JPH03280469A - Close contact type image sensor - Google Patents

Close contact type image sensor

Info

Publication number
JPH03280469A
JPH03280469A JP2082581A JP8258190A JPH03280469A JP H03280469 A JPH03280469 A JP H03280469A JP 2082581 A JP2082581 A JP 2082581A JP 8258190 A JP8258190 A JP 8258190A JP H03280469 A JPH03280469 A JP H03280469A
Authority
JP
Japan
Prior art keywords
light
conversion layer
photoelectric conversion
window
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2082581A
Other languages
Japanese (ja)
Inventor
Keiichi Yoshida
恵一 吉田
Satoru Murakami
悟 村上
Takeshi Kuwata
桑田 武志
Akihiro Koga
古賀 章裕
Tsutomu Maruyama
勉 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanegafuchi Chemical Industry Co Ltd
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Kanegafuchi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd, Kanegafuchi Chemical Industry Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2082581A priority Critical patent/JPH03280469A/en
Publication of JPH03280469A publication Critical patent/JPH03280469A/en
Pending legal-status Critical Current

Links

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Facsimile Heads (AREA)

Abstract

PURPOSE:To enable a manuscript dweetly under a photoelectrical conversion layer to be brightly illuminated so as to improve a sensor in sensitivity by a method wherein an incident window through which illuminating light is made to impinge is provided to an optical shielding layer, and a light transmitting window larger than the incident window concerned is provided to the photoelectrical conversion layer overlapping the incident window. CONSTITUTION:A photoelectric conversion layer 50 and an optical shielding layer 40 covering the layer 50 are successively provided to the face of an EMA type FAP 10 opposite to a manuscript through the intermediary of a light transmitting body, and an incident window 46 through which illuminating light is made to impinge is provided to the optical shielding layer 40, a light transmitting window larger than the incident window concerned is provided to the photoelectric conversion layer 50 overlapping the incident window 46. The illuminating light incident window 46 provided to the optical shielding layer 40 and the light transmitting window 56 provided to the photoelectric conversion layer are formed into rectangular shapes whose long sides extend in an auxiliary scanning direction. The area of the illuminating light incident window 46 is determined depending on the balance between the volume of incident light and the sensitivity of a sensor, and it is adequate that the short side of the window 46 is set as long as 20-60% of the width of a photoelectric conversion layer photodetective part 54 in a primary scanning direction, and the long side is set as long as 70-95% of the width of the photodetective part 54 in an auxiliary scanning direction.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は光フアイバーアレイプレートを光学系として用
いた密着型イメージセンサに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a contact type image sensor using an optical fiber array plate as an optical system.

[従来の技術と発明が解決しようとする課1[1i1先
フアイバーアレイプレート(以下FAPという。)とは
、光ファイバーを多数本束ねて導光部とし、これをベー
ス材で挟込んだものをいう。光吸収体を被覆した光ファ
イバーを使用したものをEMA型、光吸収体を被覆しな
い光ファイバーを使用したものをCLEAR型と呼ぶ。
[Issue 1 that the prior art and the invention are trying to solve [1i1 Fiber Array Plate (hereinafter referred to as FAP) is a light guide made by bundling a large number of optical fibers, which is sandwiched between base materials. . The type that uses an optical fiber coated with a light absorber is called the EMA type, and the type that uses an optical fiber that is not coated with a light absorber is called the CLEAR type.

CLEAR型のFAPは、光フアイバー内の臨界角を越
える光が屈折しながら隣接光ファイバー内に侵入できる
点でEMA型と異なる。
The CLEAR type FAP differs from the EMA type in that light exceeding a critical angle within the optical fiber can be refracted and enter an adjacent optical fiber.

さて、従来の光学縮小型イメージセンサは、結像レンズ
系が焦点距離を有することから大きな光路長を必要とし
、このセンサを組み込むファクシミリ装置等の小型化を
阻む一因となっていた。そのため、レンズ系を必要とし
ない密着型イメージセンサの開発が望まれており、単な
る導光系である上記FAPの利用が検討されている。
Conventional optical reduction type image sensors require a large optical path length because the imaging lens system has a focal length, which has been one of the reasons for preventing miniaturization of facsimile machines and the like in which this sensor is incorporated. Therefore, it is desired to develop a contact type image sensor that does not require a lens system, and the use of the above-mentioned FAP, which is a simple light guide system, is being considered.

FAPを用いた密着型イメージセンサの一つが特開昭6
4−41368号公報に開示されている。このセンサは
、CLEAR型FAPの原稿側とは反対側の面に光電変
換層及びこの光電変換層を完全に覆う遮光層を順次設け
るとともに、原稿とFAPとの間に一定の間隙を設けた
ものである。原稿読取りのための照明光は、遮光層側か
らイメージセンサに対して斜めに入射する。
One of the close-contact image sensors using FAP was published in Japanese Patent Application Laid-open No. 6
It is disclosed in Japanese Patent No. 4-41368. This sensor has a photoelectric conversion layer and a light shielding layer that completely covers the photoelectric conversion layer on the opposite side of the document side of the CLEAR type FAP, and a certain gap is provided between the document and the FAP. It is. Illumination light for reading a document is obliquely incident on the image sensor from the light shielding layer side.

この構成の密着型イメージセンサでは光電変換層への照
明光の直接入射を防止するために光電変換層を完全に覆
う遮光層を設けているので、照明光の斜め入射を採用し
ても遮光層の影が原稿上にできてしまうことが避けられ
ず、FAPを介した光電変換層直下の原稿部分すなわち
読取ろうとする原稿部分で十分な照明が得られない。ま
た、FAP中の光ファイバーの原稿側端部を斜めカット
することによって原稿とFAPとの間の間隙を実現する
場合には、光ファイバーの加工がイメージセンサのコス
トアップ要因になる。
In a contact image sensor with this configuration, in order to prevent illumination light from directly entering the photoelectric conversion layer, a light shielding layer is provided that completely covers the photoelectric conversion layer, so even if oblique incidence of illumination light is adopted, the light shielding layer It is unavoidable that a shadow is formed on the original, and sufficient illumination cannot be obtained in the part of the original directly under the photoelectric conversion layer via the FAP, that is, the part of the original to be read. Further, in the case where a gap between the document and the FAP is realized by diagonally cutting the document-side end of the optical fiber in the FAP, the processing of the optical fiber increases the cost of the image sensor.

一方、第107回画像電子学会研究会講演予稿第13頁
〜第18頁「光フアイバーアレイを用いたa−5i:H
密着型イメージセンサ」(藤原正弘はか、1988年1
1月4日)に示される密着型イメージセンサは、CLE
AR型FAPの原稿側とは反対側の面に小面積のEMA
型FAPを介して光電変換層を設けたものであり、光源
からやはり大きな角度で斜めに入射する照明光がCLE
AR型FAPを通して原稿に与えられる。
On the other hand, the 107th Institute of Image Electronics Engineers of Japan research conference proceedings, pages 13 to 18, ``a-5i:H using optical fiber array
"Contact Image Sensor" (Masahiro Fujiwara, 1988 1)
The contact image sensor shown on January 4th is CLE
A small area of EMA is placed on the opposite side of the AR type FAP from the document side.
A photoelectric conversion layer is provided through a type FAP, and the illumination light that enters obliquely from the light source at a large angle is CLE.
Provided to the manuscript through AR type FAP.

この構成の密着型イメージセンサでは、斜め入射する照
明光が原稿で反射して光電変換層に到達するまでにCL
EAR型FAP内において何度も隣接光ファイバー間で
屈折しなければならず、光減衰量が大きくなってしまう
。したがって、光電変換層直下の読取ろうとする原稿部
分から光電変換層に到達する光量がわずかになって、セ
ンサの感度が悪くなる。
In a contact image sensor with this configuration, obliquely incident illumination light is reflected by the original and reaches the photoelectric conversion layer.
In the EAR type FAP, the optical fiber must be bent many times between adjacent optical fibers, resulting in a large amount of optical attenuation. Therefore, the amount of light that reaches the photoelectric conversion layer from the portion of the document to be read directly below the photoelectric conversion layer becomes small, and the sensitivity of the sensor deteriorates.

本発明は、以上の点に鑑みてなされたものであって、原
稿面に対する照明光の垂直入射を可能にして光電変換層
直下の原稿部分全体を明るく照明することによりセンサ
感度を向上させた密着型イメージセンサを提供すること
を目的とする。
The present invention has been made in view of the above points, and is a close-contact method that improves sensor sensitivity by enabling vertical incidence of illumination light onto the document surface and brightly illuminating the entire document portion directly below the photoelectric conversion layer. The purpose is to provide a type image sensor.

C3題を解決するための手段] 本発明に係る密着型イメージセンサは、上記の課題を解
決するために、EMA型FAPの原稿側とは反対側の面
にCLEARluFAPや透明板等の透光体を介して光
電変換層及びこの光電変換層を覆う遮光層を順次設け、
遮光層に照明光の入射窓を設けるとともに、この入射窓
に重ねてこれより大きい光通過窓を光?tf変換層に設
けたものである。
Means for Solving Problem C3] In order to solve the above problems, the contact image sensor according to the present invention has a transparent material such as CLEARluFAP or a transparent plate on the surface of the EMA type FAP opposite to the document side. A photoelectric conversion layer and a light shielding layer covering this photoelectric conversion layer are sequentially provided through the
An incident window for illumination light is provided in the light shielding layer, and a larger light passing window is placed over the incident window to transmit light. This is provided in the tf conversion layer.

[作 用] 原稿を照明するための光源は、遮光層直上に配置される
。この光源から発する照明光は、原稿面に対してほぼ垂
直に入射し、遮光層の照明光入射窓及び光電変換層の光
通過窓を順次通して透光体に入る。透光体に入る照明光
ビームは入射窓とほぼ同じ形状寸法であるが、透光体中
で光の拡散が起こるために、この透光体から出る光ビー
ムは光電変換層の外形にほぼ等しい程麿まで拡がってい
る。拡げられた光ビームは、EMA型FAP内の光ファ
イバーを通して原稿面に達し、これを照明する。したが
って、光電変換層直下の原稿部分全体が明るく照明され
る。
[Function] A light source for illuminating the original is placed directly above the light shielding layer. Illumination light emitted from this light source enters the light-transmitting body through the illumination light entrance window of the light shielding layer and the light passage window of the photoelectric conversion layer in sequence. The illumination light beam entering the light-transmitting body has approximately the same geometry as the entrance window, but due to the diffusion of light within the light-transmitting body, the light beam exiting from this light-transmitting body is approximately equal to the outer shape of the photoelectric conversion layer. It has spread to Hodomaro. The expanded light beam reaches the document surface through the optical fiber in the EMA type FAP and illuminates it. Therefore, the entire document portion immediately below the photoelectric conversion layer is brightly illuminated.

原稿で乱反射した光は、EMA型FAP内の光ファイバ
ー及び透光体を逆に通って充電変換層に入射し、ここで
電気信号に変換される。
The light diffusely reflected by the original passes through the optical fiber and the light-transmitting body in the EMA type FAP and enters the charge conversion layer, where it is converted into an electrical signal.

EMAIJIFAPと光電変換層との間に設けられる透
光体としてCLEAR型FAPを使用し、光電変換層の
光通過窓を通る照明光をこのCLEAR型FAPの光フ
ァイバーを通してEMA型FAPに導く構成を採用すれ
ば、透光体内部での余分な光拡散の防止が容易になる。
A configuration is adopted in which a CLEAR type FAP is used as a light transmitting body provided between the EMAIJIFAP and the photoelectric conversion layer, and the illumination light passing through the light passing window of the photoelectric conversion layer is guided to the EMA type FAP through the optical fiber of the CLEAR type FAP. For example, it becomes easy to prevent excessive light diffusion inside the transparent body.

[実施例〕 第1図は、本発明の実施例に係る密着型イメ−ジセンサ
の拡大断面図である。
[Embodiment] FIG. 1 is an enlarged sectional view of a contact type image sensor according to an embodiment of the present invention.

同図に示すEMA型F A P 10は、光吸収体を被
覆した多数の光ファイバーを乎行に集合させて形成した
1、4mm幅の導光部12をガラス製のベース部18.
18で挟込んで加熱圧融着したものであり、光軸方向の
厚みは1.Ommである。
The EMA type F A P 10 shown in the figure has a light guide section 12 with a width of 1.4 mm formed by gathering a large number of optical fibers coated with a light absorber in a row, and a base section 18 made of glass.
The thickness in the optical axis direction is 1. It is Omm.

このEMA!!FAPIOの構造の詳細を第2図〜第4
図に示す。導光部12はマルチ光ファイバー13の3層
集合体であり、各マルチ光ファイバー13は多数のシン
グル光ファイバー14の集合体である。シングル光ファ
イバー14は、線径10μm〜25μm1開口数0.3
5〜0.90の多成分系ステップインデックス型ガラス
ファイバーであり、コア15のまわりにクラッド1Bを
配し、更にクラッド1Bの周囲を光吸収体I7で覆った
ものである。
This EMA! ! Details of the structure of FAPIO are shown in Figures 2 to 4.
As shown in the figure. The light guiding section 12 is a three-layer assembly of multi-optical fibers 13, and each multi-optical fiber 13 is an assembly of a large number of single optical fibers 14. The single optical fiber 14 has a wire diameter of 10 μm to 25 μm and a numerical aperture of 0.3.
It is a multi-component step index type glass fiber of 5 to 0.90, with a cladding 1B arranged around a core 15, and a light absorber I7 surrounding the cladding 1B.

第1図に示すようにEMA型FAPの一方の面に積層さ
れるCLEAR型F A P 20は、上記シングル光
ファイバー14から光吸収体17を除去したものを多数
本束ねて導光部22とし、これをペース部28.28で
挟込んだものである。CLEAR’42FAP20にお
いて導光部22の幅は前記EMA型の場合と同じ1.4
mmであって、両FAPの導光部12.22がほぼ完全
に重ねられる。
As shown in FIG. 1, the CLEAR type FAP 20, which is laminated on one side of the EMA type FAP, is made by bundling a large number of single optical fibers 14 from which the light absorber 17 has been removed and forming a light guide section 22. This is sandwiched between pace parts 28 and 28. In CLEAR'42FAP20, the width of the light guide part 22 is 1.4, which is the same as in the EMA type.
mm, and the light guide portions 12.22 of both FAPs are almost completely overlapped.

ただし、CLEAR型F A P 20の光軸方向の厚
みは0.5mm〜1.0mmの範囲で選択する。
However, the thickness of the CLEAR type F A P 20 in the optical axis direction is selected within the range of 0.5 mm to 1.0 mm.

一方、1.1mm厚のガラス製透明基板3oの一方の面
上に約500人の膜厚のC「からなる遮光層40が形成
されている。この遮光層4oは共通電極を兼ねるもので
あって、詳細形状を第5図に示す。ただし、同図では図
面を見やすくするために透明基板30を取去った状態を
描いている。遮光層40には一列に並んだ矩形の照明光
入射窓46がエツチングにより1mmあたり8個の密度
(ピッチ125μm)で形成されている。
On the other hand, a light-shielding layer 40 made of C" with a thickness of approximately 500 is formed on one surface of a 1.1-mm-thick transparent glass substrate 3o. This light-shielding layer 4o also serves as a common electrode. The detailed shape is shown in Fig. 5.However, in this figure, the transparent substrate 30 is removed to make the drawing easier to see.The light shielding layer 40 has rectangular illumination light incident windows arranged in a row. 46 are formed by etching at a density of 8 pieces per 1 mm (pitch 125 μm).

各入射窓46は窓配列方向の寸法(pl)が30μmで
あり、これに直交する辺の寸法(I2)が110μmで
ある。なお、共通電極を兼ねる遮光層40は、TiやA
11等の他の不透明金属で構成しても良い。
Each entrance window 46 has a dimension (pl) of 30 μm in the window arrangement direction, and a dimension (I2) of a side perpendicular to the window arrangement direction (pl) of 110 μm. Note that the light shielding layer 40 that also serves as a common electrode is made of Ti or A.
It may also be made of other opaque metals such as No. 11.

遮光層40の上には、光電変換層50としてアモルファ
スシリコン(a−Si)半導体層52と透明電極層53
とが全入射窓46の位置に重ねて順次形成されている。
On the light shielding layer 40, an amorphous silicon (a-Si) semiconductor layer 52 and a transparent electrode layer 53 are formed as a photoelectric conversion layer 50.
are sequentially formed overlapping the positions of the total incidence windows 46.

a−5i半導体層52はp / i/n構造であって、
膜厚が約8000人である。
The a-5i semiconductor layer 52 has a p/i/n structure,
The film thickness is approximately 8,000 people.

ただし、n / i / pの3層構造、p/i又はl
/pの2層構造、i/ショットキ構造等のうちいずれを
採用しても良い。透明電極層53はITOからなり、膜
厚が約1000人である。ITOに代えてS n 02
等の他の透明導電材料を使“用することもできる。この
光電変換層50は、エツチングにより遮光層40の照明
光入射窓46ごとに枠状に区画されている。このように
画素として区画された各光電変換層50は、矩形枠状の
受光部54と、この受光部から延出する接続部55とか
らなる。受光部54のほぼ中央に設けられた光通過窓5
6は、遮光層40の入射窓46より一回り大きい。この
受光部54の外形は、画素配列方向(前記入射窓配列方
向に一致する。以下、主走査方向という。)の寸法(L
l)が110μmであり、これに直交する方向(以下、
副走査方向という。)の寸法(L2)が125μmであ
る。
However, three-layer structure of n/i/p, p/i or l
Any of the /p two-layer structure, i/Schottky structure, etc. may be adopted. The transparent electrode layer 53 is made of ITO and has a thickness of approximately 1000 nm. S n 02 instead of ITO
It is also possible to use other transparent conductive materials such as . This photoelectric conversion layer 50 is partitioned into a frame shape by etching for each illumination light incident window 46 of the light shielding layer 40. In this way, the photoelectric conversion layer 50 is partitioned into pixels. Each photoelectric conversion layer 50 includes a rectangular frame-shaped light receiving section 54 and a connecting section 55 extending from the light receiving section.A light passing window 5 provided approximately at the center of the light receiving section 54
6 is one size larger than the entrance window 46 of the light shielding layer 40. The outer shape of the light receiving section 54 is the dimension (L
l) is 110 μm, and the direction perpendicular to this (hereinafter referred to as
This is called the sub-scanning direction. ) dimension (L2) is 125 μm.

約1.5μmの厚みのS iO2からなる透明絶縁層6
0が光電変換層50の光通過窓56及び遮光層40の照
明光入射窓46を埋尽くし、更に遮光層40の縁部を越
えて延出する。光電疫換層5oは、側面を含めてこの透
明絶縁層60で完全に覆われる。ただし、充電変換層接
続部55の位置には透明絶縁層60にコンタクトホール
B2がエツチングにより形成されており、透明電極層5
3の一部が露出している。S 102に代えてSi3N
4等の他の透明絶縁物を使用しても良い。
Transparent insulating layer 6 made of SiO2 with a thickness of about 1.5 μm
0 fills the light passing window 56 of the photoelectric conversion layer 50 and the illumination light incident window 46 of the light shielding layer 40 and further extends beyond the edge of the light shielding layer 40. The photovoltaic switching layer 5o is completely covered with this transparent insulating layer 60 including the side surfaces. However, a contact hole B2 is formed in the transparent insulating layer 60 by etching at the position of the charge conversion layer connection part 55, and the transparent electrode layer 5
Part 3 is exposed. Si3N instead of S102
Other transparent insulators such as No. 4 may also be used.

更に、充電変換層50ごとにCrとAlとの2層からな
る合わせて約1μmの厚みの個別電忰層70が外部接続
のために設けられている。各個別電極層70はコンタク
トホール62に入り込んでCr層が各透明電極層53に
接触して電気接続を達成する。なお、更に保護膜として
Si3N4を被覆しても良い。
Further, for each charge conversion layer 50, an individual electric conduction layer 70 made of two layers of Cr and Al and having a total thickness of approximately 1 μm is provided for external connection. Each individual electrode layer 70 enters the contact hole 62 and the Cr layer contacts each transparent electrode layer 53 to achieve electrical connection. Note that Si3N4 may be further coated as a protective film.

以上のようにして光電変換層50等が形成された透明基
板30は、第1図に示すように光電変換層50等をCL
EAR型F A P 20に対向させた姿勢で、透明な
紫外線硬化樹脂層80によりCLEAR型F A P 
20に接着される。この際、遮光層40の各入射窓46
及び光電変換層50の各光通過窓56は、中心軸が両F
AP導光部12.22の幅方向はぼ中央を通る。
As shown in FIG.
In a position facing the EAR type F A P 20, the CLEAR type F A P is
20. At this time, each entrance window 46 of the light shielding layer 40
The central axis of each light passing window 56 of the photoelectric conversion layer 50 is
The width direction of the AP light guide section 12.22 passes approximately through the center.

以上のとおり、本実施例に係る密着型イメージセンサは
、EMA型F A P 10の原稿側とは反対側の面に
透光体(CLEAR型F A P 20、紫外線硬化樹
脂層80及び透明絶縁層60)を介して光電変換層50
及びこの光電変換層50を覆う遮光層40を順次設け、
遮光層40に照明光の入射窓46を設けるとともに、こ
の入射窓4Bに重ねてこれより大きい光通過窓56を光
電変換層50に設けたものである。
As described above, the contact image sensor according to this embodiment has a light transmitting body (CLEAR type F A P 20, ultraviolet curing resin layer 80, and transparent insulating material) on the surface of the EMA type F A P 10 opposite to the document side. photoelectric conversion layer 50 via layer 60)
and sequentially providing a light shielding layer 40 covering this photoelectric conversion layer 50,
An incident window 46 for illumination light is provided in the light shielding layer 40, and a larger light passing window 56 is provided in the photoelectric conversion layer 50, overlapping this incident window 4B.

原稿PにEMA型F A P 10が密着させられる。The EMA type FAP 10 is brought into close contact with the original P.

この原稿Pを照明するための不図示の光源は、透明基板
30側において遮光層入射窓4Bの直上に配置される。
A light source (not shown) for illuminating the original P is arranged directly above the light shielding layer entrance window 4B on the transparent substrate 30 side.

この光源から発する照明光Bは、原稿Pの面に対してほ
ぼ垂直に入射し、透明U板30を透過して遮光層40の
入射窓4Bに入る。この照明光Bは、光電変換層50の
光通過窓5Bを通して透明絶縁層60、紫外線硬化樹脂
層80及びCLEAR12FAP20の導光部22から
なる透光体を通過した後に、EMA型F A P 10
の導光部12に入る。この際、透光体中で光の拡散が起
こるために、CLEAR型F A P 20の導光部2
2から出る光ビームは光電変換層50の受光部54の外
形にほぼ等しい程度まで拡がっている。この際、CLE
AR型F A P 20を使用しているので、余分な光
拡散の防止が容品であり、隣接光ファイバー間での屈折
透過回数は少なくて良い。拡げられた光ビームは、EM
A型F A P 10内の導光部12を構成する光ファ
イバー14に導かれて原稿Pに達し、これを照明する。
Illumination light B emitted from this light source enters the surface of the original P almost perpendicularly, passes through the transparent U plate 30, and enters the entrance window 4B of the light shielding layer 40. This illumination light B passes through the light passing window 5B of the photoelectric conversion layer 50 and passes through the transparent body consisting of the transparent insulating layer 60, the ultraviolet curing resin layer 80, and the light guide section 22 of the CLEAR12FAP20, and then passes through the EMA type FAP10.
The light enters the light guide section 12 of. At this time, since light is diffused in the transparent body, the light guide section 2 of the CLEAR type F A P 20
The light beam emitted from the photoelectric conversion layer 50 is spread to an extent almost equal to the outer shape of the light receiving portion 54 of the photoelectric conversion layer 50. At this time, CLE
Since AR type F A P 20 is used, unnecessary light diffusion can be prevented, and the number of refraction and transmission between adjacent optical fibers can be small. The expanded light beam is EM
The light is guided by the optical fiber 14 constituting the light guide section 12 in the A-type FAP 10 and reaches the document P, where it is illuminated.

したがって、光電変換層受光部54直下の原稿部分全体
が明るく照明される。原稿Pで乱反射した光は、EMA
型F A P 10の導光部12及び前記透光体を逆に
通って光電変換層50に入射し、a−Si半導体層52
で電気信号に変換される。個別電極層70は、各光電変
換層50からの信号取出電極として機能する。この際、
透明絶縁層BOは、共通電極層を兼ねる遮光層40と個
別電極層70との間の層間絶縁を達成するだけでなく、
a−8i半導体層52と透明電極層53とからなる光電
変換層50の側面リークを防止する。
Therefore, the entire document portion immediately below the photoelectric conversion layer light-receiving section 54 is brightly illuminated. The light diffusely reflected by the original P is the EMA
The light passes through the light guide portion 12 of the type F A P 10 and the light transmitting body in the opposite direction, enters the photoelectric conversion layer 50, and enters the a-Si semiconductor layer 52.
is converted into an electrical signal. The individual electrode layer 70 functions as a signal extraction electrode from each photoelectric conversion layer 50. On this occasion,
The transparent insulating layer BO not only achieves interlayer insulation between the light shielding layer 40, which also serves as a common electrode layer, and the individual electrode layer 70, but also
Side leakage of the photoelectric conversion layer 50 consisting of the a-8i semiconductor layer 52 and the transparent electrode layer 53 is prevented.

さて、本実施例では遮光層40の照明光入射窓46及び
光電変換層50の光通過窓56の形状を、副走査方向を
長辺とする矩形としている。入射窓46直下の原稿反射
光を有効利用するためには、光電変換層50の主走査方
向の幅を大きくするのが好ましい。つまり、照明光入射
窓4Bの面積は光量とセンサ感度との兼ね合いで決定さ
れるが、この窓46の短辺の寸法は光電変換層受光部5
4の主走査方向の幅の20%〜60%が適当であり、長
辺の寸法は、同受光部54の副走査方向の幅の70%〜
95%が適当である。
In this embodiment, the illumination light entrance window 46 of the light shielding layer 40 and the light passage window 56 of the photoelectric conversion layer 50 have a rectangular shape with the long side in the sub-scanning direction. In order to effectively utilize the light reflected from the original directly under the entrance window 46, it is preferable to increase the width of the photoelectric conversion layer 50 in the main scanning direction. In other words, the area of the illumination light entrance window 4B is determined by the balance between the amount of light and the sensor sensitivity, and the short side dimension of this window 46 is determined by the photoelectric conversion layer light receiving section 5.
Appropriately is 20% to 60% of the width of light receiving section 54 in the main scanning direction, and the long side dimension is 70% to 60% of the width of light receiving section 54 in the sub scanning direction.
95% is appropriate.

EMA型F A P 10とCLEAR型F A P 
20との光軸方向の厚み比率は、画素密度によって最適
値が異なる。画素密度の相違により光電変換層受光部5
4の寸法が異なり、光の拡がり許容範囲が異なるからで
ある。1mmあたりの画素数が8(画素密度8 dot
s/ m m )の場合には、1mm程度の厚みのEM
A型F A P 10に対してCLEAR型F A P
 20の厚みを前記のとおり0゜5mm〜1.Ommの
範囲とするが適当である。
EMA type F A P 10 and CLEAR type F A P
The optimum value of the thickness ratio with respect to 20 in the optical axis direction differs depending on the pixel density. Due to the difference in pixel density, the photoelectric conversion layer light receiving section 5
This is because the dimensions of 4 are different, and the permissible range of light spread is different. The number of pixels per 1 mm is 8 (pixel density 8 dots)
s/mm), EM with a thickness of about 1 mm
CLEAR type F A P for A type F A P 10
The thickness of 20 is 0.5 mm to 1.5 mm as described above. A range of 0 mm is appropriate.

画素密度が16 dots/ m mの場合には、1m
m程度の厚みのEMA型F A P 10に対してCL
EAR型F A P 20の厚みは0. ・2mm 〜
0.5mmの範囲で選択する。
1m when the pixel density is 16 dots/mm
CL for EMA type F A P 10 with a thickness of about m
The thickness of EAR type F A P 20 is 0.・2mm ~
Select within the range of 0.5mm.

EMA型F A P 10と原稿Pとは直接接しても良
いが、FAPの保護のため50μm程度の厚みのカバー
ガラスをEMA型F A P 10に貼付けても良い。
Although the EMA type F A P 10 and the original P may be in direct contact with each other, a cover glass having a thickness of about 50 μm may be attached to the EMA type F A P 10 to protect the FAP.

なお、両F A P 10,20の配置を逆にすると、
次の2つの理由から上記とは違って光電変換層50の背
面からの光入射が困難になる。
In addition, if the arrangement of both F A P 10, 20 is reversed,
Unlike the above, it becomes difficult for light to enter from the back side of the photoelectric conversion layer 50 for the following two reasons.

■照明光Bが入射窓46に対応するEMA型FAPIO
の狭い範囲だけを通過した後に原稿Pを照射するため、
原稿面の狭い範囲に照明光Bが集中しやす<、MTF 
(解像力)が悪化する。
■EMA type FAPIO where illumination light B corresponds to the entrance window 46
In order to irradiate the original P after passing through only a narrow range of
Illumination light B tends to concentrate in a narrow area on the document surface <, MTF
(resolution) deteriorates.

また、実際に欲しい光電変換層50直下の原稿部分から
の反射光が減って感度低下が生じる。
Furthermore, the amount of light reflected from the portion of the document directly below the photoelectric conversion layer 50 that is actually desired decreases, resulting in a decrease in sensitivity.

■CLEAR型F A P 20の介在によってEMA
型F A P 10と原稿Pとの間に間隙ができるため
、原稿反射光の逃げが多くなるだけでなく、隣接画素か
らの迷光が入りやすくなり、MTF悪化の原因となる。
■EMA through the intervention of CLEAR type F A P 20
Since there is a gap between the mold F A P 10 and the original P, not only does the reflected light from the original escape more, but also stray light from adjacent pixels tends to enter, which causes a deterioration of the MTF.

この対策としてCLEAR型F A P 10を薄くす
ることが考えられるが、前記■の問題と関連するために
最適化が難しい。
As a countermeasure to this problem, it is possible to make the CLEAR type F A P 10 thinner, but this is difficult to optimize because it is related to the problem (2) above.

これに対して本実施例では、光電変換層50とEMA型
F A P 10との間にCLEAR型FAP20で間
隙をとっているため、光電変換層50直下の原稿部分全
体が明るく照明されて高いセンサ感度が得られる。また
、EMA型F A P 10が原稿Pにほぼ接している
のでMTFの悪化もない。
On the other hand, in this embodiment, since a gap is provided between the photoelectric conversion layer 50 and the EMA type FAP 10 by the CLEAR type FAP 20, the entire document portion directly under the photoelectric conversion layer 50 is brightly illuminated and the height of the document is high. Sensor sensitivity is obtained. Furthermore, since the EMA type F A P 10 is almost in contact with the document P, there is no deterioration of MTF.

なお、CLEAR型F A P 20に代えて例えばガ
ラス製の透明板を使用することもできる。ただし、CL
EAR型F A P 10と単なるガラス板とでは入射
光の拡がりかたが異なるから、光軸方向の最適な厚み比
率も当然穴なる。1mm程度の厚みのEMA型F A 
P 10に対する透明板の厚みは、画素密度8 dor
s/ m mで0.3mm〜0.5mm、画素密度16
 dots/ m mで0.1mm〜0.3mmの範囲
がそれぞれ適当である。
Note that instead of the CLEAR type F A P 20, for example, a transparent plate made of glass may be used. However, C.L.
Since the way the incident light spreads is different between the EAR type F A P 10 and a simple glass plate, the optimum thickness ratio in the optical axis direction is naturally a hole. EMA type F A with a thickness of about 1mm
The thickness of the transparent plate for P 10 is pixel density 8 dor
0.3mm to 0.5mm in s/mm, pixel density 16
A range of 0.1 mm to 0.3 mm in terms of dots/mm is appropriate.

[発明の効果] 以上の説明のとおり、本発明に係る密着型イメージセン
サは、EMA型F A P’の原稿側とは反対側の面に
CLEAR型FAPや透明板等の透光体を介して光電変
換層及びこの光電変換層を覆う遮光層を順次設け、遮光
層に照明光の入射窓を設けるとともに、この入射窓に重
ねてこれより大きい光通過窓を光電変換層に設けたもの
であって、照明光の垂直入射が可能になり、透光体内で
ある程度拡散した後にEMA型FAPに入射するため、
光電変換層直下の原稿部分全体を効率良く照明すること
ができ、センサ感度が向上する。また、EMA型FAP
を原稿面に密着させて使用することから、ここでのMT
F低下が抑えられる。EMA型FAP内の光ファイバー
の斜めカット加工を必要としないので、コストアップを
抑えることもできる。
[Effects of the Invention] As described above, the contact type image sensor according to the present invention has a CLEAR type FAP or a light transmitting body such as a transparent plate on the surface opposite to the document side of the EMA type FAP'. A photoelectric conversion layer and a light shielding layer covering this photoelectric conversion layer are sequentially provided, an entrance window for illumination light is provided in the light shielding layer, and a larger light passing window is provided in the photoelectric conversion layer overlapping this entrance window. This makes it possible for the illumination light to enter vertically, and after diffusing to some extent within the transparent body, it enters the EMA type FAP.
The entire document portion immediately below the photoelectric conversion layer can be efficiently illuminated, improving sensor sensitivity. In addition, EMA type FAP
MT is used here because it is used in close contact with the surface of the original.
F drop can be suppressed. Since it is not necessary to diagonally cut the optical fiber inside the EMA type FAP, it is also possible to suppress an increase in cost.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の実施例に係る密着型イメージセンサ
の拡大断面図、 第2図は、前図の密着型イメージセンサに使用されるE
MA型FAPの斜視図、 第3図は、前図のEMA型FAPのA部分拡大平面図、 第4図は、前図中のシングル光ファイバーの拡大断面図
、 第5図は、第1図の密着型イメージセンサから透明基板
を取去った状態の光電変換層付近の部分拡大斜視図であ
る。 符号の説明 lO・・・EMA型FAP、12・・・導光部、13・
・・マルチ光ファイバー、14・・・シングル光ファイ
バー15・・・コア、16・・・クラッド、17・・・
光吸収体、20・・・CLEAI12FAP (透光体
)、22・・・導光部、30・・・透明基板、40・・
・遮光層(兼共通電極層)、46・・・遮光層の照明光
入射窓、50・・・光電変換層、52・・・アモルファ
スシリコン半導体層、53・・・透明rv電極層56・
・・光電変換層の光通過窓、60・・・透明絶縁層(透
光体)、70・・・個別電極層、80・・・紫外線硬化
樹脂層(透光体)、B・・・照明光、P・・・原稿。
FIG. 1 is an enlarged sectional view of a contact type image sensor according to an embodiment of the present invention, and FIG. 2 is an E
Figure 3 is an enlarged plan view of part A of the EMA type FAP in the previous figure. Figure 4 is an enlarged sectional view of the single optical fiber in the previous figure. Figure 5 is an enlarged sectional view of the single optical fiber in the previous figure. FIG. 3 is a partially enlarged perspective view of the vicinity of the photoelectric conversion layer of the contact image sensor with the transparent substrate removed. Explanation of symbols 1O...EMA type FAP, 12...Light guide section, 13.
...Multi optical fiber, 14...Single optical fiber 15...Core, 16...Clad, 17...
Light absorber, 20... CLEAI12FAP (translucent body), 22... Light guiding section, 30... Transparent substrate, 40...
- Light shielding layer (also common electrode layer), 46... Illumination light incidence window of light shielding layer, 50... Photoelectric conversion layer, 52... Amorphous silicon semiconductor layer, 53... Transparent rv electrode layer 56.
...Light passing window of photoelectric conversion layer, 60...Transparent insulating layer (translucent body), 70...Individual electrode layer, 80...UV curing resin layer (translucent body), B...Lighting Hikari, P...Manuscript.

Claims (1)

【特許請求の範囲】 1、光吸収体を被覆した光ファイバーを互いに平行に集
合させてなるEMA型光ファイバーアレイプレートの原
稿側とは反対側の面に透光体を介して光電変換層及びこ
の光電変換層を覆う遮光層を順次設け、遮光層に照明光
の入射窓を設けるとともに、この入射窓に重ねてこれよ
り大きい光通過窓を光電変換層に設けたことを特徴とす
る密着型イメージセンサ。 2、透光体が光吸収体を被覆しない光ファイバーを互い
に平行に集合させてなるCLEAR型光ファイバーアレ
イプレートからなり、このプレートの光ファイバーが光
電変換層の光通過窓を通る照明光をEMA型光ファイバ
ーアレイプレートに導く請求項1記載の密着型イメージ
センサ。
[Scope of Claims] 1. A photoelectric conversion layer and this photoelectric conversion layer are attached to the surface opposite to the original side of an EMA type optical fiber array plate, which is made by gathering optical fibers coated with a light absorber in parallel to each other, through a light transmitting material. A contact image sensor characterized in that a light-shielding layer covering a conversion layer is sequentially provided, an incident window for illumination light is provided in the light-shielding layer, and a larger light passing window is provided in the photoelectric conversion layer superimposed on the incident window. . 2. The EMA type optical fiber array consists of a CLEAR type optical fiber array plate in which optical fibers without a light absorbing material are assembled in parallel with each other, and the optical fibers of this plate transmit illumination light passing through the light passing window of the photoelectric conversion layer. The contact type image sensor according to claim 1, which is guided to a plate.
JP2082581A 1990-03-28 1990-03-28 Close contact type image sensor Pending JPH03280469A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2082581A JPH03280469A (en) 1990-03-28 1990-03-28 Close contact type image sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2082581A JPH03280469A (en) 1990-03-28 1990-03-28 Close contact type image sensor

Publications (1)

Publication Number Publication Date
JPH03280469A true JPH03280469A (en) 1991-12-11

Family

ID=13778448

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2082581A Pending JPH03280469A (en) 1990-03-28 1990-03-28 Close contact type image sensor

Country Status (1)

Country Link
JP (1) JPH03280469A (en)

Similar Documents

Publication Publication Date Title
JP3079969B2 (en) Complete contact image sensor and method of manufacturing the same
EP0298458B1 (en) Image reading apparatus
JPH06325158A (en) Fingerprint image input device
JP2815130B2 (en) Lens array and contact image sensor using the same
JP3180043B2 (en) Image input device
JP3008859B2 (en) Image sensor device using thin light source
US5448055A (en) Direct-contact type image sensor using optical fiber array with light absorbing cladding
JPH03280469A (en) Close contact type image sensor
JP2998326B2 (en) Image reading device
JPH07301730A (en) Waveguide type reducing image sensor
JPH07203129A (en) Close contact image sensor
JPH02298072A (en) Completely contact type image sensor
JPS5923436Y2 (en) Photoelectric conversion device
JPH07203128A (en) Close contact image sensor
JP4161518B2 (en) Contact image sensor
JP2813826B2 (en) Dimension discriminator
JP3055382B2 (en) Complete contact image sensor and unit
JPH0328109B2 (en)
JPH03238965A (en) Close contact type picture reader
KR980012577A (en) Non-contact semiconductor imaging device with direct focus method with self-focusing function
JPH06236980A (en) Photosensor
JPS61135272A (en) Linear image sensor
JPS60210867A (en) Linear image sensor
JPH01138507A (en) Solid-state image pickup device
JPH0380663A (en) Close contact type image sensor