図、第3図は同実施例で得
られたレーザ光照射部の温度とストークス線、アンチス
トークス線のピーク強度比との関係を示す図である。 1・・・レーザ熱処理装置 2・・・試料 2a・・・レーザ光照射部 3・・・レーザ発振器(レーザ光発生手段)4・・・分
光器 (分光手段) 5・・・コンピュータ (温度算出手段)
FIG. 1 is an explanatory diagram schematically showing the configuration of a laser heat treatment apparatus according to an embodiment of the present invention, FIG. 2 is a diagram showing an example of the spectrum of scattered rays obtained in the same embodiment, and FIG. FIG. 7 is a diagram showing the relationship between the temperature of the laser beam irradiation part and the peak intensity ratio of the Stokes line and the anti-Stokes line obtained in an example. 1... Laser heat treatment apparatus 2... Sample 2a... Laser light irradiation section 3... Laser oscillator (laser light generation means) 4... Spectrometer (spectroscopy means) 5... Computer (temperature calculation) means)

Claims (1)

【特許請求の範囲】 レーザ光を試料表面に照射して試料表面を加熱処理する
ためのレーザ光発生手段を有するレーザ熱処理装置にお
いて、 前記レーザ光照射時に試料表面のレーザ光照射部から発
生する散乱線を分光する分光手段と、該分光手段により
得られる散乱線のスペクトルから該散乱線の周波数及び
強度を求め、この周波数及び強度を基にして前記レーザ
光照射部の温度を算出する温度算出手段とを備えて成る
ことを特徴とするレーザ熱処理装置。
[Scope of Claims] In a laser heat treatment apparatus having a laser beam generation means for heating the sample surface by irradiating the sample surface with laser light, the scattering generated from the laser beam irradiated portion of the sample surface during the laser beam irradiation is provided. A spectroscopic means for separating the rays into spectra, and a temperature calculation means for determining the frequency and intensity of the scattered rays from the spectrum of the scattered rays obtained by the spectroscopic means, and calculating the temperature of the laser beam irradiation section based on the frequency and intensity. A laser heat treatment device comprising:
JP2078858A 1990-03-29 1990-03-29 Laser beam heat treatment equipment Pending JPH03281074A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2078858A JPH03281074A (en) 1990-03-29 1990-03-29 Laser beam heat treatment equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2078858A JPH03281074A (en) 1990-03-29 1990-03-29 Laser beam heat treatment equipment

Publications (1)

Publication Number Publication Date
JPH03281074A true JPH03281074A (en) 1991-12-11

Family

ID=13673529

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2078858A Pending JPH03281074A (en) 1990-03-29 1990-03-29 Laser beam heat treatment equipment

Country Status (1)

Country Link
JP (1) JPH03281074A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000015864A1 (en) * 1998-09-11 2000-03-23 Japan Science And Technology Corporation Laser heater

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000015864A1 (en) * 1998-09-11 2000-03-23 Japan Science And Technology Corporation Laser heater
US6617539B1 (en) 1998-09-11 2003-09-09 Japan Science And Technology Kawaguchi Laser heating apparatus

Similar Documents

Publication Publication Date Title
DE69231396T2 (en) Method and device for precise temperature measurement
CA1220643A (en) Method of laser emission spectroscopic analysis of steel and apparatus therefor
US8942927B2 (en) System and method for quantitative analysis of the elemental composition of a material by laser-induced breakdown spectroscopy (LIBS)
US5812261A (en) Method and device for measuring the thickness of opaque and transparent films
Sibillano et al. Spectroscopic monitoring of penetration depth in CO2 Nd: YAG and fiber laser welding processes
Garcıa-Ayuso et al. Characterization of jewellery products by laser-induced breakdown spectroscopy
Cenker et al. Determination of small soot particles in the presence of large ones from time-resolved laser-induced incandescence
JPH0682098B2 (en) Stress evaluation device
CN109030466A (en) A kind of laser breakdown spectral measurement system based on beam shaping
Nagy et al. Depth profiling of galvanoaluminium–nickel coatings on steel by UV-and VIS-LIBS
Agresti et al. Depth-dependent calibration for quantitative elemental depth profiling of copper alloys using laser-induced plasma spectroscopy
US11906434B2 (en) Raman spectroscopy based measurement system
JP2009288068A (en) Analyzing method and analyzer
CN108318459A (en) Pulsed Laser induces the measuring device and measuring method of photoluminescence spectrum
JPH03216526A (en) Method of measuring temperature of semiconductor material by light transmission factor
Lee et al. Direct and rapid determination of potassium in standard solid glasses by excimer laser ablation plasma atomic emission spectrometry
JPH03281074A (en) Laser beam heat treatment equipment
Haq et al. Qualitative and quantitative discrimination of major elements in Chitosan (natural polymer) using laser induced breakdown spectroscopy
JPS62112322A (en) Laser annealing device
JPH10267845A (en) At-site analyzer for sample surface and controller of form of oxide film on steel plate
Voropay et al. Kinetics of alloy emission spectra with double-pulse laser ablation
JP2001249050A (en) Temperature-measuring apparatus, film-forming apparatus, etching apparatus, method for measuring temperature, and etching method
JPH07318426A (en) Temperature measuring device by raman scattering and method therefor
CN205301176U (en) Measure area temperature real -time control system based on raman scattering
JPS63312649A (en) Simultaneously measuring method for impurity level and carrier life in semiconductor